
Interchange Documentation (Full)



Advanced Interchange Topics

Advanced Interchange Topics 1



1. Advanced Interchange Topics
Maintaining production Interchange servers• 
Interchange Administration Tool Development• 
Making catalog skeletons for use with makecat• 
Building custom link programs• 

1. Advanced Interchange Topics 2



2. Maintaining Interchange
Some utilities are supplied in the VendRoot/bin directory:

 compile_link Compiles an Interchange vlink or tlink CGI link
 configdump   Dumps the configuration directives for a particular catalog
 dump         Dumps the session file for a particular catalog
 expire       Expires sessions for a particular catalog
 expireall    Expires all catalogs
 makecat      Make catalog

Some example scripts for other functions are in the eg/ directory of the software distribution.

Some thought should be given to where the databases, error logs, and session files should be located,
especially on an ISP that might have multiple users sharing an Interchange server. In particular, put all of the
session files and logs in a directory that is not writable by the user. This eliminates the possibility that the
catalog may crash if the directory or file is corrupted.

To test the format of user catalog configuration files before restarting the server, set (from VendRoot):

   bin/interchange −test

This will check all configuration files for syntax errors, which might otherwise prevent a catalog from
booting. Once a catalog configures properly, user reconfiguration will not crash it. It will just cause an error.
But, it must come up when the server is started.

2.1. Starting, Stopping, and Re−starting the Servers

The following commands need to have VENDROOT changed to the main directory where Interchange is
installed. If the Interchange base directory is /home/interchange/, the start command would be
/home/interchange/bin/interchange.

Do a perldoc VENDROOT/bin/interchange for full documentation.

To start the server with default settings:

   VENDROOT/bin/interchange

Assuming the server starts correctly, the names of catalogs as they are configured will be displayed, along
with a message stating the process ID it is running under.

It is usually best to issue a restart instead. It doesn't hurt to do a restart if you're actually starting the first time.
And, if a server is already running (from this VENDROOT), a new start attempt will fail. To restart the server:

   VENDROOT/bin/interchange −restart

The −r option is the same as −restart.

This is typically done to force Interchange to re−read its configuration. A message will be displayed stating
that a TERM signal has been sent to the process ID the servers are running under. This information is also
sent to VENDROOT/error.log. Check the error.log file for confirmation that the server has restarted

2. Maintaining Interchange 3



properly.

To stop the server:

   VENDROOT/bin/interchange −stop

A message will be displayed stating that a TERM signal has been sent to the process ID the server is running
under. This information is also sent to VENDROOT/error.log.

Because processes waiting for selection on some operating systems block signals, they may have to wait for
HouseKeeping seconds to stop. The default is 60.

To terminate the Interchange server with prejudice, in the event it will not stop:

   VENDROOT/bin/interchange −kill

2.2. UNIX and INET modes

Both UNIX−domain and INET−domain sockets can be used for communication. INET domain sockets are
useful when more than one web server, connected via a local−area network (LAN), is used for accessing an
Interchange server.

Important note: When sending sensitive information like credit card numbers over a network, always ensure
that the data is secured by a firewall, or that the Interchange server runs on the same machine as any
SSL−based server used for encryption.

Use the −i and −u flags if you only want to use one communication method:

   # Start only in UNIX mode
   VENDROOT/bin/interchange −r −u

   # Start only in INET mode
   VENDROOT/bin/interchange −r −i

2.3. User Reconfiguration

The individual catalogs can be reconfigured by the user by running the [reconfig] support tag. This should be
protected by one of the several forms of Interchange authentication, preferably by HTTP basic authorization.
See RemoteUser.

The command line can be reconfigured (as the Interchange user) with:

   VENDROOT/bin/interchange −reconfig <catalog>

It is easy for the administrator to manually reconfigure a catalog. Interchange simply looks for a file
etc/reconfig (based in the Interchange software directory) at HouseKeeping time. If it finds a script
name that matches one of the catalogs, it will reconfigure that catalog.

Interchange Documentation (Full)

2.2. UNIX and INET modes 4



2.4. Expiring Sessions

If Interchange is using DBM capability to store the sessions, periodically expire old sessions to keep the
session database file from growing too large.

   expire −c catalog

There is also an expireall script which reads all catalog entries in interchange.cfg and runs
expire on them. The expire script accepts a −r option which tells it to recover lost disk space.

On a UNIX server, add a crontab entry such as the following:

   # once a day at 4:40 am
   40 4 * * *    perl /home/interchange/bin/expireall −r

Interchange will wait until the current transaction is finished before expiring, so this can be done at any time
without disabling web access. Any search paging files for the affected session (kept in ScratchDir) will be
removed as well.

If not running DBM sessions, use a Perl script to delete all files not modified in the last one or two days. The
following will work if given an argument of a session directory or session files:

   #!perl
   # expire_sessions.pl −− delete files 2 days old or older

   my @files;
   my $dir;
   foreach $dir (@ARGV) {
       # just push files on the list
       if (−f $dir) { push @files, $_; next; }

       next unless −d $dir;

       # get all the file names in the directory
       opendir DIR, $dir or die "opendir $dir: $!\n";
       push @files, ( map { "$dir/$_" } grep(! /^\.\.?$/, readdir DIR) ) ;
   }

   for (@files) {
       unless (−f $_) {
           warn "skipping $_, not a file.\n";
           next;
       }
       next unless −M $_ >= 2;
       unlink $_ or die "unlink $_: $!\n";
   }

It would be run with a command invocation like:

   perl expire_sessions.pl /home/you/catalogs/simple/session

Multiple directory names are acceptable, if there is more than one catalog.

This script can be adjusted as necessary. Refinements might include reading the file to "eval" the session
reference and expire only customers who are not members.

Interchange Documentation (Full)

2.4. Expiring Sessions 5



2.5. My session files change to owner root every day!

You have the expireall −r entry in the root crontab, and it should either be in the Interchange user crontab or
run as:

44 4 * * * su −c "/INTERCHANGE_ROOT/bin/expireall −r" INTERCHANGE_USERNAME

Interchange Documentation (Full)

2.5. My session files change to owner root every day! 6



3. Interchange Components
Interchange components are merely portions of HTML/ITL that are included into pages within the site
depending on options set in the Admin UI. The default component set includes the following:

best_horizontal
best_vertical
cart
cart_display
cart_tiny
category_vertical
cross_horizontal
cross_vertical
promo_horizontal
promo_vertical
random_horizontal
random_vertical
upsell_horizontal
upsell_vertical

3.1. Content −> Page Edit

The Interchange Admin UI offers a page editor function that allows component definitions and options to be
modified for each page within the catalog.

3.1.1. Template

The choices for the Template drop−down are read from template definition files located in the
CATROOT/template directory. These files store the name and description of the template, as well as
components and options for the particular template.

To create a new template for use in the admin, it is best to copy an existing template definition to a new file
name and edit it's contents to suit. Once the catalog is reconfigured, the new choice will be visible within the
Content Page Editor admin function.

Each template option is looped through and a scratch is set using its same name and value.

ITL is used near the bottom of this file to set each option to default values before the page is displayed.

[set page_title][set]
[set page_banner][set]
[set members_only][set]
[set component_before][set]
[set component_after][set]
[set bgcolor]#FFFFFF[/set]

3.1.2. Page Title

Sets the title of the page which is synonymous with the html <title></title> code.

The following code within the template definition file is used to display this option within in the content
editor:

3. Interchange Components 7



page_title: description: Page title

This code dynamically adds the title to the page:

<title>[scratch page_title]</title>

3.1.3. Page Banner

Sets a textual title for each page which is called by [either][scratch page_banner][or][scratch
page_title][/either] This results in the Page Banner being displayed if defined. Otherwise, the Page Title is
used.

3.1.4. Members Only

The members only function is handled by the following code within each template file:

[if scratch members_only]
    [set members_only][/set]
    [if !session logged_in]
    [set mv_successpage]@@MV_PAGE@@[/set]
    [bounce page=login]
    [/if]
[/if]

This code says if members only is set to yes and the visitor is logged in, display the page. Otherwise, redirect
the visitor to the login page.

3.1.5. Break 1

This code causes a separation in the Content Editor between the next set of options. (A blue line)

3.1.6. Horizontal Before Component

This allows the inclusion of a defined component to be displayed before, or above, the page's content. It is
called with the following code within the LEFTRIGHT_TOP template:

[if scratch component_before]
[include file="templates/components/[scratch component_before]"]
[set component_before][/set]
[/if]

3.1.7. Horizontal After Component

This function allows the inclusion of a defined component to be displayed after or below the page's content.
It's called with the following code within the LEFTRIGHT_BOTTOM template:

[if scratch component_after]
[include file="templates/components/[scratch component_after]"]
[set component_after][/set]
[/if]

Interchange Documentation (Full)

3.1.3. Page Banner 8



3.1.8. Horizontal Item Width

This setting allows you to choose how many items the horizontal components display. For example, the
horizontal best sellers component uses this setting to randomly select the best sellers. Notice the default to 2 if
nothing is defined.

random="[either][scratch component_hsize][or]2[/either]"

3.1.9. Special Tag

This setting is only viable when a promotion is used for a horizontal component. It tells the promotional
component which rows to evaluate in the merchandising table for display within the component. This setting
normally correlates to the featured column of the merchandising table as follows:

        [query arrayref=main
                   sql="
                        SELECT sku,timed_promotion,start_date,finish_date
                        FROM merchandising
                        WHERE featured = '[scratch hpromo_type]'
                        "][/query]

3.1.10. Before/After Banner

Allows a title for the horizontal components to be defined to displayed in a header above the component's
items. It is called with the [scratch hbanner] tag.

3.1.11. Break 2

This code causes a separation in the Content Editor between the next set of options. (A blue line)

3.1.12. Vertical Component

Defines a component to be displayed along the right side of the LEFTRIGHT_BOTTOM template. It is called
from the template with the following code:

[include file="templates/components/[scratch component_right]"]

3.1.13. Vertical Items Height

Sets the number of items to display within the vertical component. Called with the following code:

random="[either][scratch component_vsize][or]3[/either]"

3.1.14. Right Banner

Allows a title to be set for a vertical component which is displayed as a header above the items in the vertical
component. It's called with the [scratch vbanner] tag.

Interchange Documentation (Full)

3.1.8. Horizontal Item Width 9



3.1.15. Special Tag

Essentially the same as the Special Tag setting described in item number 9 above.

3.1.16. Background Color

Allows the background color of the page to be selected. The choices are stored within the page or template
definition as in:

bgcolor:
        options: #FFFFFF=White,pink=Pink
        widget: select
        description: Background color

3.1.17. Content

Allows the page code to be downloaded, uploaded and viewed/edited. Only the code between <!−− BEGIN
CONTENT −−> and <!−− END CONTENT −−> is displayed or can be edited here.

3.1.18. Preview, Save, and Cancel buttons

Allows the changes to the edited page to be previewed in a pop−up browser window, or saved. Cancel returns
you to the page editor selection page.

3.1.19. Save template in page

Template settings are stored in the template definitions by default. This allows a common set of choices for
template settings for all pages. If specific setting options are desired for a page, the template can be saved
within the page so that it may have individual options.

The in−page template definition must be surrounded by [comment] [/comment].

3.2. Custom Admin UI Options

Other options may be added to the template by defining them in the default definition file, or using in−page
definitions.

When the following lines are added to the template definition, the new option is added to the Admin UI.

option_name:
options: 1,2*,3
widget: select
description: Option Description
help: Other Details

Each time the template is used, an option_name scratch variable is created. (Called with: [scratch
option_name].) This scratch value will be equal to what's selected here in the admin tool.

The possible widgets include:

break − produces the blue line separator.

Interchange Documentation (Full)

3.1.15. Special Tag 10



radio − produces radio button type selections.
select − standard drop−down selector.
move_combo − select drop down with options and text input for new option.

Interchange Documentation (Full)

3.1.15. Special Tag 11



4. Administrative Pages
With Interchange's GlobalSub capability, very complex add−on schemes can be implemented with Perl
subroutines. And with the new writable database, pages that modify the catalog data can be made. See
MasterHost, RemoteUser, and Password.

In addition, any Interchange page subdirectory can be protected from access by anyone except the
administrator if a file called '.access' is present and non−zero in size.

4.1. Controlling Access to Certain Pages

If the directory containing the page has a file .access and that file's size is zero bytes, access can be gated
in one of several ways.

If the file .access_gate is present, it will be read and scanned for page−based access. The file has
the form:

1. 

  page: condition
  *: condition

The page is the file name of the file to be controlled (the .html extension is optional). The condition is
either a literal Yes/No or Interchange tags which would produce a Yes or No (1/0 work just fine, as do
true/false).
The entry for * sets the default action if the page name is not found. If pages will be allowed by default, set it
to 1 or Yes. If pages are to be denied by default in this directory, leave blank or set to No. Here is an
example, for the directory controlled, having the following files:

 −rw−rw−r−−   1 mike     mike            0 Jan  8 14:19 .access
 −rw−rw−r−−   1 mike     mike          185 Jan  8 16:00 .access_gate
 −rw−rw−r−−   1 mike     mike          121 Jan  8 14:59 any.html
 −rw−rw−r−−   1 mike     mike          104 Jan  8 14:19 bar.html
 −rw−rw−r−−   1 mike     mike          104 Jan  8 14:19 baz.html
 −rw−rw−r−−   1 mike     mike          104 Jan  8 14:19 foo.html

The contents of .access_gate:

   foo.html: [if session username eq 'flycat']
               Yes
             [/if]
   bar:      [if session username eq 'flycat']
             [or scratch allow_bar]
               Yes
             [/if]
   baz:      yes
   *:        [data session logged_in]

The page controlled/foo is only allowed for the logged−in user flycat.
The page controlled/bar is allowed for the logged−in user flycat, or if the scratch variable
allow_bar is set to a non−blank, non−zero value.
The page controlled/baz is always allowed for display.
The page controlled/any (or any other page in the directory not named in .access_gate) will be
allowed for any user logged in via UserDB.

4. Administrative Pages 12



If the Variable MV_USERDB_REMOTE_USER is set (non−zero and non−blank), any user logged in
via the UserDB feature will receive access to all pages in the directory. NOTE: If there is a
.access_gate file, it overrides this.

1. 

If the variables MV_USERDB_ACL_TABLE is set to a valid database identifier, the UserDB module
can control access with simple ACL logic. See USER DATABASE. NOTE: If there is a
.access_gate file, it overrides this. Also, if MV_USERDB_REMOTE_USER is set, this capability
is not available.

2. 

4.2. display tag and mv_metadata

Interchange can store meta information for selected columns of tables in a site's database. This meta
information is used when the user interacts with the database. For example, the meta information for a Hide
Item field might specify that a checkbox be displayed when the user edits that field, since the only
reasonable values are on and off. Or, the meta information might specify a filter on data entered for a
Filename field which makes sure that the characters entered are safe for use in a filename.

Widget type specifies the HTML INPUT tag type to use when displaying the field in, say, the item editor.

Width and Height only apply to some of the Widget type options, for instance the Textarea widget.

Label is displayed instead of the internal column name. For example, the category column of the
products table might have a label of Product Category.

Help is displayed below the column label, and helps describe the purpose of the field to the user.

Help url can be used to link to a page giving more information on the field.

Lookup can be used when a field is acting like a foreign key into another table. In that case, use some sort of
select box as the widget type, and if referencing multiple rows in the destination table, use a multi select box,
with colons_to_null as the pre_filter, and :: as the lookup_exclude.

Filter and pre_filter can be used to filter data destined for that field or data read from that field,
respectively.

Repeat?: The Interchange back office UI uses the mv_metadata table to discover formatting information for
field, table, and view display. The information is kept in fields in the mv_metadata table, and is used to select
the display, the HTML input type, the size (height and width where appropriate), label, help text, additional
help URL, and default value display.

It works in conjunction with the [display ...] usertag defined in the Interchange UI as well as in specific pages
in the UI. The [display] tag has this syntax:

[display table=tablename column=fieldname key=key arbitrary=tag filter=op ...]

In the simplest use, the formatting information for a table form field is called with:

[display table=products column=category key="os28007"]

The mv_metadata table is scanned for the following keys:

Interchange Documentation (Full)

4.2. display tag and mv_metadata 13



products::category::os28007
products::category

If a row is found with one of those keys, then the information in the row is used to set the display widget. If
no row is found, an INPUT TYPE=TEXT widget is displayed. If the data is all digits, a size of 8 is used,
otherwise the size is 60.

If the following row were found (not all fields shown, would be tab−separated in the actual data):

  code                type   width height label     options
  products::category  text   20           Category

Then this would be output:

<INPUT TYPE=text SIZE=20 VALUE="*category*">

If the following row were found:

  code                type   width height label     options
  products::category  select              Category  =none, product=Hardware

Then the following would be output:

        <SELECT NAME=category>
        <OPTION VALUE="">none
        <OPTION VALUE="product">Hardware
        </SELECT>

The standard widget types are:

text

The default. Uses the fields:

    width   size of input box

textarea

Format a <TEXTAREA> </TEXTAREA> pair. Uses the fields:

        width   COLS for textarea
        height  ROWS for textarea

select

Format a <SELECT> </SELECT> pair with appropriate options. Uses the fields:

  height          SIZE for select
  default         Default for SELECTED
  options         Options for a fixed list (or prepended to a lookup)
  lookup          signals a lookup (used as field name if "field" empty)
  field           field to look up possible values in
  db              table to look up in if not current table
  lookup_exclude  regular expression to exclude certain values from lookup

Interchange Documentation (Full)

4.2. display tag and mv_metadata 14



5. Usertag Reference
Admin Tool−specific usertags.

5. Usertag Reference 15



6. Admin Tool Database Tables

6.1. icmenu.txt

Used for back−office administration UI menus and wizards.

    code
                Arbitrary primary key
    mgroup
                Menu group (for grouping searches)
    msort
                Sort order within the group
    next_line
                Set to 1 if submenu
    indicator
    exclude_on
    depends_on
    page
    form
    name
    super
    inactive
    special
    help_name
        img_dn
        img_up
        img_sel
        img_icon
        url

6.2. mv_metadata.asc

    code
        Table::Column to be operated on.
        Database table
    type
        Widget type (Select the basic display type for the field)
            textarea = Textarea
            text = Text Entry (default)
            select = Select Box
            yesno = Yes/No (Yes=1)
            noyes = No/Yes (No=1)
            multiple = Multiple Select
            combo = Combo Select
            reverse_combo = Reverse Combo
            move_combo = Combo move
            display = Text of option
            hidden_text = Hidden(show text)
            radio = Radio box
            radio_nbsp = Radio (nbsp)
            checkbox = Checkbox
            check_nbsp = Checkbox (nbsp)
            imagedir = Image listing
            imagehelper = Image upload
            date = Date selector
            value = Value
            option_format = Option formatter
            show = Show all options

6. Admin Tool Database Tables 16



    width
        Width (SIZE for TEXT, COLS for TEXTAREA, Label limit for SELECT)
    height
        Height (SIZE for SELECT, ROWS for TEXTAREA)
    field
        Field for lookup (can be two comma separated fields, in which case
        second is used as the label text.  Both must be in the same table.)
    db
    name
        Variable name (normally left empty, changes variable name to send in
        form)
    outboard
        Select directory for image listing widget
    options
        options in the format <blockquote>value=label*</blockquote>
    attribute
        Column name (Do not set this.)
    label
    help
        Help (displays at top of page)
    lookup
        Lookup select (Whether lookup is performed to get options for a select
        type.  If nothing is in the field, then used as the name of the field
        to lookup in.  Use lookup table if you want to look up in a different
        table.
    filter
        Filters (Filters which can transform or constrain your data.  Some
        widgets require filters.)
    help_url
        Help URL (links below help text)
        A URL which will provide more help
    pre_filter
    lookup_exclude
        ADVANCED: regular expression that excludes certain keys from the lookup
    prepend
    append
        Append HTML (HTML to be appended to the widget.  Will substitute in the
        macros _UI_TABLE_, _UI_COLUMN_, _UI_KEY_, and _UI_VALUE_, and will
        resolve relative links with absolute links.)
    display_filter

Interchange Documentation (Full)

6. Admin Tool Database Tables 17



7. makecat − Set Up a Catalog from a Template
After Interchange is installed, you need to set up at least one catalog. Interchange will not function properly
until a catalog is created.

The supplied makecat script, which is in the Interchange program directory bin, is designed to set up a
catalog based on the user's server configuration. It interrogates the user for parameters like which directories
to use, a URL to base the catalog in, HTTP server definitions, and file ownership. It gives relevant examples
of the entries it expects to receive.

Note: A catalog can only be created once. All further configuration is done by editing the files within the
catalog directory.

The makecat script requires a catalog skeleton to work from. The Foundation demo is distributed with
Interchange. See the icfoundation document for information on building the Foundation demo store. Other
demo catalogs are available at http://interchange.redhat.com/.

It is not normally necessary for you to understand how to build catalog skeletons for use with makecat, but the
following information will help you if you should ever need to.

7.1. Catalog Skeletons

A catalog skeleton contains an image of a configured catalog. The best way to see what the makecat program
does is to configure the simple demo and then run a recursive diff on the template and configured catalog
directories:

        cd /usr/local/interchange
        diff −r construct catalogs/construct

The files are mostly identical, except that certain macro strings have been replaced with the answers given to
the script. For example, if www.mydomain.com was answered at the prompt for a server name, this
difference would appear in the catalog.cfg file:

       # template
       Variable SERVER_NAME  __MVC_SERVERNAME__

       # configured catalog
       Variable SERVER_NAME  www.mydomain.com

The macro string __MVC_SERVERNAME__ was substituted with the answer to the question about server
name. In the same way, other variables are substituted, and include:

MVC_BASEDIR      MVC_IMAGEDIR
MVC_CATROOT      MVC_IMAGEURL
MVC_CATUSER      MVC_MAILORDERTO
MVC_CGIBASE      MVC_MINIVENDGROUP
MVC_CGIDIR       MVC_MINIVENDUSER
MVC_CGIURL       MVC_SAMPLEHTML
MVC_DEMOTYPE     MVC_SAMPLEURL
MVC_DOCUMENTROOT MVC_VENDROOT
MVC_ENCRYPTOR

7. makecat − Set Up a Catalog from a Template 18



Note: Not all of these variables are present in the "construct" template, and more may be defined. In fact, any
environment variable that is set and begins with MVC_ will be substituted for by the makecat script. For
example, to set up a configurable parameter to customize the COMPANY variable in catalog.cfg, run a
pre−qualifying script that set the environment variable MVC_COMPANY and then place in the catalog.cfg
file:

Variable COMPANY __MVC_COMPANY__

All files within a template directory are substituted for macros, not just the catalog.cfg file. There are two
special directories named html and images. These will be recursively copied to the directories defined as
SampleHTML and ImageDir.

Note: The template directory is located in the Interchange software directory, i.e., where
interchange.cfg resides. Avoid editing files in the template directory. To create a new template, it is
recommended that it should be named something besides 'construct' and a copy of the construct demo
directory be used as a starting point. Templates are normally placed in the Interchange base directory, but can
be located anywhere. The script will prompt for the location if it cannot find a template.

In addition to the standard parameters prompted for by Interchange, and the standard catalog creation
procedure, four other files in the config directory of the template may be defined:

additional_fields −− file with more parameters for macro substitution
additional_help   −− extended description for the additional_fields
precopy_commands  −− commands passed to the system prior to catalog copy
postcopy_commands −− commands passed to the system after catalog copy

All files are paragraph−based. In other words, a blank line (with no spaces) terminates the individual setting.

The additional_fields file contains:

PARAM
The prompt. Set PARAM to?
The default value of PARAM

This would cause a question during makecat:

The prompt. Set PARAM to?.....[The default value of PARAM]

If the additional_help file is present, additional instructions for PARAM may be provided.

PARAM

These are additional instructions for PARAM, and they
may span multiple lines up to the first blank line.

The prompt would now be:

These are additional instructions for PARAM, and they
may span multiple lines up to the first blank line.

The prompt. Set PARAM to?.....[The default value of PARAM]

If the file config/precopy_commands exists, it will be read as a command followed by the prompt/help value.

Interchange Documentation (Full)

7. makecat − Set Up a Catalog from a Template 19



mysqladmin create __MVC_CATALOGNAME__
We need to create an SQL database for your Interchange
database tables.

This will cause the prompt:

We need to create an SQL database for your Interchange
database tables.

Run command "mysqladmin create simple"?

If the response is "y" or "yes," the command will be run by passing it through the Perl system() function. As
with any of the additional configuration files, MVC_PARAM macro substitution is performed on the
command and help. Proper permissions for the command are required.

The file config/postcopy_commands is exactly the same as <precopy_commands>, except the prompt occurs
after the catalog files are copied and macro substitution is performed on all files.

There may also be SubCatalog directives:

SubCatalog easy simple /home/catalogs/simple /cgi−bin/easy

easy

The name of the subcatalog, which also controls the name of the subcatalog configuration file. In this case, it
is easy.cfg.

simple

The name of the base configuration that will be the basis for the catalog. Parameters in the easy.cfg file that
are different will override those in the catalog.cfg file for the base configuration.

The remaining parameters are similar to the Catalog directive.

Additional interchange.cfg parameters set up administrative parameters that are catalog wide. See the server
configuration file for details on each of these.

Each catalog can be completely independent with different databases, or catalogs can share pages, databases,
and session files. This means that several catalogs can share the same information, allowing "virtual malls."

7.2. Manual Installation of Catalogs

An Interchange installation is complex, and requires quite a few distinct steps. Normally you will want to use
the interactive catalog builder, makecat, described above. It makes the process much easier. Please see the
iccattut document for a full tutorial on building a catalog by hand.

Interchange Documentation (Full)

7.2. Manual Installation of Catalogs 20



8. Link Programs
Interchange requires a web server that is already installed on a system. It does have an internal server which
can be used for administration, testing, and maintenance, but this will not be useful or desirable in a
production environment.

As detailed previously, Interchange is always running in the background as a daemon, or resident program. It
monitors either a UNIX−domain file−based socket or a series of INET−domain sockets. The small CGI link
program, called in the demo simple, is run to connect to one of those sockets and provide the link to a
browser.

Note: Since Apache is the most popular web server, these instructions will focus on it. If using another type of
web server, some translation of terms may be necessary.

A ScriptAlias or other CGI execution capability is needed to use the link program. (The default
ScriptAlias for many web servers is /cgi−bin.) If ExecCGI is set for all directories, then any
program ending in a particular file suffix (usually .cgi) will be seen as a CGI program.

Interchange, by convention, names the link program the same name as the catalog ID, though this is not
required. In the distribution demo, this would yield a program name or SCRIPT_PATH of
/cgi−bin/simple or /simple.cgi. This SCRIPT_PATH can be used to determine which Interchange
catalog will be used when the link program is accessed.

8.1. UNIX−Domain Sockets

This is a socket which is not reachable from the Internet directly, but which must come from a request on the
server. The link program vlink is the provided facility for such communication with Interchange. This is the
most secure way to run a catalog, for there is no way for systems on the Internet to interact with Interchange
except through its link program.

The most important issue with UNIX−domain sockets on Interchange is the permissions with which the CGI
program and the Interchange server run. To improve security, Interchange normally runs with the socket file
having 0600 permissions (rw−−−−−−−), which mandates that the CGI program and the server run as the same
user ID. This means that the vlink program must be SUID to the same user ID as the server executes under.
(Or that CGIWRAP is used on a single catalog system).

With Interchange's multiple catalog capability, the permissions situation gets a bit tricky. Interchange comes
with a program, makecat, which configures catalogs for a multiple catalog system. It should properly set up
ownership and permissions for multiple users if run as the superuser.

8.2. INET−Domain Sockets

These are sockets which are reachable from the Internet directly. The link program tlink is the provided
facility for such communication with Interchange. Other browsers can talk to the socket directly if mapped to
a catalog with the global TcpMap directive. To improve security, Interchange usually checks that the request
comes from one of a limited number of systems, defined in the global TcpHost directive. (This check is not
made for the internal HTTP server.)

8. Link Programs 21



8.3. Internal HTTP Server

If the socket is contacted directly (only for INET−domain sockets), Interchange will perform the HTTP server
function itself, talking directly to the browser. It can monitor any number of ports and map them to a
particular catalog. By default, it only maps the special catalog mv_admin, which performs administrative
functions. The default port is 7786, which is the default compiled into the distribution tlink program. This port
can be changed via the TcpMap directive.

To prevent catalogs that do not wish access to be made in this way from being served from the internal server,
Interchange has a fixed SCRIPT_PATH of /catalogname (/simple for the distribution demo) which needs
to be placed as an alias in the Catalog directive to enable access. See TcpMap for more details.

8.4. Setting Up VLINK and TLINK

The vlink and tlink programs, compiled from vlink.c and tlink.c, are small C programs which
contact and interface to a running Interchange daemon. The VLINK executable is normally made setuid to the
user account which runs Interchange, so that the UNIX−domain socket file can be set to secure permissions
(user read−write only). It is normally not necessary for the user to do anything. They will be compiled by the
configuration program. If the Interchange daemon is not running, either of the programs will display a
message indicating that the server is not available. The following defines in the produced config.h should
be set:

LINK_FILE

Set this to the name of the socket file that will be used for configuration, usually
"/usr/local/lib/interchange/etc/socket" or the "etc/socket" under the directory chosen for the VendRoot.

LINK_HOST

Set this to the IP number of the host which should be contacted. The default of 127.0.0.1 (the local machine)
is probably best for many installations.

LINK_PORT

Set this to the TCP port number that the Interchange server will monitor. The default is 7786 (the decimal
ASCII codes for 'M' and 'V') and does not normally need to be changed.

LINK_TIMEOUT

Set this to the number of seconds vlink or tlink should wait before announcing that the Interchange
server is not running. The default of 45 is probably a reasonable value.

8.5. Compiling VLINK and TLINK

There is a compile_link program which will assist with this. Do:

   perldoc VENDROOT/bin/compile_link

for its documentation.

Interchange Documentation (Full)

8.3. Internal HTTP Server 22



8.6. Manually Compiling VLINK and TLINK

Change directories to the src directory, then run the GNU configure script:

   cd src
   ./configure

There will be some output displayed as the configure script checks the system. Then, compile the programs:

   perl compile.pl

To compile manually:

   cc vlink.c −o vlink
   cc tlink.c −o tlink

On manual compiles, ensure that the C compiler will be invoked properly with this little ditty:

   perl −e 'do "syscfg"; system("$CC $LIBS $CFLAGS $DEFS −o tlink tlink.c");'
   perl −e 'do "syscfg"; system("$CC $LIBS $CFLAGS $DEFS −o vlink vlink.c");'

On some systems, the executable can be made smaller with the strip program, if available. It is not required.

   strip vlink
   strip tlink

If Interchange is to run under a different user account than the individual configuring the program, make that
user the owner of vlink. Do not make vlink owned by root, because making vlink SETUID root is an
huge and unnecessary security risk. It should also not normally run as the default Web user (often nobody or
http)).

   chown interchange vlink

Move the vlink executable to the cgi−bin directory:

   mv vlink /the/cgi−bin/directory

Make vlink SETUID:

   chmod u+s /the/cgi−bin/directory/vlink

Most systems unset the SUID bit when moving the file, so change it after moving.

The SCRIPT_NAME, as produced by the HTTP server, must match the name of the program. (As usual, let
the makecat program do the work.)

8.7. VLINK or TLINK Compile Problems

The latest version of vlink.c and tlink.c have been compiled on the following systems:

   AIX 4.1
   BSD2.0 (Pentium/x86)

Interchange Documentation (Full)

8.6. Manually Compiling VLINK and TLINK 23



   Debian GNU/Linux
   Digital Unix (OSF/Alpha)
   FreeBSD 2.x, 3.x, 4.x
   IRIX 5.3, IRIX 6.1
   OpenBSD 2.7
   Red Hat Linux 6.2, 7.0, 7.1
   SCO OpenServer 5.x
   Solaris 2.x (Sun compiler and GCC)
   Solaris 7 (Sun compiler and GCC)
   SunOS 4.1.4

Some problems may occur. In general, ignore warnings about pointers.

Make sure that you have run the configure program in the src directory. If you use Interchange's makecat
program, it will try to compile an appropriate link at that time, and will substitute tlink.pl if that doesn't work.

You can compile manually with the proper settings with this series of commands:

   cd src
   ./configure
   perl −e 'do "syscfg"; system ("$CC $CFLAGS $DEFS $LIBS −o tlink tlink.c")'
   perl −e 'do "syscfg"; system ("$CC $CFLAGS $DEFS $LIBS −o vlink vlink.c")'

There is also a compile_link program which has documentation embedded and which will compile an
appropriate link. If you cannot compile, try using the tlink.pl script, written in Perl instead of C, which
should work on most any system. Since vlink needs to have values set before compilation, a pre−compiled
version will not work unless it has the exact values you need on your system. If you can use the defaults of
'localhost' and port 7786, you may be in luck.

Interchange Documentation (Full)

8.6. Manually Compiling VLINK and TLINK 24



9. Installing Perl Modules without Root Access
Installing Interchange without root access is no problem. However, installing Perl modules without root
access is a little trickier.

You must build your makefile to work in your home dir. Something like:

PREFIX=~/usr/local \
INSTALLPRIVLIB=~/usr/local/lib/perl5 \
INSTALLSCRIPT=~/usr/local/bin \
INSTALLSITELIB=~/usr/local/lib/perl5/site_perl \
INSTALLBIN=~/usr/local/bin \
INSTALLMAN1DIR=~/usr/local/lib/perl5/man \
INSTALLMAN3DIR=~/usr/local/lib/perl5/man/man3

Put this in a file, say 'installopts', and use it for the Makefile.PL.

perl Makefile.PL `cat installopts`

Then, forget ./config. Just do:

make
make test
make install

Some of the tests may fail, but that's probably ok.

Also make sure to install Bundle::Interchange, which will need the same config data as you put into
'installopts'.

9. Installing Perl Modules without Root Access 25



10. Installation Troubleshooting
Interchange uses the services of other complex programs, such as Perl, Web servers, and relational databases,
to work. Therefore, when there is a problem, check these programs before checking Interchange. Many more
basic installation problems have to do with those than with Interchange itself.

If an error message is received about not being able to find libraries, or a core dump has occurred, or a
segment fault message, it is always an improperly built or configured Perl. Contact the system administrator
or install a new Perl.

The makecat program is intended to be used to create the starting point for the catalog. If the demo does not
work the first time, keep trying. If it still does not work, try running in INET mode.

Check the two error log files: error.log in the Interchange home directory (where interchange.cfg resides)
and error.log in the catalog directory (where catalog.cfg resides; there can be many of these). Many
problems can be diagnosed quickly if these error logs are consulted.

Check the README file, the FAQ, and mail list archive at the official Interchange web site for information:

       http://interchange.redhat.com/

Double check the following items:

Using UNIX sockets?
Check that the vlink program is SUID, or the appropriate changes have been made in the
SocketPerms directive. Unless the files are world−writable, the vlink program and the
Interchange server must run as the same user ID! If running CGI−WRAP or SUEXEC, the
vlink program must not be SUID.

♦ 

If having trouble with the vlink program (named construct in the demo configuration), try
re−running makecat and using INET mode instead. (Or copy the tlink INET mode link
program over vlink). This should work unchanged for many systems.

♦ 

If using an ISP or have a non−standard network configuration, some changes to
interchange.cfg are necessary. For tlink to work, the proper host name(s) must be
configured into the TcpHost directive in interchange.cfg. The program selects port 7786 by
default (the ASCII codes for "M" and "V", for MiniVend). If another port is used, it must be
set to the same number in both the tlink program (by running compile_link) and the
interchange.cfg file. The tlink program does not need to be SUID.

♦ 

1. 

Proper file permissions?
The Interchange server should not run as the user nobody! The program files can be owned
by anyone, but any databases, ASCII database source files, error logs, and the directory that
holds them must be writable by the proper user ID, that is the one that is executing the
Interchange program.

♦ 

The best way to operate in multi−user, multiple catalog setups is to create a special interch
user, then put that user in the group that contains each catalog user. If a group is defined for
each individual user, this provides the best security. All associated files can be in 660 or 770
mode. There should be no problems with permissions and no problems with security.

♦ 

2. 

Is the vlink program being executed on a machine that has the socket file etc/socket on a
directly attached disk?

UNIX−domain sockets will not work on NFS−mounted file systems! This means that the
Interchange server and the CGI program vlink must be executing on the same machine.

♦ 

3. 

10. Installation Troubleshooting 26



The tlink program does not have this problem, but it must have the proper host name(s)
and TCP ports set in the TcpHost and TcpMap directives in interchange.cfg. Also, be
careful of security if sensitive information, like customer credit card numbers, is being placed
on a network wire.

♦ 

Copyright 2001−2002 Red Hat, Inc. Freely redistributable under terms of the GNU General Public License.
line:

Interchange Documentation (Full)

10. Installation Troubleshooting 27



Catalog−Building Tutorial

Catalog−Building Tutorial 28



11. Purpose
The purpose of this document is to guide you through constructing a simple Interchange catalog from scratch.
The demo catalog that ships with Interchange is quite complex since it highlights some of the many
capabilities that Interchange offers. As a template for your own catalog, the demo can either be an
intimidating place to start.

The simple catalog you create using this tutorial should give you a feel for the basic Interchange system. It
should also be considered a stepping stone to a more complete and functional e−commerce system built with
Interchange. The tutorial relies as much as possible on default settings to accentuate how Interchange works.
It will use as few of Interchange's capabilities as possible, while still building a usable store. The resulting site
will be simple but usable. The value of this tutorial is in the instruction that occurs along the way.

It is recommended that you create the files used in this tutorial yourself. You will learn more by creating the
directory structure and using your favorite text editor to create files in the proper places on your own system
as they are discussed.

11. Purpose 29



12. Before you begin
This section explains the initial set up tasks that must be completed before you can begin building your simple
e−commerce site.

12.1. Install Interchange and the demo catalog

The easiest way to get Interchange and the demo set up is through an RPM install on the Red Hat Linux or
Linux Mandrake operating systems. You can also get Interchange by unpacking an Interchange tarball or
checking out a copy of the CVS repository and doing a manual installation. These installations can be done
either as a regular user or as root, installing for a special Interchange user.

You must also know what type of installation you ran so you know where to place the various files created.
Before proceeding, verify that Interchange is properly installed. Also, keep in mind which type of installation
you did:

RPM (Red Hat Package Manager) install• 
Manual install as root• 
Manual install as regular user• 

Note: After installation, makecat should be run to build your catalog. For information on installing
Interchange and building your catalog using makecat, see the Interchange Getting Started Guide. Do not to
continue with this tutorial without a working demo catalog.

Installing the demo catalog set up the Interchange global configuration file interchange.cfg, which
resides in the Interchange software directory. Also, it compiled the link program for your specific server and
placed the executable program in your cgi−bin directory. This is necessary for your catalog to run properly.

12.2. The Interchange operating system user

If Interchange was installed as a regular user, that will be the user Interchange runs as. If Interchange was
installed as root or from an RPM, you need to know the name of the separate Interchange user. The
Interchange daemon will not run as root, and should not run as the web server user (usually 'apache', 'www',
'httpd', or 'nobody'). If Interchange was installed from the RPM, or with the default source installation settings,
the username is interch. If you selected a different user name, you will need to know what it is.

12.3. Important directories

In order to complete this tutorial you will need to know the location of each of the following directories and
have write permissions on them:

Interchange software directory .RPM install: /usr/lib/interchange .Manual install as root:
/usr/local/interchange .Manual install as regular user: /home/username/interchange

• 

Catalogs directory .RPM install: /var/lib/interchange .Manual install as root:
/usr/local/interchange/catalogs .Manual install as regular user: /home/username/catalogs

• 

cgi−bin directory .RPM install or source install as root: /var/www/cgi−bin .Manual install as root
(locally installed web server): /usr/local/htdocs, /opt/www, ... .Manual install as regular user:
/home/username/public_html (with .cgi extension)

• 

12. Before you begin 30



Note: The installation of Interchange is very flexible and the file locations on your system may vary,
depending on how your system was set up. It is recommended that you not proceed until you are sure you
have this information and the necessary permissions to write to these directories.

12.4. Your catalog URL

Finally, you need to know the URL to access your store from a web browser. Again, this can vary depending
on how your web server has been set up. But, assuming a common setup of the Apache web server, your URL
should be one of the following:

Root or RPM install: http://localhost/cgi−bin/tutorial/pagename• 
Manual install as user:http://localhost/~username/tutorial.cgi/pagename• 

If you aren't running your web browser on the server where Interchange is running, you need to substitute
your server's host name (for example: machine.domain.com for localhost) where mentioned.

Note: It is recommended that you use the real machine name instead of localhost. The standard for cookies
specifies that they can only be set when a domain name has at least two dots in it. If you use localhost, you
will lose session information if you leave catalog, since the session ID is passed only as part of the URL.

12.5. Starting or restarting Interchange

When you make changes to the configuration files you need to restart the Interchange server. How this is done
depends on how you installed Interchange:

RPM install as root: /usr/sbin/interchange −r• 
Manual install as Interchange user:/usr/local/interchange/bin/interchange −r• 
Manual install as root: su interch −c
'/usr/local/interchange/bin/interchange −r'

• 

Manual install as regular user:~/interchange/bin/interchange −r• 

Find the right command for your system and remember it, since you will need to restart Interchange a few
times during the tutorial.

12.6. Tutorial assumptions

Because it is impossible to cover all scenarios, this tutorial assumes that you installed Interchange on Red Hat
Linux from the RPM packages. This creates the following settings:

Interchange software directory: /usr/lib/interchange• 
Catalogs directory: /var/lib/interchange• 
cgi−bin directory: /var/www/cgi−bin• 
Interchange user: interch• 
Demo catalog name: foundation• 
Demo catalog URL base: http://localhost/cgi−bin/foundation• 
Tutorial catalog name: tutorial• 
Tutorial catalog URL base: http://localhost/cgi−bin/tutorial• 

Interchange Documentation (Full)

12.4. Your catalog URL 31



Tutorial catalog directory: /var/lib/interchange/tutorial• 

If you did not install with these settings, substitute the correct values for your system when these settings are
mentioned in the tutorial.

Interchange Documentation (Full)

12.4. Your catalog URL 32



13. Building Your Catalog
This section describes the pages and directories that need to be established to create a properly functioning
catalog.

13.1. Create the link program

You need to make a copy of the demo link program in your cgi−bin directory and name it tutorial.

The demo link program has the same name as your demo catalog, usually foundation. The link program
links the Interchange daemon with your web server. Make sure that it has the same owner and file permissions
as the one you copied from. The set−UID bit is especially (unless you installed as a regular user). Normally
you will need to be root to have write permissions in the cgi−bin directory.

Type this command as root while in your cgi−bin directory:

  cp −p foundation tutorial

If everything is working correctly, typing ls −l should describe your files roughly like this:

  −rwsr−xr−x    1 interch  interch      7708 Dec 16 22:47 foundation
  −rwsr−xr−x    1 interch  interch      7708 Dec 16 22:47 tutorial

13.2. Create the tutorial catalog directory

As root, create a subdirectory named tutorial under your catalogs directory (probably
/var/lib/interchange/). This is where all of the catalog−specific files will go. It needs to be readable,
writable, and executable by the Interchange user. This will be referred to as your catalog directory. Type the
following while in the catalogs directory to create the tutorial subdirectory:

  mkdir tutorial
  chown interch.interch tutorial
  chmod 770 tutorial

13.3. Become the Interchange user

You should be able to do everything you need to do as the 'interch' user for the rest of this tutorial. So you can
switch to that user now (su − interch). If you installed Interchange from the RPM, the user interch
probably doesn't have a password. You'll have to set it with a command such as passwd interch while
root.

13.4. Go to the tutorial catalog directory

Change to the catalog directory with the 'cd' command. For the rest of this tutorial, all file locations will be
given relative to the tutorial catalog directory. For example, pages/ord/basket.html would actually be
/var/lib/interchange/tutorial/pages/ord/basket.html or the equivalent on your system.
The only exception is interchange.cfg, which is in the Interchange software directory.

13. Building Your Catalog 33



Note: To improve clarity, we will append a trailing slash to directory names to clearly distinguish them from
file names. (Similar to the output of the ls command with the −F option.)

13.5. Create the session directory

You need to create the session directory where Interchange saves information on each visitor's browsing
session. If you do not have this directory, your catalog will not work. This directory is called session/ and
goes under your catalog directory. Type mkdir session to create this directory.

Interchange Documentation (Full)

13.5. Create the session directory 34



14. Configuration files
Interchange configuration is controlled by a number of directives, which are specified in two files. Global
configuration directives go in interchange.cfg in the Interchange software directory. Catalog−specific
configuration directives go in catalog.cfg in the catalog directory.

A complete directive consists of the directive name followed by whitespace−separated parameters. Any
number of spaces or tabs can be between the directive and its options, but the directive and its options must be
on the same line. The directive is case−insensitive, but it is recommended that you use it consistently for
readability.

You can insert blank lines or comment lines (lines where the first non−blank character is '#') throughout the
configuration files to improve readability. The order the lines appear in is significant, but unimportant for the
simple catalog you are creating.

For the next part, access your text editor (for example, vi, emacs, pico, joe, gedit, or nedit) to start editing
some files.

14.1. interchange.cfg

The first directive we need to use is a global directive that tells Interchange where the new catalog is, called
Catalog. The Catalog directive has the following format:

  Catalog   name   catalog_base_directory   link_url_path

Open interchange.cfg in the Interchange software directory. Go near the top of the file, right below the
other Catalog directives, and add this line:

  Catalog  tutorial  /var/lib/interchange/tutorial  /cgi−bin/tutorial

Save the file.

14.2. catalog.cfg

For the rest of the tutorial, most of the files mentioned do not exist yet. You will create them yourself with
initial text we give.

You need to create a catalog.cfg file for your tutorial store (in the tutorial catalog directory). We'll start
with a very simple products database table with a few fields and a few products.

The Database directive describes a database table to the Interchange system in this format:

  Database  name  filename  format

Interchange has several database options available. We will use the simplest, which is the built−in default
(specifically, some variant of DBM). The default location for filename is in a subdirectory called products
under the catalog directory. Interchange recognizes a number of file formats. We will use a tab−delimited text
file. Enter the following into catalog.cfg:

  Database  products  products.txt  TAB

14. Configuration files 35



This tells Interchange that you have a database table named 'products' that is described in a tab−delimited file
named products.txt. You can describe an unlimited number of arbitrary database tables for the system to
use this way. Interchange keeps a list of default tables called "Product Files," reflecting its e−commerce roots.
You can specify all of the database tables that contain products by using the ProductFiles directive. There is
no default for this, so you will have to specify your products table's name by adding the following line to
catalog.cfg:

  ProductFiles  products

There are a few other directives that Interchange expects to see in order to complete the minimum
configuration. They are VendURL, SecureURL, and MailOrderTo. They are, respectively, your catalog's
base URL, its secure URL, and the e−mail address to mail order notices to. Add the following lines to
catalog.cfg to establish these directives:

  VendURL  http://localhost/cgi−bin/tutorial
  SecureURL  http://localhost/cgi−bin/tutorial
  MailOrderTo  your@email.address

The catalog.cfg file should look like this when you save it:

  Database  products  products.txt  TAB
  ProductFiles  products
  VendURL  http://localhost/cgi−bin/tutorial
  SecureURL  http://localhost/cgi−bin/tutorial
  MailOrderTo  your@email.address

Interchange Documentation (Full)

14. Configuration files 36



15. The products database table

15.1. products/products.txt

Create the products/ directory in your tutorial catalog directory.

The products/products.txt file will serve two purposes. It will provide Interchange with the layout of
the products database table and it will also provide the data. When Interchange parses the products.txt file, it
will expect the first line to contain the names of the fields for the database table (for example, sku, description,
price). The first field in the list is expected to be a primary key (unique identifier) for that row. In most cases
you are going to use the SKU (stock keeping unit) as the unique identifier for each product.

The product database is handled as a special case since Interchange expects at least the description, price, and
product ID (sku) fields. In other words, the products.txt file must at least contain fields named sku,
price, and description. You can have other fields too, if you wish.

The simple store that we are going to build will sell tests. You can choose another sample product line, but it
is recommended that you keep it simple. Create the file products/products.txt to look like this, with
a single tab separating each field:

  sku   description     price
  4595  Nice Bio Test   275.45
  2623  Stack of Econ Quizzes   1.24
  0198  Really Hard Physics Test        1589.34
  1299  Ubiquitous diff eq final        37.00

Note: When using tab−delimited files as we are, make sure you have exactly one tab between each field.
Some text editors will use spaces to simulate tabs. Interchange expects actual ASCII tab characters; extra
spaces or other characters will corrupt your data.

You may notice that the columns don't line up in your text editor. This is the nature of tab−delimited files. Do
not try to fix these.

15. The products database table 37



16. Page templates
Since most sites have certain aspects of the site that remain the same as the content of the pages changes, we
are going to create a template that we can use for all pages. We'll divide the page into four sections:

   _____________________
  |                     |
  |         top         |
  |                     |
  |−−−−−−−−−−−−−−−−−−−−−|
  |      |              |
  |      |              |
  | left |     main     |
  |      |              |
  |      |              |
  |−−−−−−−−−−−−−−−−−−−−−|
  |                     |
  |        bottom       |
  |_____________________|

The "main" section holds the content that is different for each page. The "top" section is for headers, banners,
menus, and so on. The "left" section can be used as a sidebar or navigation bar, and the "bottom" section can
contain the copyright and contact info. The top, left, and bottom sections will remain constant throughout the
site. Making a change to information in one of these sections will make that change to all pages in your site.

Now type the HTML for each template section in an individual plain text file in the catalog directory, named
'top', 'left', and 'bottom', respectively using the code displayed below. No '.html' suffixes are used on these
because they are not meant to be parsed directly by Interchange as full pages.

16.1. top

  <html>
  <head>
  <title>The Interchange Test Catalog</title>
  </head>
  <body>
  <div align=center>
  <table width="80%" border cellpadding=15>
  <tr><td colspan=2 align=center><h1>The Interchange Test Catalog</h1></td></tr>

16.2. left

  <tr>
  <td align=center>(left)</td>
  <td align=center>

16.3. bottom

  </td>
  </tr>
  <tr><td colspan=2 align=center>(bottom)</td></tr>
  </table>
  </div>
  </body>

16. Page templates 38



  </html>

16.4. The Interchange Tag Language

Now we need a way to pull the template pieces we just created into the proper places to make a complete
page. This is done using ITL, the Interchange Tag Language.

ITL is at the heart of almost all Interchange catalog pages. It's how you use Interchange's functionality. The
ITL tags appear between square brackets like [this]. Options appear after the tag, separated by whitespace,
like this: [tag option1 option2] and this: [tag option1=value1 option2=value2]. They can span multiple lines.
(That can help readability when the tag has many options.) There are many ITL tags, and for this tutorial very
few will be addressed. For a complete listing of the ITL tags, see the Interchange Tag Reference Guide.

Your first tag will be [include], which reads the file mentioned (relative to the catalog directory), parses any
Interchange tags, and puts the result in place of the tag. This is demonstrated on the next page you need to
create.

Interchange Documentation (Full)

16.4. The Interchange Tag Language 39



17. Creating a welcome page

17.1. pages/index.html

Create a directory called pages/ in your tutorial catalog directory.

Type the following text and save it as pages/index.html. This will create a page to test that everything
works so far.

  [include top]
  [include left]
  This is where your content goes.
  [include bottom]

Restart Interchange so your changes take effect. Go to your web browser and load the page. The URL should
be similar to the following: http://localhost/cgi−bin/tutorial/index.html.

Note: Interchange pages in the pages/ or other directories must have the .html suffix on them. You can
drop the suffix in your URL and in other places, such as the [page] tag you'll learn about later, but the file
name on disk must have the suffix.

17. Creating a welcome page 40



18. Troubleshooting
Your first Interchange page should have displayed as described in your browser. If it didn't, you need to figure
out what went wrong. Most of the time, overlooked details are the problem. Double−checking your typing is a
good habit to get into.

The following is a troubleshooting checklist to use when you run into problems:

Have you created directories with the proper names in the proper locations? (See Appendix A for a
full directory and file structure of the tutorial catalog.)

1. 

Have you misspelled any file names or put them in the wrong directories? Are the files and parent
directories readable by the interch user? Double−check with the ls command.

2. 

Did you type letters in the proper case? Remember that both Unix and Interchange are case−sensitive,
and for the most part you may not switch upper− and lower−case letters.

3. 

Did you type all punctuation, ITL tags, and HTML tags correctly?4. 
Did you use whitespace correctly in the cases where it mattered? Remember to use tabs when tabs are
called for (in lists and database text files).

5. 

Did you restart Interchange if you changed anything in interchange.cfg or catalog.cfg, or
if you're in a high−traffic mode?

6. 

Check your catalog error log, error.log in your tutorial catalog directory, to see if Interchange
reported any errors.

7. 

Check the Interchange server error log, error.log in the Interchange software directory, to see if it
had problems loading the catalog at all.

8. 

View the HTML source of any catalog pages that are loading incorrectly to check for a coding error.
The problem may reveal itself when you see what HTML the browser is getting.

9. 

18. Troubleshooting 41



19. Displaying products

19.1. Listing all products

Now that your store is running, you need to display your products on the welcome page. We will loop over all
of the products in our database and produce an entry for each one in a table. Replace the line "This is where
your content goes" in pages/index.html with the following:

  <table cellpadding=5>
  <tr>
  <th>Test #</th>
  <th>Description</th>
  <th>Price</th>
  </tr>

  . . .

  </table>

Now we will use Interchange tags to fill in the rest of the table from the products database you created. The
[loop] [/loop] ITL tag pair tells Interchange to iterate over each item in the parameter list. In this case, the loop
is over the result of an Interchange search. The search parameter does a database search on the provided
parameters. In this case, we're doing a very simple search that returns all of the fields for all of the entries in
the products database. The parameters passed to the search tell Interchange to return all ('ra') on the file ('fi')
products respectively. The following should take the place of the ellipsis in the code you placed in
index.html:

  [loop search="ra=yes/fi=products"]

  . . .

  [/loop]

In the loop we just established, the individual elements of the entry using the [loop−field] tag. The following
code should replace the above ellipsis in the code we placed in pages/index.html:

  <tr>
  <td>[loop−code]</td>
  <td>[loop−field description]</td>
  <td align=right>[loop−field price]</td>
  </tr>

The [loop−code] tag refers to the primary key (unique identifier) for the current row of the database table in
question. In this case, it will produce the same output as the [loop−field sku] tag, because the 'sku' field is the
primary key for products table. In each case the tag is replaced by the appropriate element. When put together,
Interchange generates a page with your products table on it.

Your finished page should look like this:

  [include top]
  [include left]
  <table cellpadding=5>
  <tr>
  <th>Test #</th>

19. Displaying products 42



  <th>Description</th>
  <th>Price</th>
  </tr>
  [loop search="ra=yes/fi=products"]
  <tr>
  <td>[loop−code]</td>
  <td>[loop−field description]</td>
  <td align=right>[loop−field price]</td>
  </tr>
  [/loop]
  </table>
  [include bottom]

Test this page by refreshing the index.html page in your browser.

19.2. pages/flypage.html

The next step is to create an individual page for each item. To do this, you need to create a special generic
page called pages/flypage.html. When a page is requested that does not exist in the pages/ directory,
Interchange will check and see if the requested page has the same name as a product ID from the product
database table (in this case a SKU). If it does, it will show the flypage for that product. If there's no product
with that ID, the special error page special_pages/missing.html (described in the next section) will
be displayed.

For example, if the page 0198.html was requested, Interchange first checks for a page with that name. If
one is not found, it searches the products database table for a product with that ID. Interchange then creates a
product page "on the fly" using pages/flypage.html. When constructing the flypage, the entire product
record for the requested product is available through the [item−field] tag (similar to the [loop−field] tag). To
create a fly page, type the following code and save it as pages/flypage.html.

  [include top]
  [include left]

  <h3>Test #[item−code]</h3>
  <p>[item−field description] . . . [item−field price]</p>

  [include bottom]

Then, to provide links to the product flypages from your home page, modify pages/index.html slightly,
so that:

  <td>[loop−field description]</td>

becomes:

  <td><a href="[loop−code].html">[loop−field description]</a></td>

19.3. special_pages/missing.html

Create the special_pages/ directory in your tutorial catalog directory (not in the pages/ directory).

As mentioned, it is a good idea to display an error page when Interchange is asked for an unknown page. To
create a missing page for display, type the following and save it as special_pages/missing.html.

Interchange Documentation (Full)

19.2. pages/flypage.html 43



  [include top]
  [include left]
  <p>We're sorry, the page you requested has not been found.</p>

  <p>Try finding what you need on the [page index]welcome page</a>.</p>
  [include bottom]

The addition of this page ensures that users see your error message instead of a mysterious server error if they
mistype a URL.

Interchange Documentation (Full)

19.2. pages/flypage.html 44



20. The shopping basket

20.1. A link for ordering

Now that you have your products available, let's add a shopping cart so customers can purchase them. This is
created using the [order] [/order] tags. These tags create an HTML link that causes the specified item to be
ordered and transfers the shopper to the basket page. This is a built−in shortcut to the complete order process
which uses an HTML form submission process. The parameter for the [order] tag is the product ID. To add
these tags to the catalog, make the following change to pages/index.html:

  <tr>
  <td>[loop−code]</td>
  <td>[loop−field description]</td>
  <td align=right>[loop−field price]</td>
+ <td>[order [loop−code]]Order Now[/order]</td>
  </tr>
  [/loop]

Note: The line you need to add is marked by a '+'. However, do not include the '+' when adding this line. The
surrounding lines are shown to give you context. This style is called a "context diff" and is used often in this
tutorial.

20.2. pages/ord/basket.html

Create the directory pages/ord/ in the tutorial catalog directory. In other words, ord/ should be inside
the pages/ directory.

For the [order] tag, Interchange expects a default page called pages/ord/basket.html. This page
displays the contents of the shopping basket and contains other shopping basket functionality.

The Foundation store has a full−featured shopping basket available for use, but this tutorial teaches you to
build your own simple one. The shopping basket items can be accessed using a set of tags that have an [item]
prefix. Put the following code in the new file pages/ord/basket.html. The section that follows
explains the tags used.

  [include top]
  [include left]

  <h2>This is your shopping cart!</h2>

  <table cellpadding=5>

  <tr>
  <th>Qty.</th>
  <th>Description</th>
  <th>Cost</th>
  <th>Subtotal</th>
  </tr>

  [item−list]
  <tr>
  <td align=right>[item−quantity]</td>
  <td>[item−field description]</td>

20. The shopping basket 45



  <td align=right>[item−price]</td>
  <td align=right>[item−subtotal]</td>
  </tr>
  [/item−list]

  <tr><td colspan=4></td></tr>

  <tr>
  <td colspan=3 align=right><strong>Total:</strong></td>
  <td align=right>[subtotal]</td>
  </tr>

  </table>

  <hr>

  <p>
  [page checkout]Purchase now</a><br>
  [page index]Return to shopping</a>
  </p>

  [include bottom]

The basket items can be accessed one at a time by using the [item−list] tag. So we will create a table by
iterating through the basket items. The text within the [item−list] [/item−list] tags is created for each item in
the list.

[item−quantity] shows the quantity of the item ordered. If the same item is ordered multiple times, the
quantity increases.

• 

[item−field description] shows the description from the product database table. Any field that is not
special to Interchange can be accessed from the shopping cart this way.

• 

[item−price] shows the per−item price that is defined in the product database table.• 
[item−subtotal] shows the total cost of this order line. This is normally the price multiplied by the
quantity, but it can also take into account other considerations, such as various kinds of price
discounts.

• 

[subtotal] shows the calculated shopping basket subtotal.• 
[page index] creates the starting HTML <a href="..."> for a link to the catalog welcome page.• 

You also need to put a link in the index page so that shoppers can go to their shopping cart without ordering
something. Modify the end of pages/index.html by adding the following lines.

  </table>
+ <hr>
+ <p align=center>[page order]View shopping cart</a></p>
  [include bottom]

Refresh the page and test the shopping basket in your browser.

Interchange Documentation (Full)

20. The shopping basket 46



21. Order checkout

21.1. pages/checkout.html

The site can now be completed by adding the ability to check out with the shopping cart and finalize the order.
To do this the customer needs to provide a shipping address (which, for the sake of this tutorial, we will
assume is the same as the billing address), and payment information. We will process the order by verifying
the customer's payment information and sending an email to the merchant (ourselves) detailing the order.

First you need to create a checkout page. The checkout page consists of a form that receives order information
from the customer and performs a simple credit card number check. In this tutorial we will use a built−in test
that only checks to see if a given credit card number could be valid. If the information is acceptable the
customer will move to the next phase of the order process. If it is not, an error page will be displayed.

To create a checkout page, type the following code and save it as pages/checkout.html. The section
that follows explains the code.

  [include top]
  [include left]
  <h1>Checkout Page</h1>

  <form method=post action="[process]">
  <input type=hidden name=mv_todo value=submit>
  <input type=hidden name=mv_order_profile value=order_profile>
  <input type=hidden name=mv_cyber_mode value=minivend_test>

  <table cellpadding=3>

  <tr>
  <td align=right><b>First name:</b></td>
  <td><input type=text name=fname value="[value fname]"></td>
  </tr>

  <tr>
  <td align=right><b>Last name:</b></td>
  <td><input type=text name=lname value="[value lname]"></td>
  </tr>

  <tr>
  <td align=right rowspan=2><b>Address:</b></td>
  <td><input type=text name=address1 value="[value address1]"></td>
  </tr>

  <tr>
  <td><input type=text name=address2 value="[value address2]"></td>
  </tr>

  <tr>
  <td align=right><b>City:</b></td>
  <td><input type=text name=city value="[value city]"></td>
  </tr>

  <tr>
  <td align=right><b>State:</b></td>
  <td><input type=text name=state value="[value state]"></td>
  </tr>

21. Order checkout 47



  <tr>
  <td align=right><b>Postal code:</b></td>
  <td><input type=text name=zip value="[value zip]"></td>
  </tr>

  <tr>
  <td align=right><b>Country:</b></td>
  <td><input type=text name=country value="[value country]"></td>
  </tr>

  </table>

  <p>
  Note: We assume that your billing address is the same as your shipping address.
  </p>

  <table cellpadding=3>

  <tr>
  <td align=right><b>Credit card number:</b></td>
  <td><input type=text name=mv_credit_card_number value="" size=20></td>
  </tr>

  <tr>
  <td align=right><b>Credit card expiration date:</b></td>
  <td>
  Month (number from 1−12):
  <input type=text name=mv_credit_card_exp_month value="" size=2 maxlength=2>
  <br>
  Year (last two digits only):
  <input type=text name=mv_credit_card_exp_year value="" size=2 maxlength=2>
  </td>
  </tr>

  </table>

  <p>
  <input type=submit name=submit value="Finalize!">
  <input type=reset name=reset value="Reset">
  </p>

  </form>

  <p>[page index]Return to shopping instead</a></p>
  [include bottom]

The HTML form begins with a method of 'post' (which sends the form data as its own stream, as opposed to
the 'get' method which encodes the data as part of the URL). The [process] tag creates a special URL for form
processing. Interchange has a built−in form processor that is configured by submitting certain fields in the
form. The Finalize button will invoke this form processor and link the user to the
special_pages/receipt.html page, which is described later.

You are submitting some hidden form values that will tell Interchange how to process this form. The first
value, mv_todo was set as submit. This causes the form to be submitted for validation. The second value,
mv_order_profile was set as order_profile. This determines the validation process for the form. It is explained
further in the next section.

The last value, mv_cyber_mode, was set to be minivend_test. The mv_cyber_mode value determines what
method will be used to charge a credit card. The value of minivend_test uses the internal test method, which

Interchange Documentation (Full)

21. Order checkout 48



calculates a simple checksum against the card to determine if it is a valid number.

When preparing an order for processing, Interchange looks for certain named fields in the form values for
name, address, and credit card information. We are using all expected field names in this form so that no
translation needs to take place.

View the checkout page in your browser. The "Finalize!" link has not been enabled, but the page should
display properly.

21.2. etc/profiles.order

Create the etc/ directory in the tutorial catalog directory now.

You need to set up verification for the order form by defining an order profile for the form. An order profile
determines what fields are necessary for the form to be accepted. Create an order profile verification page by
typing the following and saving it as etc/profiles.order. The section that follows explains the code
used.

  __NAME__ order_profile

  fname=required
  lname=required
  address1=required
  city=required
  state=required
  zip=required

  &fatal=yes
  &final=yes

  __END__

A single file can contain multiple profile definitions. First the profile is named using the __NAME__ pragma.
(This is unrelated to the __VARIABLE__ syntax seen elsewhere in Interchange.) Then in the profile there is a
list of the form fields that are required. The &fatal setting indicates that validation will fail if any of the
requirements are not met. &final indicates that this form will complete the ordering process. This setting is
helpful if you have a multi−page ordering process and you want to validate each page individually. The
__END__ pragma signals the end of this profile, after which you can begin another one.

In order to activate your order profile, add the following OrderProfile directive to the end of catalog.cfg:

  OrderProfile etc/profiles.order

21.3. special_pages/needfield.html

If the submitted form lacks a required field, Interchange will display an error page. The default location is
special_pages/needfield.html. To create this page, type the following text and save it as
special_pages/needfield.html.

  [include top]
  [include left]
  <p>The following information was not given:</p>

Interchange Documentation (Full)

21.2. etc/profiles.order 49



  <p><b>[error all=1 show_var=1 show_error=1 joiner='<br>']</b></p>

  <p>Please go back to the [page checkout]checkout page</a>
  and fill out the form properly.</p>

  [include bottom]

The [error] tag is the most important tag on this page. The all parameter tells the tag to iterate through all of
the errors reported from the failed verification, and the show_var parameter indicates that the failed variable
name should be displayed. For example, if the first name was left empty, fname would be shown. The
show_error parameter displays the actual error for the variable. The joiner parameter inserts an HTML <br>
tag between each error message, so each error is displayed on its own line. In more complex configurations,
the [error] tag can be even more expressive.

21.4. Credit card processing

This tutorial uses a very simple order process. To accomplish this, one more directive needs to be added to the
file etc/profiles.order:

  &fatal=yes
  &final=yes
+ &credit_card=standard keep

  __END__

This issues two instructions to the credit card system.

The first option, standard, uses the standard built−in encryption algorithm to encrypt the credit card number
and erases the unencrypted copy from memory. We are using the standard option not to encrypt the number
but to run the checksum verification on the number to verify that it is a potentially correct number. We will
not be checking with a real payment processor to see if it actually is a valid card number. For testing purposes,
you can use the card number 4111 1111 1111 1111, which will pass the checksum test.

The second option, keep, keeps the credit card number from getting removed from memory. We want to keep
the number in memory so that it is available when it is mailed as part of the order.

If the credit card number passes and all of the required fields are present, the customer will be sent to the final
page. Interchange then sends an e−mail to the store owner (you).

21.5. etc/report

When the customer's involvement in the order is complete, Interchange composes an email and sends it to the
recipient defined in the MailOrderTo directive in catalog.cfg. The default location for the template for
this email report is etc/report. Interchange tags can be used to fill in the body of the message.

The report should include at least the customer's name, address, and the items they ordered. The following is a
simple report template; save it as etc/report.

               Name: [value fname] [value lname]
            Address: [value address1][if value address2]
                     [value address2][/if]
  City, State, etc.: [value city], [value state]  [value zip] [value country]

Interchange Documentation (Full)

21.4. Credit card processing 50



      Credit Card #: [cgi mv_credit_card_number]
    Expiration Date: [cgi mv_credit_card_exp_month]/[cgi mv_credit_card_exp_year]

  ************ ORDER ************
  [item−list]
  [item−quantity] x [item−description] ([item−code]), [item−price] ea.
  [/item−list]
  Subtotal: [subtotal]
     Total: [total−cost]

This file is in plain text format where, unlike HTML, white space is relevant. It is fairly straightforward,
except that the [if] tag was added to only include the optional second address line if the customer filled it in.

One of the special properties of the mv_credit_card_number field is that Interchange specifically precludes
the credit card number from being saved. This makes it unavailable to you in the [value] tag. The [cgi] tag is
used to circumvent this important security measure in order to get the value submitted from the last form.

WARNING! Obviously it is a bad idea to send a real credit card number over an insecure channel like email.
In a real configuration, you would encrypt the number securely before emailing or storing it.

21.6. special_pages/receipt.html

Once the report has been run, Interchange will finish the order process on the customer side by displaying a
success screen containing a receipt. The default location for this page is
special_pages/receipt.html. To create a receipt page, type the following code and save it as
special_pages/receipt.html.

  [include top]
  [include left]
  <p>Thank you for ordering stuff from us.<br>Have a nice day!</p>
  <p>[page index]Return to our welcome page</a></p>
  [include bottom]

Once the order is processed, the customer's shopping cart is emptied.

At this point you have a more−or−less functional store. Congratulations.

Interchange Documentation (Full)

21.6. special_pages/receipt.html 51



22. Enhancing the catalog
Now that you have a working catalog, you can go back and add improvements and test them incrementally.
This section walks you through several and then suggests more enhancements you can attempt on your own.

22.1. Price pictures

You may have noticed that the product prices aren't formatted as prices usually are. The way to correct this is
with an Interchange feature called price pictures.

There are several properties to price pictures: the currency symbol, the thousands separator, the decimal point,
the number of digits to show behind the decimal, and so on. Most Unix systems have U.S. currency and the
English language as the default locale, which is called en_US. The only thing you need to do on such a
system is specify the currency symbol, which, in this case, is the dollar sign. To do this, add the following line
to your catalog.cfg file:

  Locale en_US currency_symbol $

Restart Interchange and view your catalog. You will notice little has changed on the welcome page or the
flypages, but in the shopping cart all your prices should be formatted as U.S. dollars ("1347.3" has become
"$1,347.30"). This is because Interchange automatically formats shopping cart prices as currency. To turn off
this feature, you would have to change the [item−price] tag to [item−price noformat] in
pages/ord/basket.html.

But that's probably not what you want to do. You're probably more interested in formatting your other prices
as currency. To do that, simply use the [currency] [/currency] tag pair for all price values. Make the following
change to pages/index.html:

  [loop search="ra=yes/fi=products"]
  <tr>
  <td>[loop−code]</td>
  <td>[loop−field description]</td>
− <td align=right>[loop−field price]</td>
+ <td align=right>[currency][loop−field price][/currency]</td>
  </tr>
  [/loop]

Note: The line that begins with '−' should be deleted. Do not type the '−'. The next line, that starts with '+',
replaces it.

A similar change to the [item−field price] tag in the pages/flypage.html page will fix that
currency display. View the page in your browser. All your prices should be formatted for U.S. currency.

If your prices are not being formatted correctly, your default system locale may be set up differently or your
en_US locale settings may be wrong. There are a few other catalog.cfg directives you can use to correct
the situation:

  Locale en_US p_cs_precedes 1

Makes the currency symbol precede the currency value. A '0' setting makes the symbol come after the
currency value.

22. Enhancing the catalog 52



  Locale en_US mon_thousands_sep ,

Sets your thousands separator to a comma. It can be set to any value.

  Locale en_US mon_decimal_point .

Sets your decimal separator to a comma. Many countries use a comma instead of a period to separate the
integer from the decimal part.

Note: Consult the Interchange documentation and your operating system manual for more information on
locale settings.

22.2. Catalog variables

Interchange provides a very useful feature that has not been discussed yet called catalog variables. It provides
a way for you to set a variable to a certain value in the catalog.cfg file and use it anywhere in your
catalog pages. The Variable directive allows an Interchange catalog variable to be created with the name
coming from the first parameter and the value from the rest of the line, like this:

  Variable SOMENAME whatever value you want

To access that variable in your pages, type the token __SOMENAME__. Notice that there are two underscore
characters before the variable name and two after it, and that in place of the word SOMENAME you would
put the actual name of the variable. The first thing Interchange does on a page is to replace the token with the
variable's value. The value can also include Interchange tags to be parsed.

22.3. A more interesting page footer

You can put a contact email address at the bottom of each page in case your customers want to contact you.
You could just add it to the footer, but by putting it into a variable you can use it in contact pages as well. This
allows you to easily change the variable information and have that change reflected in all instances of that
variable. The following is an example of how to set a catalog variable in catalog.cfg:

  Variable CONTACT_EMAIL someone@your.domain

Now make the following change to your template file bottom:

  </td>
  </tr>
− <tr colspan=2><td>(bottom)</td></tr>
+ <tr colspan=2><td><a href="mailto:__CONTACT_EMAIL__">Contact us</a>
+ if you have any questions.</td></tr>
  </table>
  </div>
  </body>
  </html>

Be sure to restart Interchange before reloading the page in your browser, since you made a change to
catalog.cfg.

Let's add another variable to your catalog. This variable demonstrates how an Interchange tag can be included
in the variable. This Interchange tag returns the current date in a standard format. Add the following to

Interchange Documentation (Full)

22.2. Catalog variables 53



catalog.cfg:

  Variable DISPLAYDATE [time]%A, %B %d, %Y[/time]

Note: See the Interchange Tag Reference Guide for an explanation of the [time] tag.

Now add the following to the left template piece:

  <tr>
− <td align=center>(left)</td>
+ <td align=center>__DISPLAYDATE__</td>
  <td align=center>

Restart Interchange and view the page.

22.4. Advanced credit card expiration date selection

To reduce the possibility of human error at checkout time, most online stores use a pull−down option menu to
list the months and the years for the credit card expiration date, instead of having the user to type the numbers
by hand. It also lets you avoid explaining whether the user should enter a 2− or 4−digit year.

Make the following change to your pages/checkout.html page. The section that follows explains the
code. Read the explanation section below before typing the code to be sure you know where tabs should be
used instead of spaces and where to watch out for `backticks`.

  <tr>
  <td align=right><b>Credit card expiration date:</b></td>
  <td>
− Month (number from 1−12):
− <input type=text name=mv_credit_card_exp_month value="" size=2 maxlength=2>
− <br>
− Year (last two digits only):
− <input type=text name=mv_credit_card_exp_year value="" size=2 maxlength=2>
+
+ Month:
+ <select name=mv_credit_card_exp_month>
+ [loop
+    lr=1
+    option=mv_credit_card_exp_month
+    list="
+ 1     01 − January
+ 2     02 − February
+ 3     03 − March
+ 4     04 − April
+ 5     05 − May
+ 6     06 − June
+ 7     07 − July
+ 8     08 − August
+ 9     09 − September
+ 10    10 − October
+ 11    11 − November
+ 12    12 − December"]
+ <option value="[loop−code]">[loop−pos 1]
+ [/loop]
+ </select>
+
+ Year:

Interchange Documentation (Full)

22.4. Advanced credit card expiration date selection 54



+ <select name=mv_credit_card_exp_year>
+ [comment]
+    This should always return the current year as the first, then
+    seven more years.
+ [/comment]
+ [loop option=mv_credit_card_exp_year lr=1 list=`
+   my $year = $Tag−>time( '', { format => '%Y' }, '%Y' );
+   my $out = '';
+   for ($year .. $year + 7) {
+     /\d\d(\d\d)/;
+     $last_two = $1;
+     $out .= "$last_two\t$_\n";
+   }
+   return $out;
+ `]
+   <option value="[loop−code]">[loop−pos 1]
+ [/loop]
+ </select>
+
  </td>
  </tr>

  </table>

In the first set of <select> </select> tags a list is generated of the months to choose from. This is accomplished
by using a [loop] tag. In this case we are looping over an explicit list. The list is provided in the list parameter.
Use caution when typing this, as it is sensitive to formatting (which may not be reflected in this document).
Make sure that the numbers are the first characters on each new line and that the elements are separated by a
single tab. Since the columns in this list are not named, the first element can be accessed using [loop−code] or
[loop−pos 0] with subsequent elements being accessed by [loop−pos N] where N is the number of the element
you want. Notice that the elements are zero−indexed. Each time through this loop Interchange generates a
select <option> with a number as the value and the name of the month as the text for the select menu.

For the next set of <select> </select> tags embedded Perl is used to generate the list which is iterated over.
Perl code can be embedded in Interchange pages in order to extend the abilities of the system. Make sure you
typed backticks (grave accents) after "list=" and before the closing bracket and not apostrophes. This code
generates an entry for seven years in addition to the current year. It is not necessary at this point for you to
understand this Perl code.

22.5. Sorting the product list

The products listed on your welcome page are shown in the same order that you entered them into
products/products.txt. As you add more products, you will want this list to show up in a predictable
order. To do this, you need to change the search parameters in index.html, which were originally:

  [loop search="ra=yes/fi=products"]

You will recall that 'ra' stands for 'return all' and 'fi' stands for file. Let's add the search parameter 'tf', which
specifies the sort field. You can specify the field either by name or by number (starting with 0), with names
and order as given in the first line of products/products.txt). Make the following change in
index.html:

  [loop search="ra=yes/fi=products/tf=price"]

Interchange Documentation (Full)

22.5. Sorting the product list 55



Refresh your browser. The default ordering is done on a character−by−character basis, but we were looking to
do a numeric sort. For this you need to set 'to', the sort order, to 'n', for numeric:

  [loop search="ra=yes/fi=products/tf=price/to=n"]

Refresh your browser. Now try reversing the sort order by adding 'r' to the 'to' setting:

  [loop search="ra=yes/fi=products/tf=2/to=nr"]

You'll notice that it worked equally well to specify the sort field by number instead of name. You could also
do a reverse alphabetical sort by description:

  [loop search="ra=yes/fi=products/tf=1/to=r"]

Now let's try narrowing the search down a bit. Instead of returning all, we'll give 'se', the search parameter,
and and use 'su', which allows substring matches. To search only for products that have the word "test" in one
of their fields, and sort the results by description, type:

  [loop search="se=test/su=yes/fi=products/tf=description"]

Which seems like something that would be better done in a search box for your store visitors.

Before moving on, change this search back to the simple list, sorted by description:

  [loop search="ra=yes/fi=products/tf=description"]

22.6. Adding a search box

Your customers might appreciate the ability to search for a test by SKU or part of the test description. To do
this, you need to add a search box to the left portion of the page layout. Make the following change to the file
left:

  <tr>
− <td align=center>__DISPLAYDATE__</td>
+ <td align=center>
+ <form action="[area search]" method=post>
+ Search:<br>
+ [set testname]su=yes/fi=products/sf=sku/sf=description[/set]
+ <input type=hidden name=mv_profile value=testname>
+ <input type=text name=mv_searchspec size=15 value="">
+ </form>
+ <hr>
+ __DISPLAYDATE__
+ </td>
  <td align=center>

This is a simple HTML form with a single input box for text. The action goes to a special Interchange
processor called 'search' that will perform the search and pass the results to a page called
pages/results.html (that has not been created yet).

The [set testname] ... [/set] tags set an Interchange 'value' variable that, in this case, will be used as a
predefined search profile. We specify all the search parameters except the one the user will enter,
'mv_searchspec' (the long name for 'se'). We then tell Interchange we want to use this search profile in a

Interchange Documentation (Full)

22.6. Adding a search box 56



hidden form tag named 'mv_profile'.

The search box will now appear on all catalog pages, but you still need to create the search results page. To
create the search results page, type the following code and save it as pages/results.html.

  [include top]
  [include left]
  <h3>Search Results</h3>
  [search−region]
    [on−match]
      <table cellpadding=5>
      <tr>
      <th>Test #</th>
      <th>Description</th>
      <th>Price</th>
      </tr>
    [/on−match]
    [search−list]
      <tr>
      <td>[item−code]</td>
      <td><a href="[item−code].html">[item−field description]</a></td>
      <td align=right>[item−field price]</td>
      <td>[order [item−code]]order now[/order]</td>
      </tr>
    [/search−list]
    [on−match]
      </table>
    [/on−match]
    [no−match]
      <p>Sorry, no matches were found for '[cgi mv_searchspec]'.</p>
    [/no−match]
  [/search−region]
  <hr>
  <p align=center>[page index]Return to welcome page</a></p>
  <p align=center>[page order]View shopping cart</a></p>
  [include bottom]

The search results will be contained in the [search−region] [/search−region] tags. The text in the [on−match]
[/on−match] container will be displayed only if matches were found for the search. The text in the [no−match]
[/no−match] container will be displayed only if no matches were found. The [search−list] [/search−list]
container functions just like [loop] [/loop], iterating over its contents for each item in the search results list.

22.7. The default catalog page

As you know, a standard Interchange catalog page URL looks like this:

  http://localhost/cgi−bin/tutorial/index.html

But what happens if you leave off the page name, as people often do when typing URLs in by hand? Type:

  http://localhost/cgi−bin/tutorial

and you get a server error message. We can change this by adding the following directive to catalog.cfg:

  SpecialPage catalog index

Interchange Documentation (Full)

22.7. The default catalog page 57



Restart Interchange and try the above URL again.

Note: If you want to make the welcome page something other than pages/index.html, modify the
'index' part of the directive appropriately.

22.8. High−traffic changes

Through this tutorial you have created catalog pages that use the [include] tag to include template pieces in the
pages. This has worked well, but there are a few drawbacks. First, if you want to rename any of the template
piece files or move them out of the main catalog directory and into their own subdirectory, you would have to
update the [include] tag on every page. To avoid this, you can create catalog variables set to the [include] tags.
Add these lines to your catalog.cfg file:

  Variable TOP    [include top]
  Variable LEFT   [include left]
  Variable BOTTOM [include bottom]

Now change every instance of [include top] to __TOP__, doing the same for each [include] tag. At this point,
you might not want to do a search−and−replace on all the .html files you just created, but keep this capability
in mind for the next catalog you work on.

If you made all of the replacements and then renamed and moved your top file, you would only have to make
a single change for each region in catalog.cfg to get your pages up to date:

  Variable TOP    [include templates/main−top]

And so on, depending on your naming scheme.

22.9. High traffic mode

Every time a catalog page is viewed, each file in an [include] tag must be loaded from disk. In a test situation,
this takes no noticeable amount of time. But on a busy Interchange server, this can slow your system.

You can switch to a high−traffic mode that doesn't require each template piece to be read from disk every time
the page is loaded. Instead, all of the pieces are read into variables once when Interchange is started and they
remain in memory until Interchange is restarted. On very busy Interchange catalogs, this can increase your
speed noticeably. The only drawback is that you need to restart the Interchange daemon when you make
changes to the template pieces in order to have the changes take effect. You can set up high−traffic templates
by changing the Variable directives in catalog.cfg as follows:

  Variable TOP    <top
  Variable LEFT   <left
  Variable BOTTOM <bottom

Interchange Documentation (Full)

22.8. High−traffic changes 58



23. Ideas for further enhancements
You can expand your skill with Interchange by adding more functionality to your test catalog. Here are some
simple ideas to get you started:

Send the customer a receipt by email• 
Allow customer to specify item quantities• 
Generate a unique order number for each order• 
Store each order in a database• 
Interface with GnuPG or PGP to encrypt credit card numbers in email reports• 
Organize your products into categories and group lists by category• 

23. Ideas for further enhancements 59



A. Catalog directory structure
This diagram shows the directory and file structure used for the 'tutorial' catalog you built. The base will be a
directory with the name of your catalog:

  tutorial/
  |
  |−−−−bottom
  |−−−−catalog.cfg
  |−−−−error.log *
  |−−−−etc/
       |−−−−profiles.order
       |−−−−report
  |−−−−left
  |−−−−pages/
       |−−−−checkout.html
       |−−−−flypage.html
       |−−−−index.html
       |−−−−ord/
            |−−−−basket.html
       |−−−−results.html
  |−−−−products/
       |−−−−products.gdbm *
       |−−−−products.txt
  |−−−−session/
       |−−−−(many subdirectories and files) *
  |−−−−special_pages/
       |−−−−missing.html
       |−−−−needfield.html
       |−−−−receipt.html
  |−−−−tmp/ *
  |−−−−top

* denotes files that are automatically created by Interchange at run time. The name of products.gdbm may
vary on your system depending on your Perl setup and default system DBM libraries.

A. Catalog directory structure 60



B. Document history
October 2000. Conceived and written by Sonny Cook.

December 2000. Edited and expanded by Jon Jensen.

January 2001. Proofread and clarified by Alison Smith and David Adams.

12 January 2001. First public release.

12 April 2002. Remove mention of obsolete Red Hat Linux 6−specific RPMs.

Copyright 2001−2002 Red Hat, Inc. Freely redistributable under terms of the GNU General Public License.
line:

B. Document history 61



Configuration Reference

Configuration Reference 62



24. Interchange Configuration Files
This is an alphabetical reference to the configuration directives used in Interchange global and catalog
configuration files.

Interchange has multiple catalog capability, and therefore splits its configuration into two pieces. One is
global, interchange.cfg, and affects every catalog running under it. The other, catalog.cfg is
specific to an individual catalog, and has no effect on other catalogs.

24.1. Directive syntax

Configuration directives are normally specified with the directive as the first word on the line, with its value
or values following. Capitalization of the directive name is not significant. Leading and trailing whitespace is
stripped from the line.

Including files in directives

Additional files may be called with an include file notation like this:

DirectiveName <includefile

Files included from interchange.cfg are relative to the Interchange software directory. Files included from
catalog.cfg are relative to the catalog directory.

Here documents

A "here document" can be used to spread directive values over several lines, with the usual Perl <<MARKER
syntax. No semicolon is used to terminate the marker. The closing marker must be the only thing on the line.
No leading or trailing characters are allowed, not even whitespace. Here is a hypothetical directive using a
here document:

        DirectiveName <<EOD
            setting1
            setting2
            setting3
        EOD

That is equivalent to:

        DirectiveName setting1 setting2 setting3

Include single setting from file

Value can be pulled from a file with <file:

        Variable MYSTUFF <file

This works well for includes that must be of the highest possible performance. They can be simply placed in a
page with __VARIABLE__.

include

24. Interchange Configuration Files 63



Other configuration files can be included in the current one. For example, common settings can be set in one
file:

        include common.cfg

Or all files in one directory:

        include usertag/*

ifdef and ifndef

ifdef/endif and ifndef/endif pairs can be used:

        Variable ORDERS_TO email_address

        ifdef ORDERS_TO
        ParseVariables Yes
        MailOrderTo __ORDERS_TO__
        ParseVariables No
        endif

        ifdef ORDERS_TO =~ /foo.com/
        # Send all orders at foo.com to one place now
        # Set ORDERS_TO to stop default setting
        Variable  ORDERS_TO  1
        MailOrderTo   orders@foo.com
        endif

        ifdef ORDERS_TO eq 'nobody@nowhere.com'
        # Better change to something else, set ORDERS_TO to stop default
        Variable  ORDERS_TO  1
        MailOrderTo   someone@somewhere.com
        endif

        ifndef ORDERS_TO
        #Needs to go somewhere....
        MailOrderTo  webmaster@localhost
        endif

Interchange Documentation (Full)

24. Interchange Configuration Files 64



25. interchange.cfg
The VendRoot directory, specified in the main program interchange, is the default location of all of the
Interchange program, configuration, special, and library files. Unless changed in the call to interchange,
the main Interchange server configuration file will be interchange.cfg in the VendRoot directory.

The directives defined in interchange.cfg affect the entire Interchange server and all catalogs running
under it. Multiple Interchange servers may be run on the same machine with totally independent operation.

Following is an alphabetical listing of all global configuration directives.

25.1. ActionMap *global*

Allows setting of Interchange form actions, usually with a Perl subroutine. Actions are page names like:

process  Perform a processing function
order    Order items
scan     Search based on path info
search   Search based on submitted form variables

The global version of ActionMap applies to all catalogs. If the same action is specified in catalog.cfg, it
will pertain. See ActionMap in that section.

25.2. AddDirective *global*

Adds a configuration directive that will be parsed for every catalog.cfg file. Accepts three parameters:
the name of the directive, the name of the parser (if any), and the default value (if any). The following
definition would add a directive "Foo," with parser "parse_bar," and a default value of "Hello, world!":

   AddDirective  Foo  bar "Hello, world!"

If the parser is not defined, the directive value will be scalar and the same as what the user passes in the config
file. If defined, the parser must be extant before it can be referenced, is always resident in Vend::Config, and
begins with the string parse_. Examples can be found in the files in the distribution software directory
compat/.

25.3. AdminSub *global*

Marks a global subroutine for use only by catalogs that are set to AllowGlobal (see below). Normally
global subroutines can be referenced (in embedded Perl) by any catalog.

   AdminSub  dangerous

25.4. AllowGlobal *global*

Specifies catalog identifiers that may define subroutines and UserTag entries that can operate with the full
permissions of the server. Don't use this unless the catalog user is trusted implicitly. Default is blank.

   AllowGlobal  simple

25. interchange.cfg 65



Using AllowGlobal is never necessary, and is always dangerous in a multi−user environment. Its use is not
recommended.

25.5. AutoVariable *global*

Specifies directives which should be translated to Variable settings. For scalars, the directive name becomes
the Variable name and yields its value, i.e. ErrorFile becomes __ErrorFile__, which would by
default be error.log. Array variables have a _N added, where _N is the ordinal index, i.e. SafeUntrap
becomes __SafeUntrap_0__, __SafeUntrap_1__, etc. Hash variables have a _KEY added, i.e.
SysLog becomes __SysLog_command__, __SysLog_facility__, etc. Doesn't handle hash keys
that have non−word characters or whitespace. Only single−level arrays and hashes are translated properly.

See AutoVariable in catalog.cfg.

25.6. Catalog *global*

Specifies a catalog that can run using this Interchange server. This directive is usually inserted into
interchange.cfg by the makecat program when you build a new catalog.

There are three required parameters, as shown in this example:

   Catalog  simple /home/interchange/simple /cgi−bin/simple

The first is the name of the catalog. It will be referred to by that name in error, warning, and informational
messages. It must contain only alphanumeric characters, hyphens, and underscores. It is highly recommended
that it be all lower case.

The second is the base directory of the catalog. If the directory does not contain a catalog.cfg file, the
server will report an error and refuse to start.

The third is the SCRIPT_NAME of the link program that runs the catalog. This is how the catalog is selected
for operation. Any number of alias script names may be specified as additional parameters. This allows the
calling path to be different while still calling the same catalog:

   Catalog  simple /home/interchange/simple /cgi−bin/simple /simple

This is useful when calling an SSL server or a members−only alias that requires a username/password via
HTTP Basic authorization. All branched links will be called using the aliased URL.

The script names must be unique among CGI program paths that run on this server; the same name cannot be
used for more than one catalog unless the FullURL directive is specified. In this case, the parameter may be
specified as:

        www.yourcompany.com/cgi−bin/simple
        www.theirs.com/cgi−bin/simple

Each of those 'simple' catalogs would then call a different catalog.

Optionally, individual Catalog directives that specify each of the different parameters may be used. The
equivalent of our original example directive above is:

Interchange Documentation (Full)

25.5. AutoVariable *global* 66



   Catalog simple directory /home/interchange/simple
   Catalog simple script    /cgi−bin/simple
   Catalog simple alias     /simple

Global directives may be specified that will change for that catalog only. This is mostly useful for
ErrorFile and DisplayErrors:

   Catalog simple directive ErrorFile /var/log/interchange/simple_error.log

25.7. CheckHTML *global*

Set to the name of an external program that will check the user's HTML when they set [flag
checkhtml] or [tag flag checkhtml][/tag] in their page.

   CheckHTML  /usr/local/bin/weblint

25.8. ConfigAllAfter *global*

The name of a file (or files) which should be read as a part of every catalog's configuration, after any other
configuration files are read. Default is catalog_after.cfg.

   ConfigAllAfter   check_actions.cfg check_variables.cfg

25.9. ConfigAllBefore *global*

The name of a file (or files) which should be read as a part of every catalog's configuration, before any other
configuration files are read. Default is catalog_before.cfg.

   ConfigAllBefore   set_actions.cfg set_variables.cfg

25.10. ConfigParseComments *global*

Set to No if you want old−style '#include', '#ifdef', or '#ifndef' to be treated as the comments they appear to be.
The default is Yes, which means both '#include' and 'include' do the same thing. (Use a space after the '#' if
you really want to comment out the command.)

Interchange prior to version 4.7 used a different syntax for meta−directives 'include', 'ifdef', and 'ifndef' in
configuration files. The commands were borrowed from the C preprocessor, and true to their C heritage, they
started with '#': '#include', '#ifdef', '#ifndef'. Interchange configuration files, unlike C, uses '#' to begin
one−line comments, which meant that a newcomer at first glance might assume that:

#Variable DEBUG 1
#include more.cfg

were both comments, when in fact the second was a live #include command.

To begin to make things more consistent, Interchange 4.7 and up now recognize those meta−directives
without the leading '#', and the included demo catalog sets this directive to No so that lines beginning with '#'
really are skipped as comments, regardless of what comes after.

Interchange Documentation (Full)

25.7. CheckHTML *global* 67



25.11. Database *global*

Defines a database which is global and available to all catalogs. Writing can be controlled by catalog. See
Database.

25.12. DataTrace *global*

Set DBI to trace at the level specified. Valid values are:

0 − Trace disabled.

1 − Trace DBI method calls returning with results or errors.

2 − Trace method entry with parameters and returning with results.

3 − As above, adding some high−level information from the driver and some internal information from the
DBI.

4 − As above, adding more detailed information from the driver. Also includes DBI mutex information when
using threaded Perl.

5 and above − As above but with more and more obscure information.

Trace level 1 is best for most Interchange debug situations. Trace will only be enabled when DebugFile is
specified, as that file is the target for the trace. Example:

    DataTrace   1

Default is 0. Directive added in 4.7.0.

25.13. DebugFile *global*

Names a file, relative to the Interchange root directory, which should store the output of logDebug
statements, and warnings if warnings are enabled.

        DebugFile  /tmp/icdebug

25.14. DeleteDirective *global*

Deletes a configuration directive from the list is parsed for every catalog.cfg file. Can save memory for
installations with large numbers of catalogs.

   DeleteDirective  DescriptionField OfflineDir

The directive is not case−sensitive. Has no effect on global directives.

Interchange Documentation (Full)

25.11. Database *global* 68



25.15. DisplayErrors *global*

While all errors are reported in the error log file, errors can also be displayed by the browser. This is
convenient while testing a configuration. Unless this is set, the DisplayErrors setting in the user catalogs
will have no effect. Default is No.

   DisplayErrors       Yes

Note: This changes the value of $SIG{__DIE__} and may have other effects on program operation. This
should NEVER be used for normal operation.

25.16. DomainTail *global*

Implements the domain/IP session qualifiers so that only the major domain is used to qualify the session ID.
This is a compromise on security, but it allows non−cookie−accepting browsers to use multiple proxy servers
in the same domain. Default is Yes.

   DomainTail No

If encrypting credit cards with PGP or GPG, or are using a payment service like CyberCash, look at the
WideOpen directive, which enables more browser compatibility at the cost of some security.

25.17. DumpStructure *global*

Tells Interchange to dump the structure of catalogs and the Interchange server to a file with the catalog name
and the extension .structure. Use this to see how directives have been set.

25.18. EncryptProgram *global*

Specifies the default encryption program that should be used to encrypt credit card numbers and other
sensitive information. Default is gpg if found on the system; then pgpe, if found; then pgp, and finally
none, disabling encryption.

This is used to set the default in catalog.cfg, which has its own independent setting of
EncryptProgram.

25.19. Environment *global*

Environment variables to inherit from the calling CGI link program. An example might be PGPPATH, used to
set the directory which PGP will use to find its key ring.

   Environment  MOD_PERL REMOTE_USER PGPPATH

25.20. ErrorFile *global*

Sets the name of the global error log. The default is error.log in the Interchange software directory.

   ErrorFile  /var/log/interchange/log

Interchange Documentation (Full)

25.15. DisplayErrors *global* 69



Of course, the user ID running the Interchange server must have permission to write that file.

Optionally, syslog error logging can be set up as well. See SysLog.

25.21. FormAction *global*

Allows a form action (like the standard ones return, submit, refresh, etc.) to be set up. It requires
a Perl subroutine as a target:

   FormAction foo <<EOR
   sub {
       $CGI−>{mv_nextpage} = 'bar';
   }
   EOR

If it returns a true (non−zero, non−empty) value, Interchange will display the page defined in
$CGI−>{mv_nextpage}. Otherwise, Interchange will not display any page. The default Interchange actions
can be overridden, if desired. There is also a catalog−specific version of this directive, which overrides any
action of the same name.

The global version affects all catalogs −− there is also a catalog−specific version of FormAction which is
protected by Safe.

25.22. FullUrl *global*

Normally Interchange determines which catalog to call by determining the SCRIPT_NAME from the CGI
call. This means that different (and maybe virtual) hosts cannot use the same SCRIPT_NAME to call different
catalogs. Set FullUrl to Yes to differentiate based on the calling host. Then, set the server name in the
Catalog directive accordingly, such as yourdomain.com/cgi−bin/simple. A yes/no directive, the
default is No.

   FullUrl  Yes

If it is set in this fashion, all catalogs must be defined in this fashion. NOTE: The individual catalog setting
will not work, as this is used before the catalog name is known.

25.23. GlobalSub *global*

Defines a global subroutine for use by the [perl sub] subname arg /perl] construct. Use the
"here document" capability of Interchange configuration files to make it easy to define:

   GlobalSub <<EOF

   sub count_orders {
       my $counter = new File::CounterFile "/tmp/count_orders", '1';
       my $number = $counter−>inc();
       return "There have been $number orders placed.\n";
   }
   EOF

As with Perl "here documents," the EOF (or other end marker) must be the ONLY thing on the line, with no
leading or trailing white space. Do not append a semicolon to the marker. (The above marker appears

Interchange Documentation (Full)

25.21. FormAction *global* 70



indented. It should not be that way in the file!)

IMPORTANT NOTE: These global subroutines are not subject to security checks. They can do most
anything! For most purposes, scratch subroutines or catalog subroutines (also Sub) are better.

GlobalSub routines are subject to full Perl use strict checking, so errors are possible if lexical variables or
complete package qualifications are not used for the variables.

25.24. HammerLock *global*

The number of seconds after which a locked session could be considered to be lost due to malfunction. This
will kill the lock on the session. Only here for monitoring of session hand−off. If this error shows up in the
error log, the system setup should be examined. Default is 30.

   HammerLock          60

This mostly doesn't apply to Interchange when using the default file−based sessions.

25.25. HitCount *global*

Increments a counter in ConfDir for every access to the catalog. The file is named hits.catalogname,
where catalogname is the short catalog identifier. A Yes/No directive, default is No.

   HitCount  Yes

25.26. HouseKeeping *global*

How often, in seconds, the Interchange server will "wake up" and look for user reconfiguration requests and
hung search processes. On some systems, this wakeup is the only time the server will terminate in response to
a stop command. Default is 60.

   HouseKeeping    5

25.27. Inet_Mode *global*

Determines whether INET−domain sockets will be monitored on startup. Overridden by the command−line
parameter −i. Default is Yes.

25.28. IpHead *global*

Implements the domain/IP session qualifiers so that only the first IpQuad dot−quads of the IP address are
used to qualify the session ID. The default is 1. This is a slight compromise on security, but it allows
non−cookie−accepting browsers, like AOL's V2.0, to use multiple proxy servers.

DomainTail is preferable unless one of your HTTP servers does not do host name lookups. Default is No,
and DomainTail must be set to No for it to operate.

   IpHead Yes

Interchange Documentation (Full)

25.24. HammerLock *global* 71



25.29. IpQuad *global*

The number of dot−quads that IpHead will look at. Default is 1.

   IpQuad  2

25.30. Locale *global*

Sets the global Locale for use in error messages. Normally set from a file's contents, as in the example
before:

   Locale <locale.error

25.31. LockoutCommand *global*

The name of a command (as it would be entered from the shell) that will lock out the host IP of an offending
system. The IP address will be substituted for the first occurrence of the string %s. This will be executed with
the user ID that Interchange runs under, so any commands that require root access will have to be wrapped
with an SUID program.

On Linux, a host may be locked out with:

   ipfwadm −I −i deny −S %s

This would require root permissions, however, under normal circumstances. Use sudo or another method to
wrap and allow the command.

A script can be written which modifies an appropriate access control file, such as .htaccess for your CGI
directory, to do another level of lockout. A simple command line containing perl −0777 −npi −e
's/deny/deny from %s\ndeny/' /home/me/cgi−bin/.htaccess would work as well
(remember, the %s will become the IP address of the offending user).

   LockoutCommand   lockout %s

25.32. LockType *global*

Allows selection of file locking method used throughout Interchange. Options are 'flock', 'fcntl', and 'none'.
Added in 4.7.0.

Default is flock. See the flock(2) manpage for details.

The fcntl setting is needed for NFS filesystems; for NFS−based locking to work, the NFS lock daemon
(lockd) must be enabled and running on both the NFS client and server. Locking with fcntl works on Linux
and should work on Solaris, but is not guaranteed to work on all OSes.

The none setting turns off file locking entirely, but that is never recommended. It might be useful to check if
locking is causing hangs on the system.

If you are only accessing sessions on an NFS−mounted directory but the rest of Interchange is on the local

Interchange Documentation (Full)

25.29. IpQuad *global* 72



filesystem, you can instead set the SessionType catalog directive to 'NFS', which enables fcntl locking for
sessions only on a per−catalog basis.

25.33. Mall *global*

Set to Yes to issue cookies only for the current catalog's script. By default, when Interchange issues a cookie
it does so for the base domain. This will allow multiple catalogs to operate on the same domain without
interfering with each others session ID.

A yes/no directive.

   Mall   Yes

25.34. MaxServers *global*

The maximum number of servers that will be spawned to handle page requests. If more than MaxServers
requests are pending, they will be queued (within the defined capability of the operating system, usually five
pending requests) until the number of active servers goes below that value.

   MaxServers     4

Default is 10.

25.35. NoAbsolute *global*

Whether Interchange [file ...] and other tags can read any file on the system (that is readable by the
user id running the Interchange daemon). The default is No, which allows any file to be read. This should be
changed in a multi−user environment to minimize security problems.

   NoAbsolute     Yes

Note that this does not apply to tests for whether a file exists, as with [if file ...]. Such operations are
allowed regardless of the NoAbsolute setting.

25.36. PIDcheck *global*

If non−zero, enables a check of running Interchange processes during the housekeeping routine. If a process
has been running (or is hung) for longer than PIDcheck seconds then a kill −9 will be issued and the server
count decremented. During the housekeeping routine, the number of servers checked by MaxServers will
be recounted based on PID files.

Default is 0, disabling the check.

   PIDcheck   300

If have long−running database builds, this needs to be disabled. Set it to a high value (perhaps 600, for 10
minutes), or use the offline script.

Interchange Documentation (Full)

25.33. Mall *global* 73



25.37. PIDfile *global*

The file which will contain the Interchange server process ID so that it can be read to determine which process
should be sent a signal for stopping or reconfiguring the server.

   PIDfile  /var/run/interchange/interchange.pid

This file must be writable by the Interchange server user ID.

25.38. Profiles *global*

Names a file (or files) which contain OrderProfile and SearchProfile settings that will apply for all
catalogs.

   Profiles     etc/profiles.common

25.39. SafeUntrap *global*

Sets the codes that will be untrapped in the Safe.pm module and used for embedded Perl and conditional
operations. View the Safe.pm documentation by typing perldoc Safe at the command prompt. The
default is ftfile sort, which untraps the file existence test operator and the sort operator. Define it as
blank to prevent any operators but the default restrictive ones.

   SafeUntrap     ftfile sort ftewrite rand

25.40. SendMailProgram *global*

Specifies the program used to send email. Defaults to '/usr/lib/sendmail'. If it is not found at startup,
Interchange will return an error message and refuse to start.

   SendMailProgram     /bin/mailer

A value of 'none' will disable the sending of emailed orders. Orders must be read from a tracking file, log, or
by other means.

25.41. SOAP *global*

If set to Yes, allows handling of SOAP rpc requests.

25.42. SOAP_Host

The list of hosts that are allowed to connect to for SOAP rpc requests. Default is localhost 127.0.0.1.

25.43. SOAP_MaxRequests

The maximum number of requests a SOAP rpc server will handle before it commits suicide and asks for a
replacement server. This prevents runaway memory leaks.

Interchange Documentation (Full)

25.37. PIDfile *global* 74



25.44. SOAP_Perms

The permissions that should be set on a SOAP UNIX−domain socket. Default is 0660, which allows only
programs running as the same UID as Interchange to access the socket.

25.45. SOAP_Socket

A list of sockets which should be monitored for SOAP requests. If they fit the form
NNN.NNN.NNN.NNN:PPPP, they are IP addresses and ports for monitoring INET−domain sockets, any
other pattern is assumed to be a file name for monitoring in the UNIX domain.

   SOAP_Socket 12.23.13.31:7770 1.2.3.4:7770 /var/run/interchange/soap

25.46. SOAP_StartServers

The number of SOAP servers which should be started to handle SOAP requests. Default is 1.

   SOAP_StartServers   10

25.47. SocketFile *global*

The name of the file which is used for UNIX−domain socket communications. Must be in a directory where
the Interchange user has write permission.

   SocketFile  /var/run/interchange/interchange.socket

Default is etc/socket or the value of the environment variable MINIVEND_SOCKET. If set, it will
override the environment. It can be set on the command line as well:

   bin/interchange −r SocketFile=/tmp/interchange.socket

25.48. SocketPerms *global*

The permissions (prepend a 0 to use octal notation) that should be used for the UNIX−domain socket.
Temporarily set this to 666 on the command line to debug a permission problem on vlink.

   bin/interchange −r SocketPerms=0666

25.49. StartServers

The number of Interchange page servers which should be started to handle page requests when in PreFork
mode. Default is 1.

   SOAP_StartServers   10

25.50. SubCatalog *global*

Interchange Documentation (Full)

25.44. SOAP_Perms 75



Allows definition of a catalog which shares most of the characteristics of another catalog. Only the directives
that are changed from the base catalog are added. The parameters are: 1) the catalog ID, 2) the base catalog
ID, 3) the directory to use (typically the same as the base catalog), and 4) the SCRIPT_NAME that will
trigger the catalog. Any additional parameters are aliases for the SCRIPT_NAME.

The main reason that this would be used would be to conserve memory in a series of stores that share most of
the same pages or databases.

   SubCatalog   sample2 sample /usr/catalogs/sample /cgi−bin/sample2

25.51. SysLog *global*

Set up syslog(8) error logging for Interchange.

   SysLog  command  /usr/bin/logger
   SysLog  tag      int1
   SysLog  alert    local3.warn
   SysLog  warn     local3.info
   SysLog  info     local3.info
   SysLog  debug    local3.debug

This would cause global errors to be logged with the command:

   /usr/bin/logger −t int1 −p local3.alert

and cause system log entries something like:

   Oct 26 17:30:11 bill int1: Config 'co' at server startup
   Oct 26 17:30:11 bill int1: Config 'homefn' at server startup
   Oct 26 17:30:11 bill int1: Config 'simple' at server startup
   Oct 26 17:30:11 bill int1: Config 'test' at server startup
   Oct 26 17:30:13 bill int1: START server (2345) (INET and UNIX)

This would work in conjunction with a UNIX syslogd.conf entry of:

        # Log local3 stuff to Interchange log
        local3.*                /var/log/interchange.log

A custom wrapper can be created around it to get it to behave as desired. For instance, if you didn't want to
use syslog but instead wanted to log to a database (via DBI), you could create a Perl script named
"logdatabase" to log things:

    #!/usr/bin/perl

    my $script_name = "logdatabase";
    use DBI;
    use Getopt::Std;

    getopts('d:p:T:k:')
        or die "$script_name options: $@\n";

    use vars qw/$opt_d $opt_p $opt_T $opt_k/;

    my $dsn   = $opt_d || $ENV{DBI_DSN};
    my $template = $opt_T
        || "insert into log values ('~~KEY~~', '~~LEVEL~~', '~~MSG~~')";

Interchange Documentation (Full)

25.51. SysLog *global* 76



    my $dbh = DBI−>connect($dsn)
        or die "$script_name cannot connect to DBI: $DBI::errstr\n";

    my %data;

    $data{KEY} = $opt_k || '';

    local ($/);
    $data{MSG} = <>;

    $data{LEVEL} = $opt_p || 'interchange.info';

    $template =~ s/\~\~(\w+)\~\~/$dbh−>quote($data{$1})/;

    my $sth = $dbh−>prepare($template)
        or die "$script_name error executing query: $template\n";

    $sth−>execute()
        or die "$script_name error executing query: $template\n";

    exit;

25.52. TcpHost *global*

When running in INET mode, using tlink, specifies the hosts that are allowed to send/receive transactions
from any catalog on this Interchange server. Can be either an name or IP number, and multiple hosts can be
specified in a space−separated list. Default is localhost.

   TcpHost         localhost secure.domain.com

25.53. TcpMap *global*

When running in INET mode, using tlink or the internal HTTP server, specifies the port(s) which will be
monitored by the Interchange server. Default is 7786.

To use the internal HTTP server (perhaps only for password−protected queries), a catalog may be mapped to a
port. If three catalogs were running on the server www.akopia.com, named simple, sample, and
search, the directive might look like this:

   TcpMap    7786 −  7787 simple 7788 sample 7789 search

Note: To map large numbers of ports, use the <<MARKER here document notation in interchange.cfg. With
this in effect, the internal HTTP server would map the following addresses:

   *:7786   mv_admin
   *:7787   simple
   *:7788   sample
   *:7789   search

Note: This does not pertain to the use of tlink, which still relies on the CGI SCRIPT_PATH. To enable
this, the SCRIPT_PATH aliases /simple, /sample, etc. must be set in the Catalog directive. This would look
like:

Interchange Documentation (Full)

25.52. TcpHost *global* 77



 Catalog  simple  /home/interchange/catalogs/simple /cgi−bin/simple /simple

To bind to specific IP addresses, add them in the same fashion that they would as an Apache Listen directive:

   TcpMap <<EOF
       127.0.0.1:7786       −
       www.akopia.com:7787  −
   EOF

Note: As usual, the EOF should be at the beginning of a line with no leading or trailing whitespace.

25.54. TemplateDir *global*

This can be used to supply some default pages so catalogs will not need their own copies.

Supply one or more directory names, separated by whitespace, which will be searched for pages not found in
the catalog's PageDir directory or the catalog−level TemplateDir directory list.

   TemplateDir    /usr/local/interchange/default_pages

This is undefined by default.

25.55. TolerateGet *global*

Set to 'Yes' to enable parsing of both GET data and POST data when a POST has been submitted. The default
is 'No', which means that GET data is ignored during a POST. Unfortunately this has to be a global setting
because at URL parse time, the Interchange daemon doesn't yet know which catalog it's dealing with (due to
catalog aliases, etc.).

25.56. UrlSepChar *global*

Sets the character which separates form parameters in Interchange−generated URLs. Default is &.

25.57. Unix_Mode *global*

Determines whether the UNIX−domain socket will be monitored on startup. Overridden by the
command−line parameter −u. Default is Yes.

25.58. UserTag *global*

This defines a UserTag which is global in nature, meaning not limited by the Safe.pm module, and is is
available to all Interchange catalogs running on the server. Otherwise, this is the same as a catalog UserTag.

25.59. Variable *global*

Defines a global variable that will be available in all catalogs with the notation @@VARIABLE@@.
Variable identifiers must begin with a capital letter, and can contain only word characters (A−Z,a−z,0−9 and
underscore). They are case−sensitive.

Interchange Documentation (Full)

25.54. TemplateDir *global* 78



   Variable   DOCUMENT_ROOT   /usr/local/etc/httpd/htdocs

Only variables with ALL CAPS names will be parsed in catalog pages or, when the ParseVariables
directive is set, in catalog (not global) configuration directives (other than Variable itself). These are
substituted first in any Interchange page, and can contain any valid Interchange tags including catalog
variables. If a variable is called with the notation @_VARIABLE_@, and there is no catalog Variable with its
name, the global Variable value will be inserted.

There are several standard variables which you should not set:

MV_FILE

Name of the last file read in, as in [file ...] or an externally located perl routine.

MV_NO_CRYPT

Set this to 1 to disable encrypted passwords for the AdminUser.

MV_PAGE

Name of the last page read in, as in the page called with mv_nextpage or mv_orderpage.

CURRENCY, MV_CURRENCY

The current locale for currency.

LANG, MV_LANG

The current locale for language.

Some global variables can be set to affect Interchange:

MV_DOLLAR_ZERO

This determines what Interchange does to Perl's $0 variable, which contains the operating system's name of
the running process, for example in the ps(1) or top(1) commands. Valid settings are:

Setting Result

(not set) 'interchange'

0 (do nothing)

1 'interchange −−> (CATROOT)'

string 'string'

Note that this is set globally once only when the Interchange daemon is started, so it's pointless to change the
variable after that.

25.60. VarName *global*

Sets the names of variables that will be remapped to and from the URL when Interchange writes it. For

Interchange Documentation (Full)

25.60. VarName *global* 79



instance, to display the variable mv_session_id as session in the user's URL:

   VarName   mv_session_id  session

The default can also be set in the etc/varnames file after the first time Interchange is run. Setting it in
interchange.cfg is probably better for clarity.

There is also a catalog−specific version of this setting.

Interchange Documentation (Full)

25.60. VarName *global* 80



26. catalog.cfg
Each catalog must have a catalog.cfg file located in its base catalog directory. It contains most of the
configurable parameters for Interchange. Each is independent from catalog to catalog.

Additional configuration techniques are available in the catalog.cfg file. First, set a Variable and use
its results in a subsequent configuration setting if ParseVariables is on:

   Variable   SERVER_NAME  www.akopia.com
   Variable   CGI_URL      /cgi−bin/demo

   ParseVariables Yes
   VendURL    http://__SERVER_NAME____CGI_URL__
   ParseVariables No

Define subroutine watches

Almost any configuration variable can be set up to be tied to a subroutine if the Tie::Watch module is
installed. It uses a notation like the <<HERE document, but <&HERE is the notation. See Interchange
Programming for details.

26.1. Programming Watch Points in catalog.cfg

Almost any configuration variable can be set up to be tied to a subroutine if the Tie::Watch module
installed. It uses a notation like the <<HERE document, but <&HERE is the notation. Here is a simple case:

   MailOrderTo orders@akopia.com
   MailOrderTo <&EOF
   sub {
       my($self, $default) = @_;
       if($Values−>{special_handling}) {
           return 'vip@akopia.com';
       }
       else {
           return $default;
       }
   }
   EOF

When the order is mailed out, if the user has a variable called special_handling set in their session
(from UserDB, perhaps), the order will be sent to 'vip@akopia.com.' Note the single quotes to prevent
problems with the @ sign. Otherwise, the order will get sent to the previously defined value of
orders@akopia.com.

If the configuration value being watched is a SCALAR, the subroutine gets the following call:

   &{$subref}(SELF, PREVIOUS_VALUE)

The subroutine should simply return the proper value.

SELF is a reference to the Tie::Watch object (read its documentation for what all it can do) and
PREVIOUS_VALUE is the previously set value for the directive. If set after the watch is set up, it will simply
have the effect of destroying the watch and having unpredictable effects. (In the future, a "Store" routine may

26. catalog.cfg 81



be able to be set up that can subsequently set values).

If the configuration value being watched is an ARRAY, the subroutine gets the following call:

   &{$subref}(SELF, INDEX, PREVIOUS_VALUE)

INDEX is the index of the array element being accessed. Setting up watch points on array values is not
recommended. Most Interchange subroutines call arrays in their list context, and no access method is provided
for that.

If the configuration value being watched is a HASH, the subroutine gets the following call:

   &{$subref}(SELF, KEY, PREVIOUS_VALUE)

KEY is the index into the hash, an example of HASH type Interchange configuration values. NOTE: The
following is not recommended for performance reasons. The Variable is a commonly used thing and should
not bear the extra overhead of tieing, but it illustrates the power of this operation:

   Variable TESTIT Unwatch worked.

   Variable <&EOV
   sub {
       my ($self, $key, $orig) = @_;
       if($key eq 'TESTIT') {
           # only the first time
           if($Scratch−>{$key}++) {
               $self−>Unwatch();
               return $orig−>{TESTIT};
           }
           else {
               return "Tie::Watch works! −− name=$Values−>{name}";
           }
       }
       else {
           return $orig−>{$key};
       }
   }
   EOV

The first time __TESTIT__ is called for a particular user, it will return the string "Tie::Watch works! −−
name=" along with their name set in the session (if that exists). Any other variables will receive the value that
they were set to previously. Once the TESTIT key has been accessed for that user, the watch is dropped upon
the next access.

26.2. Configuration Directives in catalog.cfg

All directives except MailOrderTo and VendURL have default values and are optional, though most
catalogs will want to configure some of them.

26.3. ActionMap

Allows setting of Interchange actions, usually with a Perl subroutine. Actions are page names like:

process  Perform a processing function

Interchange Documentation (Full)

26.2. Configuration Directives in catalog.cfg 82



order    Order items
scan     Search based on path info
search   Search based on submitted form variables

These are the standard supplied actions for Interchange. They can be overwritten with user−defined versions
if desired. For example, to ignore the order action, set:

   ActionMap  order  sub { return 1 }

When the leading part of the incoming path is equal to order, it will trigger an action. The page name will
be shifted up, and the order stripped from the page name. So this custom order action would essentially
perform a no−op, and a URL like:

   <A HREF="[area order/nextpage]"> Go to the next page </A>

would be the equivalent of "[area nextpage]." If the action does not return a true (non−zero, non−blank) status,
no page will be displayed by Interchange, not even the special missing page. A response may also be
generated via Perl or MVASP.

The standard process action has a number of associated FormAction settings. Besides using Perl,
Interchange tags may be used in an action, though they are not nearly as efficient.

26.4. AlwaysSecure

Determines whether checkout page operations should always be secure. Set it to the pages that should always
be secure, separated by spaces and/or tabs.

   AlwaysSecure    ord/checkout

26.5. AsciiTrack

A file name to log formatted orders in. Unless preceded by a leading '/', will be placed relative to the catalog
directory. Disabled by default.

   AsciiTrack     etc/tracking.asc

If a Route is set up to supplant, this is ignored.

26.6. Autoend

Sets an action that is automatically performed at the end every access. It is performed after any page parsing
occurs, just before the transaction ends. See Autoload.

26.7. Autoload

Sets an action that is automatically performed for every access. It is performed before any page parsing
occurs, and before the action or page is even determined. Can contain ITL tags or a global subroutine name. If
the return value is true, a normal display of $CGI−>{mv_nextpage} will occur −− if it returns a false (zero,
undef, or blank) value, no page will be processed.

Interchange Documentation (Full)

26.4. AlwaysSecure 83



As an example, to remap any mv_nextpage accesses to the private subdirectory of pages, set:

   Autoload   [perl] $CGI−>{mv_nextpage} =~ s:^private/:public/:; [/perl]

You can temporarily change any of the catalog configuration settings, for example use a different flypage.

   Autoload       <<EOA
   [perl]
   if ($Session−>{browser} =~ /msie/i) {
      $Config−>{Special}−>{flypage}='ms_flypage'};
   }
   [/perl]
   EOA

Please note that SpecialPage is the corresponding directive in the catalog configuration, not Special.
This is an exceptional case. Usually the hash key has the same name as the catalog configuration directive.

26.8. AutoModifier

Sets an attribute in a shopping cart entry to the field of the same name in the ProductsFile pertaining to
this item. This is useful when doing shipping calculations or other embedded Perl that is based on item
attributes. To set whether an item is defined as "heavy" and requires truck shipment, set:

   AutoModifier  heavy

When an item is added to the shopping cart using Interchange's routines, the heavy attribute will be set to the
value of the heavy field in the products database. In the default demo that would be products. Any
changes to ProductFiles would affect that, of course.

Some values are used by Interchange and are not legal:

       mv_mi
       mv_si
       mv_ib
       group
       code
       quantity
       item

26.9. AutoVariable

Specifies directives which should be translated to Variable settings. For scalars, the directive name becomes
the Variable name and yields its value, i.e. DescriptionField becomes __DescriptionField__,
which would by default be description. Array variables have a _N added, where _N is the ordinal index, i.e.
ProductFiles becomes __ProductFiles_0__, __ProductFiles_1__, etc. Hash variables have a
_KEY added, i.e. SpecialPage becomes __SpecialPage_missing__,
__SpecialPage_violation__, etc. Doesn't handle hash keys that have non−word characters or
whitespace. Only single−level arrays and hashes are translated properly.

26.10. CommonAdjust

Settings for Interchange pricing. See Chained pricing.

Interchange Documentation (Full)

26.8. AutoModifier 84



   CommonAdjust    pricing:q2,q5,q10,q25, ;products:price, ==size:pricing

26.11. ConfigDir

The default directory where directive values will be read from when using the <file notation. Default is
config. The name is relative to the catalog directory unless preceded by a /.

   ConfigDir      variables

This can be changed several times in the catalog.cfg file to pick up values from more than one directory.
Another possibility is to use a Variable setting to use different templates based on a setting:

   Variable   TEMPLATE   blue

   ParseVariables Yes
   ConfigDir  templates/__TEMPLATE__
   ParseVariables No
   Variable   MENUBAR   <menubar
   Variable   LEFTSIDE  <leftside
   Variable   BOTTOM    <bottom
   ConfigDir config

This will pick the templates/blue template. If TEMPLATE is set to red, it would read the variables
from templates/red.

26.12. CookieDomain

Allows a domain to be set so that multiple servers can handle traffic. For example, to use server addresses of
secure.yourdomain.com and www.yourdomain.com, set it to:

   CookieDomain    .yourdomain.com

More than one domain can be set. It must have at least two periods or browsers will ignore it.

26.13. CookieLogin

Allows users to save their username/password (for Vend::UserDB) in a cookie. Expiration is set by
SaveExpire and is renewed each time they log in. To cause the cookie to be generated originally, the CGI
variable mv_cookie_password or mv_cookie_username must be set. The former causes both
username and password to be saved; the latter just the username.

   CookieLogin  Yes

Default is No.

26.14. Cookies

Determines whether Interchange will send (and read back) a cookie to get the session ID for links that go
outside the catalog. Allows arbitrary HREF links to be placed in Interchange pages, while still saving the
contents of the session. The default is Yes.

Interchange Documentation (Full)

26.11. ConfigDir 85



   Cookies         Yes

If the Cookies directive is enabled, and mv_save_session is set upon submission of a user form (or in the
CGI variables through a Perl GlobalSub), the cookie will be persistent for the period defined by
SaveExpire.

Note: This should almost always be "Yes."

Caching, timed builds, and static page building will never be in effect unless this directive is enabled.

26.15. CreditCardAuto

If set to Yes, enables the automatic encryption and saving of credit card information. In order for this to work
properly, the EncryptProgram directive must be set to properly encode the field. The best way to set
EncryptProgram is with PGP in the ASCII armor mode. This option uses the following standard fields on
Interchange order processing forms:

mv_credit_card_number

The actual credit card number, which will be wiped from memory after checking to see if it is a valid Amex,
Visa, MC, or Discover card number. This variable will never be carried forward in the user session.

mv_credit_card_exp_all

The expiration date, as a text field in the form MM/YY (will take a four−digit year as well). If it is not
present, the fields mv_credit_card_exp_month and mv_credit_card_exp_year are looked at. It
is set by Interchange when the card validation returns, if not previously set.

mv_credit_card_exp_month

The expiration date month, used if the mv_credit_card_exp_all field is not present. It is set by
Interchange when the card validation returns, if not previously set.

mv_credit_card_exp_year

The expiration date year, used if the mv_credit_card_exp_all field is not present. It is set by
Interchange when the card validation returns, if not previously set.

mv_credit_card_error

Set by Interchange to indicate the error if the card does not validate properly. The error message is not too
enlightening if validation is the problem.

mv_credit_card_force

Set this value to 1 to force Interchange to encrypt the card despite its idea of validity. Will still set the flag for
validity to 0 if the number/date does not validate. Still won't accept badly formatted expiration dates.

mv_credit_card_separate

Interchange Documentation (Full)

26.15. CreditCardAuto 86



Set this value to 1 to cause Interchange encrypt only the card number and not accompany it with the
expiration date and card type.

mv_credit_card_info

Set by Interchange to the encrypted card information if the card validates properly. If PGP is used in ASCII
armor mode, this field can be placed on the order report and embedded in the order email, replete with
markers. This allows a secure order to be read for content, without exposing the credit card number to risk.

mv_credit_card_valid

Set by Interchange to true, or 1, if the the card validates properly. Set to 0 otherwise.

GnuPG is recommended as the encryption program. Interchange will also work with PGP.

   CreditCardAuto     Yes

26.16. CustomShipping

If not blank, causes an error log entry if the shipping file entry is not found. Not otherwise used for shipping.
See SHIPPING for how to go about doing that.

   CustomShipping      Yes

26.17. Database

Definition of an arbitrary database, in the form "Database database file type," where "file" is the name of an
ASCII file in the same format as the products database. The file is relative to VendRoot. Records can be
accessed with the [data database field key] tag. Database names are restricted to the
alphanumeric characters (including the underscore), and it is recommended that they be either all lower or all
upper case. See DATABASES.

   Database      reviews  reviews.txt  CSV

26.18. DatabaseDefault

Defines default parameters for a database. This can be used to set a default WRITE_CONTROL setting, set a
default USER or PASSWORD, etc. It accepts any scalar setting, which means all except:

ALTERNATE_* BINARY COLUMN_DEF DEFAULT FIELD_ALIAS FILTER_* NAME NUMERIC
POSTCREATE WRITE_CATALOG

This default setting is made when the table is initially defined, i.e. explicit settings for the database itself
override the defaults set.

   DatabaseDefault      WRITE_CONTROL   1
   DatabaseDefault      WRITE_TAGGED    1

This setting must be made *before* the database is defined. To reset its value to empty, use the Replace
directive.

Interchange Documentation (Full)

26.16. CustomShipping 87



   Replace DatabaseDefault

26.19. DefaultShipping

This sets the default shipping mode by initializing the variable mv_ship_mode. If not set in
catalog.cfg, it is default.

   DefaultShipping     UPS

Somewhat deprecated, the same thing can be achieved with:

   ValuesDefault   mv_shipmode UPS

26.20. DescriptionField

The field that will be accessed with the [item−description] element.

   DescriptionField    description

Default is description. It is not a fatal error if this field does not exist. This is especially important for
on−the−fly items. If there is an attribute set to the same name as DescriptionField, this will be used for
display.

26.21. DirConfig

DirConfig allows you to batch−set a bunch of variables from files. The syntax:

DirConfig directive−name directory−glob

directive−name is usually Variable, but could be any hash−based directive. (No other standard
directives currently make sense to set this way.)

directory−glob is a filespec that could encompass multiple directories. Files are ignored.

The directories are read for file *names* that contain only word characters, i.e. something that would be a
valid Variable. (This alone might make it not suitable for other uses, but picking up the junk from the
in−directory−backup−file people would be intolerable.)

Then the contents of the file is used to set the variable of the file name.

The source file name is kept in $Vend::Cfg−>{DirConfig}{Variable}{VARNAME}, for use if
dynamic_variables Pragma is set.

Pragma dynamic_variables enables dynamic updating of variables from files. Pragma
dynamic_variables_files_only restricts dynamic variables to files only −− otherwise variables are
dynamically read from the VarDatabase definition as well.

With dynamic variables, all @_VARIABLE_@ and __VARIABLE__ settings are checked first to see if the
source file is defined. If there is a key present, even if its contents are blank, it is returned. Example: in the
case of this catalog.cfg entry:

Interchange Documentation (Full)

26.19. DefaultShipping 88



DirConfig Variable templates/foundation/regions

If the file NOLEFT_TOP is present at catalog config time, __NOLEFT_TOP__ will equal [include
templates/foundation/regions/NOLEFT_TOP].

26.22. DisplayErrors

If the administrator has enabled DisplayErrors globally, setting this to "Yes" will display the error returned
from Interchange in case something is wrong with embedded Perl programs, tags, or Interchange itself.
Usually, this will be used during development or debugging. Default is No.

   DisplayErrors       Yes

26.23. DynamicData

When set to one or more Interchange database identifiers, any pages using data items from the specified
database(s) will not be cached or built statically. This allows dynamic updating of certain arbitrary databases
(even the products database) while still allowing static/cached page performance gains on pages not using
those data items.

   DynamicData         inventory

Overridden by [tag flag build][/tag], depending on context.

26.24. EncryptProgram

Contains a program command line specification that indicates how an external encryption program will work.
Two placeholders, %p and %f, are defined, which are replaced at encryption time with the password and
temporary file name respectively. See Order Security. This is separate from the PGP directive, which
enables PGP encryption of the entire order.

If PGP is the encryption program (Interchange determines this by searching for the string pgp in the
command string), no password field or file field need be used. The field mv_credit_card_number will
never be written to disk in this case.

   EncryptProgram      /usr/local/bin/pgp −feat sales@company.com

If the order Route method of sending orders is used (default in the demo), this sets the default value of the
encrypt_program attribute.

26.25. ErrorFile

This is where Interchange will write its runtime errors for THIS CATALOG ONLY. It can be shared with
other catalogs or the main Interchange error log, but if it is root−based, permission to write the file is required.

   ErrorFile   /home/interchange/error.log

Interchange Documentation (Full)

26.22. DisplayErrors 89



26.26. ExtraSecure

Disallows access to pages which are marked with AlwaysSecure unless the browser is in HTTPS mode. A
Yes/No directive, the default is 'No.'

   ExtraSecure  Yes

26.27. Filter

Assigns one or more filters (comma separated) to be automatically applied to a variable.

As an example, multiple form variable submissions on the same page come back null−separated, like
'value1\0value2\0value3'. To automatically change those nulls to spaces, you could use this directive:

Filter  mail_list  null_to_space

Of course you could just as easily use the regular [filter] tag on the page if the filter is only going to be used in
a few places.

See the ictags document for more information, including a complete list of filters.

26.28. FormAction

Allows set up of a form action (like the standard ones return, submit, refresh, etc.). It requires a
Perl subroutine as a target:

   FormAction foo <<EOR
   sub {
       $CGI−>{mv_nextpage} = 'bar';
   }
   EOR

If it returns a true (non−zero, non−empty) value, Interchange will display the page defined in
$CGI−>{mv_nextpage}. Otherwise, Interchange will not display any page. The default Interchange actions
can be overridden if desired. There is also a global version of this directive, which is overridden if a
catalog−specific action exists.

26.29. FormIgnore

Set to the name(s) of variables that should not be carried in the user session values. Must match exactly and
are case sensitive.

   FormIgnore    mv_searchtype

26.30. FractionalItems

Whether items in the shopping cart should be allowed to be fractional, i.e., 2.5 or 1.25. Default is No.

   FractionalItems     Yes

Interchange Documentation (Full)

26.26. ExtraSecure 90



26.31. Glimpse

The pathname for the glimpse command, used if glimpse searches are to be enabled. To use
glimpseserver, the −C, −J, and −K tags must be used.

   Glimpse  /usr/local/bin/glimpse −C −J srch_engine −K2345

26.32. History

How many of the most recent user clicks should be stored in the session history. Default is 0.

26.33. HTMLsuffix

The file extension that will be seen as a page in the pages directory. Default is .html.

   HTMLsuffix .htm

26.34. ImageAlias

Aliases for images, ala Apache/NCSA, ScriptAlias, and Alias directives. Relocates images based in a
particular directory to another for Interchange use; operates after ImageDir. Useful for editing Interchange
pages with an HTML editor. Default is blank.

   ImageAlias  /images/  /thiscatalog/images/

26.35. ImageDir

The directory where all relative IMG and INPUT source file specifications are based. IT MUST HAVE A
TRAILING / TO WORK. If the images are to be in the DocumentRoot (of the HTTP server or virtual
server) subdirectory images, for example, use the ImageDir specification '/images/'. This would change
SRC="order.gif" to SRC="/images/order.gif" in IMG and INPUT tags. It has no effect on other SRC tags.

   ImageDir /images/

Can be set in the Locale settings to allow different image sets for different locales (MV3.07 and up).

26.36. ImageDirInternal

A value for ImageDir only when the internal HTTP server is in use. It must have a trailing / to work, and
should always begin with a fully−qualified path starting with http://.

   ImageDirInternal http://www.server.name/images/

26.37. ImageDirSecure

A value for ImageDir only when the pages are being served via HTTPS. It must have a trailing / to work,
and should always begin with a fully−qualified path starting with http://.

Interchange Documentation (Full)

26.31. Glimpse 91



   ImageDirSecure   /secure/images/

This is useful if using separate HTTPS and HTTP servers, and cannot make the image directory path heads
match.

26.38. Locale

Sets the special locale array. Tries to use POSIX setlocale based on the value of itself, then tries to accept
a custom setting with the proper definitions of mon_decimal_point, thousands_sep, and
frac_digits, which are the the only international settings required. Default, if not set, is to use
US−English settings.

Example of the custom setting:

   Locale     custom mon_decimal_point , mon_thousands_sep . frac_digits 0

Example of POSIX setlocale for France, if properly aliased:

   Locale     fr

See setlocale(3) for more information. If embedded Perl code is used to sort search returns, the
setlocale() will carry through to string collation.

See Internationalization.

26.39. LocaleDatabase

Set to the Interchange database identifier of a table that contains Locale settings. These settings add on to
and overwrite any that are set in the catalog configuration files, including any include files.

   Database       locale  locale.asc  TAB
   LocaleDatabase locale

26.40. MailOrderTo

Specifies the e−mail address to mail completed orders to.

       MailOrderTo  orders@xyzcorp.com

If 'none' is specified, no e−mailed order will be sent.

26.41. NoCache

The names of Interchange pages that are not to be built statically if STATIC PAGE BUILDING is in use. If
the name is a directory, no pages in that directory (or any below it) will be cached or built statically.

   NoCache    ord
   NoCache    special

Interchange Documentation (Full)

26.38. Locale 92



26.42. NoImport

When set to one or more Interchange database identifiers, those database(s) will never be subject to import.
Normally, Interchange checks to see if each database needs to be created and populated (from the source text
file) when the Interchange daemon is started or restarted, or a catalog is reconfigured.

This is useful for SQL databases used by other applications besides Interchange, or large databases you load
and back up outside of Interchange. With this option you can omit the source text file for SQL databases
entirely.

   NoImport   inventory

26.43. NoImportExternal

When set to true, this directive prevents database imports for all "external" databases:

   NoImportExternal  Yes

External database types are DBI (all popular SQL databases) and LDAP. Internal database types are the DBM
variants (GDBM, DB_File, SDBM) and in−memory databases.

The default setting is false (databases may be imported).

26.44. NonTaxableField

The name of the field in the products database that is set (to 1 or Yes) if an item is not to be taxed. Interchange
will log an error and tax it anyway if the field doesn't exist in the database. Blank by default, disabling the
feature.

   NonTaxableField    wholesale

26.45. NoSearch

Here you can provide one or more filename fragments that will be matched against the file name used in any
attempted search (the mv_search_file or 'fi' attribute). You may separate multiple match strings with
whitespace, and may include shell−style wildcards.

The default setting is 'userdb', which means that by default you cannot use Interchange−style searches on the
userdb table. (Pure SQL searches still work with it, however.)

For example, consider this setting:

   NoSearch  userdb  .*  *.secret

In this case any search file with 'userdb' in its name, or beginning with a dot, or ending in '.secret', will not be
searchable.

Interchange Documentation (Full)

26.42. NoImport 93



26.46. OfflineDir

The location of the offline database files for use with the Interchange offline database build command. Set to
"offline" as the default, and is relative to VendRoot if there is no leading slash.

   OfflineDir          /usr/data/interchange/offline

26.47. OnFly

Enables on−the−fly item additions to the shopping cart. If set to the name of a valid UserTag, that tag
definition will be used to parse and format the item with the following call:

   $item = Vend::Parse::do_tag($Vend::Cfg−>{OnFly},
                                   $code,
                                   $quantity,
                                   $fly[$j],
                               );

$fly[$j] is the value of mv_order_fly for that item. An onfly tag is provided by Interchange. See
<On−the−fly> ordering.

26.48. OrderCounter

The name of the file (relative to catalog root if no leading /) that maintains the order number counter. If not
set, the order will be assigned a string based on the time of the order and the user's session number.

   OrderCounter       etc/order.number

Bear in mind that Interchange provides the order number as a convenience for display, and that no internal
functions depend on it. Custom order number routines may be defined and used without fear of consequences.

If a Route is set up to supplant and the counter attribute is set there, this is ignored.

26.49. OrderLineLimit

The number of items that the user is allowed to place in the shopping cart. Some poorly−mannered robots may
"attack" a site by following all links one after another. Some even ignore any robots.txt file that may
have been created. If one of these bad robots orders several dozen or more items, the time required to save and
restore the shopping cart from the user session may become excessive.

If the limit is exceeded, the command defined in the Global directive LockoutCommand will be executed
and the shopping cart will be emptied. The default is 0, disabling the check. Set it to a number greater than the
number of line items a user is ever expected to order.

   OrderLineLimit   50

26.50. OrderProfile

Allows an unlimited number of profiles to be set up, specifying complex checks to be performed at each of the

Interchange Documentation (Full)

26.46. OfflineDir 94



steps in the checkout process. The files specified can be located anywhere. If relative paths are used, they are
relative to the catalog root directory.

   OrderProfile    etc/profiles.order etc/profiles.login

The actions defined here are also used for mv_click actions if there is no action defined in scratch space.
They are accessed by setting the mv_order_profile variable to the name of the order profile. Multiple
profiles can reside in the same file, if separated by __END__ tokens, which must be on a line by themselves.

The profile is named by placing a name following a __NAME__ pragma:

 __NAME__ billing

The __NAME__ must begin the line, and be followed by whitespace and the name. The search profile can
then be accessed by <mv_order_profile="billing">. See Advanced Multi−level Order Pages.

26.51. OrderReport

The location of the simple order report file. Defaults to etc/report.

   OrderReport          /data/order−form

26.52. PageDir

Location of catalog pages. Defaults to the pages subdirectory in the VendRoot directory.

   PageDir    /data/catalog/pages

Can be set in the Locale settings to allow different page sets for different locales.

26.53. PageSelectField

Sets a products database column which can be used to select the on−the−fly template page. This allows
multiple on−the−fly pages to be defined. If the field is empty (no spaces), the default flypage will be used.

   PageSelectField    display_page

26.54. ParseVariables

Determines whether global and catalog variables will be parsed in catalog configuration directives (not
including the Variable directive itself, which never parses its settings). Applies only to variables with names
in ALL CAPS. Default setting is No. The foundation catalog.cfg turns ParseVariables on and usually expects
it to be on.

   Variable STORE_ID  topshop
   ParseVariables Yes
   StaticDir  /home/__STORE_ID__/www/cat
   ParseVariables No

Interchange Documentation (Full)

26.51. OrderReport 95



26.55. Password

The encrypted or unencrypted password (depending on Variable MV_NO_CRYPT) that will cause internal
authorization checks for RemoteUser to allow access.

Below is the encrypted setting for a blank password.

   Password                bAWoVkuzphOX.

26.56. PGP

If credit card information is to be accepted, and the e−mailed order will go over an insecure network to reach
its destination, PGP security should be used. The key ring to be used must be for the user that is running the
Interchange server, or defined by the environment variable PGPPATH, and the key user specified must have a
key on the public key ring of that user.

   PGP        /usr/local/bin/pgp −feat orders@company.com

If this directive is non−null, the PGP command string as specified will be used to encrypt the entire order in
addition to any encryption done as a result if CreditCardAuto. If, for some reason, an error comes from
PGP, the customer will be given the special page failed.

If a Route is set up to supplant, this is ignored.

26.57. Pragma

Sets the default value of an Interchange pragma. The directive is set like this:

   Pragma my_pragma_name

To enable a pragma for only a particular page, set it anywhere in the page:

   [pragma my_pragma_name]

To disable a pragma for a particular page, set it anywhere in the page:

   [pragma my_pragma_name 0]

Descriptions of each pragma follow.

dynamic_variables

dynamic_variables_file_only

no_image_rewrite

Prevents image locations in pages from being altered by Interchange. Added in Interchange 4.7.0.

Interchange normally rewrites image locations to point to ImageDir. This applies to image locations
mentioned in <img src="...">, <input src="...">, <body background="...">, <table background="...">, and

Interchange Documentation (Full)

26.55. Password 96



<tr/th/td background="...">.

When this pragma is not set, the following tag:

   <img src="fancy.gif">

Would, assuming an ImageDir set to /foundation/images, be transformed into:

   <img src="/foundation/images/fancy.gif">

When pragma no_image_rewrite is set, the <img> tag would remain unchanged.

safe_data

By default Interchange does not allow data returned from databases to be reparsed for Interchange tags.
Setting the safe_data pragma eliminates this restriction.

If for some reason you want to have tags in your database, for example, to use [page ...] for catalog−internal
hyperlinks in your product descriptions, you need to enable safe_data. Some things to consider:

It may be better to use the safe_data attribute available to certain tags instead of the pragma, or
perhaps to use [pragma] for a whole page or [tag pragma] ... [/tag] for a small block, instead of a
catalog−wide Pragma directive.

1. 

In any case it is strongly recommended that you surround the area with [restrict] ... [/restrict] tags to
allow only the specific (hopefully relatively safe) set of tags you expect to appear, such as [page] or
[area]. Expect security compromises if you allow [calc] or [perl], or other extremely powerful tags.

2. 

Be certain that you know everywhere the data in your database will be used. Will it always be
possible to reparse for tags? What about when it's used to create an emailed plain−text receipt −− will
a literal '[page ...]' tag show up in the product description on the receipt? Would the desired output of
'<a href="...">' be any better in a plaintext situation? What if you access your database from
applications other than Interchange? You'll then have to decide what to do with such tags; perhaps
you can simply strip them, but will the missing tag output cause you any trouble?

3. 

In short, safe_data is disabled by default for a reason, and you should be very careful if you decide to enable
it.

(Watch out for parse order with [tag pragma] or [restrict] when used with lists that retrieve data from the
database, as in [prefix−*] and the flypage. Loops parse before regular tags like [tag] and [restrict], and thus
aren't affected by it.)

strip_white

Set this to strip whitespace from the tops of HTML pages output by Interchange. Such whitespace usually
comes from Interchange tags at the top of the page. The pragma's purpose is mostly to make 'view source' in
the browser a slightly more tolerable experience.

Default is off; whitespace is unchanged.

Interchange Documentation (Full)

26.55. Password 97



26.58. PriceCommas

If no commas are desired in price numbers (for the [item−price] tag), set this to No. The default is to use
commas (or whatever is the thousands separator for a locale).

   PriceCommas         no

This is overridden if a Locale price_picture is set.

26.59. PriceDivide

The number the price should be divided by to get the price in units (dollars or such). The default is one. If
penny pricing is used, set it to 100.

   PriceDivide         100

Can be set in the Locale settings to allow a price adjustment factor for different currencies.

26.60. PriceField

The field in the product database that will be accessed with the [item−price] element. Default is "price."

   PriceField          ProductPrice

Can be set in the Locale settings to allow different price fields for different currencies.

26.61. ProductDir

Location of the database files. Defaults to the products subdirectory of the VendRoot directory. May not be
set to an absolute directory unless NoAbsolute is defined as No.

   ProductDir          /data/catalog/for−sale

Most people never set this directive and use the default of products.

26.62. ProductFiles

Database tables that should be seen as the "products" database.

   ProductFiles    vendor_a vendor_b

The key thing about this is that each will be searched in sequence for a product code to order or an
[item−field ....] or [loop−field ...] to insert. The main difference between [item−field
....] and [item−data table ...] is this fall−through behavior.

Default is products.

Interchange Documentation (Full)

26.58. PriceCommas 98



26.63. ReadPermission and WritePermission

By default, only the user account that Interchange runs under (as set by the SETUID permission on vlink) can
read and write files created by Interchange. WritePermission and ReadPermission can be set to
user, group, or 'world'.

   ReadPermission      group
   WritePermission     group

26.64. RemoteUser

The value of the HTTP environment variable REMOTE_USER that will enable catalog reconfiguration. HTTP
basic authentication must be enabled for this to work. Default is blank, disabling this check.

   RemoteUser   interchange

26.65. Replace

Causes a directive to be emptied and re−set (to its default if no value is specified). Useful for directives that
add to the value by default.

   Replace NoCache ord special multi reconfig query

Capitalization must be exact on each directive.

26.66. Require

Forces a Perl module, global UserTag, or GlobalSub to be present before the catalog will configure. This
is useful when transporting catalogs to make sure they will have all needed facilities.

   Require usertag   email
   Require globalsub form_mail
   Require module    Business::UPS

26.67. RobotLimit

The RobotLimit directive defines the number of consecutive pages a user session may access without a 30
second pause. If the limit is exceeded, the command defined in the Global directive LockoutCommand will
be executed and catalog URLs will be rewritten with host 127.0.0.1, sending the robot back to itself. The
default is 0, disabling the check.

   RobotLimit  200

26.68. Route

Sets up order routes. See Custom Order Routing. There are examples in the demo simple.

Interchange Documentation (Full)

26.63. ReadPermission and WritePermission 99



26.69. SalesTax

If non−blank, enables automatic addition of sales tax based on the order form. The value is one of three types
of values:

multi

The special value "multi" enables table−based lookup of taxing rates based on the value of user form values,
by default country and state.

[itl−tags]

If the value has a left square bracket, it is interpolated for ITL tags and the result used as the amount of the
salestax.

var1, var2

A comma−separated list of the field names (as placed in the checkout page, for example ord/checkout.html) in
priority order. These are be used to look up sales tax percentage in the salestax.asc ASCII table. (This
table is not supplied with Interchange.)

       SalesTax            zip state

26.70. SalesTaxFunction

A Perl subroutine that will return a hash reference with the sales tax settings. This can be used to query a
database for the tax for a particular vendor:

   SalesTaxFunction  <<EOR
         my $vendor_id = $Session−>{source};
       my $tax = $TextSearch−>hash( {
                           se => $vendor_id,
                           fi => 'salestax.asc',
                           sf => 'vendor_code',
                           ml => 1000,
                           } );
       $tax = {} if ! $tax;
       $tax−>{DEFAULT} = 0.0;
       return $tax;
   EOR

or simply produce a table:

   SalesTaxFunction  <<EOR
    return {
        DEFAULT => 0.0,
        IL => 0.075,
        OH => 0.065,
    };
EOR

A DEFAULT value must always be returned or the function will be ignored.

Interchange Documentation (Full)

26.69. SalesTax 100



26.71. SaveExpire

The default amount of time that a cookie will be valid (other than the MV_SESSION_ID cookie). The ones
used in Interchange by default are MV_USERNAME and MV_PASSWORD for the CookieLogin feature.
Specified the same as SessionExpire, with an integer number followed by one of minutes, hours,
days, or weeks.

   SaveExpire 52 weeks

Default is 30 days.

26.72. ScratchDefault

The default scratch variable settings that the user will start with when their session is initialized.

To disable placing URL rewrite strings after the user has given a cookie, set:

   ScratchDefault  mv_no_session_id  1
   ScratchDefault  mv_no_count       1
   ScratchDefault  mv_add_dot_html   1

To set the default locale:

   ScratchDefault  mv_locale         de_DE

26.73. ScratchDir

The directory where temporary files will be written, notably cached searches and retired session IDs. Defaults
to tmp in the catalog directory.

   ScratchDir          /tmp

26.74. SearchProfile

Allows an unlimited number of search profiles to be set up, specifying complex searches based on a single
click. The directive accepts a file name based in the catalog directory if the path is relative:

   SearchProfile    etc/search.profiles

As an added measure of control, the specification is evaluated with the special Interchange tag syntax to
provide conditional setting of search parameters. The following file specifies a dictionary−based search in the
file 'dict.product':

 __NAME__ dict_search
 mv_search_file=dict.product
 mv_return_fields=1
 [if value fast_search]
   mv_dict_limit=−1
   mv_last=1
 [/if]
 __END__

Interchange Documentation (Full)

26.71. SaveExpire 101



The __NAME__ is the value to be specified in the mv_profile variable on the search form, as in

 <INPUT TYPE=hidden NAME=mv_profile VALUE="dict_search">

or with mp=profile in the one−click search.

 [page scan se=Renaissance/mp=dict_search]Renaissance Art[/page]

Multiple profiles can reside in the same file, if separated by __END__ tokens. __NAME__ tokens should be
left−aligned, and __END__ must be on a line by itself with no leading or trailing whitespace.

26.75. SecureURL

The base URL for secure forms/page transmissions. Normally it is the same as VendURL except for the
https: protocol definition. Default is blank, disabling secure access.

   SecureURL   https://machine.com/xyzcorp/cgi−bin/vlink

26.76. SendMailProgram

The location of the sendmail binary, needed for mailing orders. Must be found at startup. This often needs to
be set for FreeBSD or BSDI.

  SendMailProgram    /usr/sbin/sendmail

If set to none, no mail can be sent by standard Interchange facilities. The default is the value in
interchange.cfg and varies depending on operating system.

26.77. SeparateItems

Changes the default when ordering an item via Interchange to allowing multiple lines on the order form for
each item. The default, No, puts all orders with the same part number on the same line.

Setting SeparateItems to Yes allows the item attributes to be easily set for different instances of the
same part number, allowing easy setting of things such as size or color.

   SeparateItems       Yes

Can be overridden with the mv_separate_items variables (both scratch and values).

26.78. SessionDatabase

When storing sessions, specify the name of the directory or DBM file to use. The file extensions of .db or
.gdbm (depending on the DBM implementation used) will be appended. If the default file−based sessions are
used, it is the name of the directory.

   SessionDatabase     session−data

Can be an absolute path name, if desired.

Interchange Documentation (Full)

26.75. SecureURL 102



It is possible for multiple catalogs to share the same session file, as well as for multiple Interchange servers to
serve the same catalogs. If serving a extremely busy store, multiple parallel Interchange servers can share the
same NFS−based file system and serve users in a "ping−pong" fashion using the file−based sessions. On huge
systems, the level of directory hashing may be changed. By default, only 48 * 48 hashing is done. See the
source for SessionFile.pm.

26.79. SessionDB

The name of the Interchange database to be used for sessions if DBI is specified as the session type. This is
not recommended.

26.80. SessionExpire

A customer can exit the browser or leave the catalog pages at any time, and no indication is given to the web
server aside from the lack of further requests that have the same session ID. Old session information needs to
be periodically expired. The SessionExpire specifies the minimum time to keep track of session
information. Defaults to one day. Format is an integer number, followed by s(econds), m(inutes), h(ours),
d(ays), or w(eeks).

   SessionExpire       20 minutes

If CookieLogin is in use, this can be a small value. If the customer's browser has the Interchange session
cookie stored, he/she will be automatically logged back in with the next request. Note, however, that the
customer's cart and session values will be reset.

26.81. SessionLockFile

The file to use for locking coordination of the sessions.

   SessionLockFile     session−data.lock

This only applies when using DBM−based sessions. It is possible for multiple catalogs to share the same
session file. SessionDatabase needs to be set appropriately if the database is to be shared. Defaults to
session.lock, which is appropriate for separate session files (and therefore standalone catalogs). Can be
an absolute path name, if desired.

26.82. SessionType

The type of session management to be used. Use one of the following:

   DB_File     Berkeley DB
   DBI         DBI (don't use this, normally)
   File        File−based sessions (the default)
   NFS         File−based sessions, forces use of fcntl locking
   GDBM        GDBM

The default is file−based sessions, which provides the best performance and reliability in most environments.

If you are planning on running Interchange servers with an NFS−mounted filesystem as the session target, you
must set SessionType to "NFS". The other requisites are usually:

Interchange Documentation (Full)

26.79. SessionDB 103



1. fcntl() supported in Perl 2. lock daemon running on NFS server system 3. lock daemon running on
Interchange server

See also the global directive LockType.

26.83. SpecialPage

Sets a special page to other than its default value. Can be set as many times as necessary. Will have no effect
if not one of the Interchange Required Pages.

   SpecialPage         checkout ord/checkout
   SpecialPage         failed special/error_on_order
   SpecialPage         interact special/browser_problem
   SpecialPage         noproduct special/no_product_found
   SpecialPage         order  ord/basket
   SpecialPage         search srch/results

26.84. SpecialPageDir

The directory where special pages are kept. Defaults to special_pages in the catalog directory.

   SpecialPageDir      pages/special

26.85. Static

A Yes/No directive. Enables static page building and display features. Default is No.

    Static   Yes

26.86. StaticAll

A Yes/No directive. Tells Interchange to try and build all pages in the catalog statically when called with the
static page build option. This is subject to the settings of StaticFly, StaticPath, and NoCache.
Default is No. Pages that have dynamic elements will not be built statically, though that may be overridden
with [tag flag build][/tag] on the page in question.

    StaticAll   Yes

26.87. StaticDepth

The number of levels of static search building that will be done if a search results page contains a search.
Default is one, though it could be very long if set higher. Set to 0 to disable re−scanning of search results
pages.

    StaticDepth 2

26.88. StaticDir

The absolute path of the directory which should be used as the root for static pages. The user ID executing

Interchange Documentation (Full)

26.83. SpecialPage 104



Interchange must have write permission on the directory (and all files within) if this is to work.

    StaticDir   /home/you/www/catalog

26.89. StaticFly

A Yes/No directive. If set to Yes, static builds will attempt to generate a page for every part number in the
database using the on−the−fly page build capability. If pages are already present with those names, they will
be overwritten. The default is No.

    StaticFly   Yes

26.90. StaticPage

Tells Interchange to build the named page (or pages, whitespace separated) when employing the static
page−building capability of Interchange. Not necessary if using StaticAll.

    StaticPage   info/about_us  info/terms_and_conditions

26.91. StaticPath

The path (relative to HTTP document root) which should be used in pages built with the static page−building
capability of Interchange.

    StaticPath    /catalog

26.92. StaticPattern

A perl regular expression which is used to qualify pages that are to be built statically. The default is blank,
which means all pages qualify.

    StaticPattern  ^info|^help

26.93. StaticSuffix

The extension to be appended to a normal Interchange page name when building statically. Default is .html.
Also affects the name of pages in the Interchange page directory. If set to .htm, the pages must be named
with that extension.

    StaticSuffix   .htm

26.94. Sub

Defines a catalog subroutine for use by the [perl][/perl] or [mvasp] embedded perl languages. Use the
"here document" capability of Interchange configuration files to make it easy to define:

   Sub <<EOF
   sub sort_cart_by_quantity {
       my($items) = @_;

Interchange Documentation (Full)

26.89. StaticFly 105



       $items = $Items if ! $items;
       my $out = '<TABLE BORDER=1>';
       @$items = sort { $a−>{quantity} <=> $b−>{quantity} } @$items;
       foreach $item (@$items) {
           my $code = $item−>{code};
           $out .= '<TR><TD>';
           $out .= $code;
           $out .= '</TD><TD>';
           $out .= $Tag−>data('products', 'name', $code);
           $out .= '</TD><TD>';
           $out .= $Tag−>data('products', 'price', $code);
           $out .= '</TD></TR>';
       }
       $out .= '&lt/TABLE>';
       return $out;
   }
   EOF

As with Perl "here documents," the EOF (or other end marker) must be the ONLY thing on the line, with no
leading or trailing white space. Do not append a semicolon to the marker. The above would be called with:

   [perl]
       my $cart = $Carts−>{main};
       return sort_cart_by_quantity($cart);
   [/perl]

and will display an HTML table of the items in the current shopping cart, sorted by the quantity. Syntax errors
will be reported at catalog startup time.

Catalog subroutines may not perform unsafe operations. The Safe.pm module enforces this unless global
operations are allowed for the catalog. See AllowGlobal.

26.95. Suggests

Generates a warning message when a Perl module, global UserTag, or GlobalSub is not present at catalog
configuration time. Same as the Require directive except not fatal.

   Suggest usertag   table_editor
   Suggest globalsub file_info
   Suggest module    Business::UPS

26.96. TableRestrict

Used to provide "views" in database−based searches. Does not affect the text searches. Affects the table being
searched.

Takes the form of field=session_param, where field is a column in the table being iterated over, and
session_param is a $Session key (i.e., [data session username]).

   TableRestrict  products  owner=username

The above would prevent the database search from returning any records except those where the column
owner contains the current value of [data session username].

Interchange Documentation (Full)

26.95. Suggests 106



Probably most usefully set by embedded Perl code in certain situations. For example:

   [calc]
       # Restrict edit to owned fields
       $Config−>{TableRestrict}{products} = 'owner=username';
       return;
   [/calc]

When using SQL−based databases, in effect it turns the base search query

   select * from products

into

   select * from products where owner = '[data session username]'

Interchange databases are similarly affected, though the methodology is different. Also may be useful in
"mall" situations, where user is allowed to only see products from the current store ID.

26.97. TaxShipping

A comma or space−separated list of states or jurisdictions that tax shipping cost, i.e., UT. Blank by default,
never taxing shipping.

   TaxShipping         UT,NV,94024

26.98. TemplateDir

Sets one or more directories (separated by whitespace) which will be searched (in order) for pages not found
in the PageDir. If a page is not found in directories specified here, the search continues with the global
TemplateDir setting, if defined.

   TemplateDir    /var/lib/interchange/foundation/bonus_pages

This is undefined by default.

26.99. TrackFile

Name of a logfile that tracks user traffic. This is used in the back office administration report on traffic by
affiliate.

The default is that no such file is kept.

26.100. UpsZoneFile

The file containing the UPS zone information, specified relative to the catalog directory unless it begins with a
/. It can be in the format distributed by UPS or can be in a tab−delimited format, with the three−letter zip
prefix of the customer used to determine the zone. It interpolates based on the value in mv_shipmode. A
user database named the same as the mv_shipmode variable must be present or the lookup will return zero.

Interchange Documentation (Full)

26.97. TaxShipping 107



IMPORTANT NOTE: Zone information and updated pricing from UPS must be obtained in order for this to
work properly. The zone information is specific to a region!

   UpsZoneFile         /usr/interchange/data/ups_zone.asc

26.101. UseModifier

Determines whether any attributes, the modifiers specified in the directive, can be attached to the item. See
Item Attributes. The default is no modifier. Don't use a value of quantity or this directive will not
work properly.

   UseModifier         size,color

Some values are used by Interchange and are not legal:

       mv_mi
       mv_si
       mv_ib
       group
       code
       quantity
       item

26.102. ValuesDefault

Sets the initial state of the user values, i.e., [value key] or $Values−>{key}.

   ValuesDefault   fname  New
   ValuesDefault   lname  User

When the user session starts, [value fname] [value lname] will be "New User."

26.103. Variable

Defines a catalog variable that will be available in the current catalog with the notation __VARIABLE__.
Variable identifiers must begin with a capital letter, and can contain only word characters (A−Z,a−z,0−9 and
underscore). They are case−sensitive.

   Variable   DOCUMENT_ROOT   /usr/local/etc/httpd/htdocs

Only variables with ALL CAPS names will be parsed in catalog pages or, when the ParseVariables
directive is set, in catalog configuration directives (other than in Variable directives themselves). These are
substituted second (right after global Variables) in any Interchange page, and can contain any valid
Interchange tags except global variables. If a variable is called with the notation @_VARIABLE_@, and
there is no catalog Variable with its name, the global Variable value will be inserted.

26.104. VariableDatabase

The name of a database containing a field Variable which will be used to set Interchange variable values. For
example, a database defined as:

Interchange Documentation (Full)

26.101. UseModifier 108



   Database  var var.txt TAB
   VariableDatabase var

and containing

   code    Variable
   HELLO   Hi!

would cause __HELLO__ to appear as Hi!.

The field name is case−sensitive, and variable would not work.

The values are inserted at time of definition. Any single−level hash−oriented Interchange directive, such as
SpecialPage, ScratchDefault, or ValuesDefault, can be set in the same way. If the
VariableDatabase named does not exist at definition time, a database of the default type with an ASCII
file source appending .txt is assumed. In other words:

   VariableDatabase variable

is equivalent to

   Database         variable variable.txt TAB
   VariableDatabase variable

26.105. VendURL

Specifies the base URL that will run vlink as a cgi−bin program.

       VendURL  http://machine.company.com/cgi−bin/vlink

26.106. WideOpen

Disables IP qualification of user sessions. This degrades catalog security. Do not use unless using
encryption or a real−time payment gateway.

Copyright 2001−2002 Red Hat, Inc. Freely redistributable under terms of the GNU General Public License.
line:

Interchange Documentation (Full)

26.105. VendURL 109



Foundation Store

Foundation Store 110



27. The Foundation Store
The Foundation store is distributed with Interchange to give you a starting point with which to build your
e−business. While the Foundation store is designed to be relatively easy to start with, it is still a full−featured
demonstration of a number of Interchange capabilities. Once you understand the Foundation store and how it
works you are well on your way to understanding the Interchange software.

The following is a list of some popular features:

Category Searches

Regardless of the number of products in a catalog, categorizing them makes them easier to find. Pick a field in
the database, typically named category, and classify the products for search using Interchange.

Images

You can display a thumbnail image for the items that have images. To do this, add an image field in the
database. (See the 'image' field of the products database.)

Related Items

You can embed searches of similar products on an individual product display page with the [query ...]
or [loop ...] tags. Or, if customer data is developed, search a past order database and display products
that would be of interest to that customer.

Reviews/Testimonials

You can key the placement of a review or testimonial on the existence of a file being in a certain directory.
This is reasonable to do when a user is viewing a single product.

27. The Foundation Store 111



28. Tree design
By determining how users will enter and exit the catalog, complex and intelligent conditional schemes are
possible, especially if the Cookies capability is exercised. However, it is recommended that simplicity be
used. Consumers will not make purchases if they can't navigate their way around the catalog.

It is important to remember that users will lose their session (and items in their shopping cart) if their browser
does not accept cookies and they leave the site. Interchange addresses this problem by using the area and
page tags. If you are using frames, source all frame panes containing Interchange links from an initial page
served by Interchange. If you don't do this, the user may have multiple session IDs depending on which frame
generated the link.

Note that Interchange can work properly even if the browser doesn't store cookies. In this situation
Interchange inserts a session ID into each URL; if the ID is preserved as the user navigates from page to page
the session will remain intact.

28. Tree design 112



29. The Catalog Directory
Interchange pages are contained in the catalog directory. Each individual catalog has its own base directory.
The catalog directory has the following structure by default:

catalog.cfg

File containing configuration directives for a particular catalog. Configuration settings established in the
catalog.cfg directory will not effect any other catalogs running under the version of Interchange you are using.
Subcatalogs can have differing information in a file named for that subcatalog.

config

Directory that will be read when directives are set with the filename notation. For example, the file
config/static.pages will be read when the following directive is encountered in the catalog.cfg
file.

          StaticPage  <static.pages

This directory also contains template information used with the makecat program.

error.log

File which contains catalog−specific errors. It is also where any syntax errors in embedded Perl code are
shown.

etc

Directory normally used for tracking files, order profiles, and other configuration and log information.

pages

Directory that contains the pages of the catalog. This can be considered to be the "document root" of the
catalog. Pages contained therein are called with the path information after the script name. For example:

/cgi−bin/simple/products/gold will call the page in the file
pages/products/gold.html.

products

Directory that contains database source files, including the special Interchange databases shipping.asc,
pricing.asc (and other shipping database files).

session

Directory that contains session files.

tmp

The temporary or scratch directory used for various storage reasons, like retired ID numbers, search paging

29. The Catalog Directory 113



files, sort tests, import temporary files, etc. This is the default set by ScratchDir. It can be redefined to be
located on another partition.

Interchange Documentation (Full)

29. The Catalog Directory 114



30. Page Templates
This section describes the files located in the Foundation demo.

30.1. Template File Locations

This diagram shows the directory and file structure used for the default Foundation 'templates' directory. The
base will be a directory with the name of your catalog, here called CATROOT.

    CATROOT/
    |
    |−−−−templates/
         |−−−−cart
         |−−−−components/
              |−−−−affiliate_receptor
              |−−−−best_horizontal
              |−−−−best_vertical
              |−−−−cart
              |−−−−cart_display
              |−−−−cart_tiny
              |−−−−category_vertical
              |−−−−cross_horizontal
              |−−−−cross_vertical
              |−−−−modular_buy
              |−−−−modular_update
              |−−−−none
              |−−−−promo
              |−−−−promo_horizontal
              |−−−−promo_vertical
              |−−−−random
              |−−−−random_horizontal
              |−−−−random_vertical
              |−−−−saved_carts_list_small
              |−−−−search_box_small
              |−−−−upsell
              |−−−−upsell_horizontal
              |−−−−upsell_vertical
         |−−−−default −−> foundation
         |−−−−foundation/
              |−−−−cart
              |−−−−fullwidth
              |−−−−leftonly
              |−−−−leftright
              |−−−−regions/
                   |−−−−LEFTONLY_BOTTOM
                   |−−−−LEFTONLY_TOP
                   |−−−−LEFTRIGHT_BOTTOM
                   |−−−−LEFTRIGHT_TOP
                   |−−−−NOLEFT_BOTTOM
                   |−−−−NOLEFT_TOP
              |−−−−simple
              |−−−−theme.cfg
         |−−−−fullwidth
         |−−−−leftonly
         |−−−−leftright
         |−−−−regions/
         |−−−−LEFTONLY_BOTTOM
         |−−−−LEFTONLY_TOP
         |−−−−LEFTRIGHT_BOTTOM

30. Page Templates 115



         |−−−−LEFTRIGHT_TOP
         |−−−−NOLEFT_BOTTOM
         |−−−−NOLEFT_TOP
         |−−−−sampledata/
         |−−−−computers/
              |−−−−images/
                   |−−−−items/
                        |−−−−generic.gif
                        |−−−−gift_certificate_large.gif
                        |−−−−yourimage.gif
                   |−−−−thumb/
                        |−−−−generic_thumb.gif
                        |−−−−gift_certificate.gif
                        |−−−−thumb.gif
              |−−−−products/
                   |−−−−inventory.txt
                   |−−−−merchandising.txt
                   |−−−−mv_metadata.asc
                   |−−−−options.txt
                   |−−−−pricing.txt
                   |−−−−products.txt
                   |−−−−userdb.txt
         |−−−−reports/
              |−−−−download/
                   |−−−−00352as.pdf
                   |−−−−11993ab.pdf
                   |−−−−22083da.pdf
                   |−−−−49503cg.pdf
                   |−−−−59330rt.pdf
                   |−−−−59402fw.pdf
                   |−−−−66548ch.pdf
                   |−−−−73358ee.pdf
                   |−−−−83491vp.pdf
                   |−−−−90773sh.pdf
              |−−−−products/
                   |−−−−mv_metadata.asc
                   |−−−−products.txt
                   |−−−−userdb.txt
         |−−−−tools/
              |−−−−etc/
                   |−−−−after.cfg
                   |−−−−before.cfg
              |−−−−images/
                   |−−−−items/
                        |−−−−os28004.gif
                        |−−−−os28005.gif
                        |−−−−os28006.gif
                        |−−−−os28007.gif
                        |−−−−os28008.gif
                        |−−−−os28009.gif
                        |−−−−os28011.gif
                        |−−−−os28044.gif
                        |−−−−os28057a.gif
                        |−−−−os28057b.gif
                        |−−−−os28057c.gif
                        |−−−−os28062.gif
                        |−−−−os28064.gif
                        |−−−−os28065.gif
                        |−−−−os28066.gif
                        |−−−−os28068.gif
                        |−−−−os28068a.gif
                        |−−−−os28068b.gif

Interchange Documentation (Full)

30. Page Templates 116



                        |−−−−os28069.gif
                        |−−−−os28070.gif
                        |−−−−os28072.gif
                        |−−−−os28073.gif
                        |−−−−os28074.gif
                        |−−−−os28075.gif
                        |−−−−os28076.gif
                        |−−−−os28077.gif
                        |−−−−os28080.gif
                        |−−−−os28081.gif
                        |−−−−os28082.gif
                        |−−−−os28084.gif
                        |−−−−os28085.gif
                        |−−−−os28086.gif
                        |−−−−os28087.gif
                        |−−−−os28108.gif
                        |−−−−os28109.gif
                        |−−−−os28110.gif
                        |−−−−os28111.gif
                        |−−−−os28112.gif
                        |−−−−os28113.gif
                        |−−−−os29000.gif
                   |−−−−thumb/
                        |−−−−gift_certificate.gif
                        |−−−−os28004_b.gif
                        |−−−−os28005_b.gif
                        |−−−−os28006_b.gif
                        |−−−−os28007_b.gif
                        |−−−−os28008_b.gif
                        |−−−−os28009_b.gif
                        |−−−−os28011_b.gif
                        |−−−−os28044_b.gif
                        |−−−−os28057a_b.gif
                        |−−−−os28057b_b.gif
                        |−−−−os28057c_b.gif
                        |−−−−os28062_b.gif
                        |−−−−os28064_b.gif
                        |−−−−os28065_b.gif
                        |−−−−os28066_b.gif
                        |−−−−os28068_b.gif
                        |−−−−os28068a_b.gif
                        |−−−−os28068b_b.gif
                        |−−−−os28069_b.gif
                        |−−−−os28070_b.gif
                        |−−−−os28072_b.gif
                        |−−−−os28073_b.gif
                        |−−−−os28074_b.gif
                        |−−−−os28075_b.gif
                        |−−−−os28076_b.gif
                        |−−−−os28077_b.gif
                        |−−−−os28080_b.gif
                        |−−−−os28081_b.gif
                        |−−−−os28082_b.gif
                        |−−−−os28084_b.gif
                        |−−−−os28085_b.gif
                        |−−−−os28086_b.gif
                        |−−−−os28087_b.gif
                        |−−−−os28108_b.gif
                        |−−−−os28109_b.gif
                        |−−−−os28110_b.gif
                        |−−−−os28111_b.gif
                        |−−−−os28112_b.gif

Interchange Documentation (Full)

30. Page Templates 117



                        |−−−−os28113_b.gif
                        |−−−−os29000_b.gif
               |−−−−products/
                    |−−−−affiliate.txt
                    |−−−−area.txt
                    |−−−−cat.txt
                    |−−−−inventory.txt
                    |−−−−merchandising.txt
                    |−−−−mv_metadata.asc
                    |−−−−options.txt
                    |−−−−orderline.txt
                    |−−−−pricing.txt
                    |−−−−products.txt
                    |−−−−transactions.txt
                    |−−−−userdb.txt

30.2. Themes

This section explains how themes are defined in Interchange via the STYLE variable and the theme
configuration file, theme.cfg.

30.2.1. STYLE

The STYLE variable in CATROOT/products/variable.txt indicates the template style to be used as the theme
for the catalog; the appropriate templates for that theme are found in CATROOT/templates/__STYLE__/. (To
change the value of the STYLE variable, either edit variable.txt directly or use the table editor feature of the
admin interface.)

The default theme for Interchange is the Foundation demo; hence, the STYLE variable is assigned the value
'Foundation' in variable.txt. The theme is defined in catalog.cfg as follows (line numbers added):

    # Here we set up the catalog theme.

  1 ParseVariables Yes

  2 ifndef STYLE
  3 Variable STYLE default
  4 endif
  5 include templates/__STYLE__/theme.cfg

Variables that make up the look and feel of the STYLE (theme) are defined in the file
CATROOT/templates/foundation/theme.cfg, which is read by Interchange in line 5 above.

30.2.2. theme.cfg

The file CATROOT/templates/foundation/theme.cfg serves three purposes:

It defines the THEME and THEME_IMG_DIR variables,1. 
It defines a cascading style sheet for the theme, and2. 
It defines the location of region templates according to the traffic settings for the Interchange daemon.3. 

The THEME variable is used to set the location of the region templates in the traffic settings section of the
theme.cfg file. It is also used in the cart template definition file (CATROOT/templates/cart) to set the path of
an image. The THEME_IMG_DIR variable is used to set image paths in the template region files and the

Interchange Documentation (Full)

30.2. Themes 118



template component files.

The look and feel of the Foundation theme are defined primarily in the cascading style sheet specified in the
theme.cfg file. This

The Interchange TRAFFIC setting, defined system−wide in interchange.cfg, is described in the
??document??. The settings in theme.cfg pertain to the location of region templates for the high and low
traffic settings. For example, if you need to define a separate set of high traffic templates, you would change
the ConfigDir variable in theme.cfg to point to the directory containing those templates.

30.3. Template Definition Files

The template definition files store the name and description of the template as well as components and options
for that template.

    templates/cart
    templates/fullwidth
    templates/leftonly
    templates/leftright

    templates/foundation/cart
    templates/foundation/fullwidth
    templates/foundation/leftonly
    templates/foundation/leftright
    templates/foundation/simple

30.3.1. Template Walkthrough −− leftonly

This section is best read while viewing the file CATROOT/templates/leftonly and the 'Edit Page' page in the
Content Editor of the Interchange Administration Tool.

Looking at the example template definition file, all lines located between the [comment] and [/comment] tags
(lines 1 and 53) control what is available in the Edit Page screen of the Administration Tool.

Lines 2−5: Template specification

    2  ui_template: Yes
    3  ui_template_name: leftonly
    4  ui_template_layout: LEFTONLY_TOP, UI_CONTENT, LEFTONLY_BOTTOM
    5  ui_template_description: Page with top/left areas.

Line 2 indicates that this file is a template for the user interface. Line 3 names the template, while Line 4
indicates the regions that comprise the template and that will eventually make up the new page that is created
from the template. Line 5 provides a description used to identify the template when it appears in a Select
Template pull−down menu on the Edit Page of the Administration Tool. This description can be changed or
modified to better describe a new template or a template that is created from the stock templates provided with
Interchange.

Lines 7−8: Break

    7  break:
    8          widget: break

Interchange Documentation (Full)

30.3. Template Definition Files 119



This code creates a separation line in the Edit Page between sets of options. In the default Interchange
installation the line is grey, but the color can be changed. Note −− Changing this color applies the change to
any catalog served by Interchange.

Lines 10−11: Page Title

    10 page_title:
    11         description: Page title

This code tells Interchange to display a text field on the Edit Page for entering the page title ('Title of New
Page' in this example). The value entered is assigned to the scratch variable page_title and is set as a default
value at the bottom of the template definition file using the following ITL:

    54 [set page_title][set]

which, in turn, sets the scratch variable on the new page using the tag

    [set page_title]Title of New Page[set]

The scratch variable page_title is parsed by the following code in the region template specified in the template
definition file and called in the new page:

       <title>[scratch page_title]</title>

Lines 13−15: Page Banner

    13 page_banner:
    14         description: Page banner
    15         help: Defaults to page title

Assigns a textual title for the page to the scratch variable page_banner, which is assigned by the following
ITL:

    55 [set page_banner][set]

The scratch variable page_banner is set on the new page using the tag

    [set page_banner]Banner of New Page[set]

The scratch variable can be parsed in the region template by this code:

    [either]
        [scratch page_banner]
    [or]
        [scratch page_title]
    [/either]

This results in the page banner being displayed if defined. Otherwise, the page title is used.

Lines 17−20: Members Only

    17 members_only:
    18         options: 1=Yes,0=No*
    19         widget: radio

Interchange Documentation (Full)

30.3. Template Definition Files 120



    20         description: Members only

This creates a radio−button form element on the Edit Page with the user can specify whether the page can be
accessed if a visitor is logged in (Yes) or not (No). The default is indicated by an asterisk.

The scratch variable members_only is assigned by the ITL code

    56 [set members_only][set]

and set on the new page using the tag

       [set members_only]0[/set]

if the page can be accessed without logging in or

       [set members_only]1[/set]

if it can not.

The members_only function is handled by the following code within each region template file:

    [if scratch members_only]
      [set members_only][/set]
      [if !session logged_in]
        [set mv_successpage]@@MV_PAGE@@[/set]
        [bounce page=login]
      [/if]
    [/if]

This code says that if "members only" is set to yes, and the visitor is logged in, to display the page. Otherwise,
redirect the visitor to the login page.

Lines 22−23: Break

    22 break1:
    23         widget: break

Another separation line.

Lines 25−28: Horizontal Before Component

    25 component_before:
    26         options: =none, best_horizontal=Best Sellers, cross_horizontal=Cross sell, \
                promo_horizontal=Promotion, random_horizontal=Random items, \
                upsell_horizontal=Upsell
    27         widget: select
    28         description: Component before content

This allows the inclusion of a defined component (included in the CATROOT/templates/components
directory) to be displayed before, or above, the page's content. It provides a pull−down menu on the Edit Page
displaying the available components. The components, identified here on line 26, can be assigned a name via
the value=name convention.

The scratch variable component_before is assigned in the template definition file by the ITL code

Interchange Documentation (Full)

30.3. Template Definition Files 121



    57 [set component_before][set]

It is called with the following code within the LEFTRIGHT_TOP, LEFTONLY_TOP, and NOLEFT_TOP
region templates:

    [if scratch component_before]
      [include file="templates/components/[scratch component_before]"]
    [/if]

Lines 30−33: Horizontal After Component

    30 component_after:
    31         options: =none, best_horizontal=Best Sellers, cross_horizontal=Cross sell, \
                promo_horizontal=Promotion, random_horizontal=Random items, \
                upsell_horizontal=Upsell
    32         widget: select
    33         description: Component after content

Similar to component_before, this allows the inclusion of a defined component after, or below, the page's
content.

The scratch variable component_before is assigned in the template definition file by the ITL code

    58 [set component_after][set]

It is called with the following code within the LEFTRIGHT_BOTTOM and LEFTONLY_BOTTOM region
templates:

    [if scratch component_after]
      [include file="templates/components/[scratch component_after]"]
    [/if]

Lines 35−38: Horizontal Item Width

    35 component_hsize:
    36         options: 1,2,3*
    37         widget: select
    38         description: Component items horizontal

This setting allows you to choose how many items the horizontal components display. For example, the
horizontal best sellers component ("best_horizontal") uses this setting to randomly select the best sellers.
Notice the default is 3 if nothing is defined. It is called by the following code in the promo_horizontal and
random_horizontal components in the Foundation demo.

    random="[either][scratch component_hsize][or]2[/either]"

Lines 40−45: Before/After Banner

    40 hbanner:
    41         options: =−−custom−−, Also see..., Best Sellers, New items, \
                Some of our fine products, Specials, You might also like
    42         widget: move_combo
    43         width: 40
    44         description: Before/after Banner
    45         help: Banner for Before/after component

Interchange Documentation (Full)

30.3. Template Definition Files 122



Allows a title for the horizontal components to be defined to be displayed in a header above the component's
items. It is called with the [scratch hbanner] tag and used in the Foundation demo in the random_horizontal
component.

Lines 47−51: Special Tag

    47 hpromo_type:
    48         options: specials=Specials, new=New items
    49         widget: select
    50         description: Special tag
    51         help: Only for a horizontal Promotion

This setting is only viable when a promotion is used for a horizontal component. It tells the promotional
component which row(s) to evaluate in the merchandising table for display within the component. This
setting, used in the promo_horizontal component, typically correlates to the featured column of the
merchandising table as follows:

    [query arrayref=main
           sql="
            SELECT sku,timed_promotion,start_date,finish_date
            FROM merchandising
            WHERE featured = '[scratch hpromo_type]'
            "]
    [/query]

30.4. Edit Page Function

Creating a page with the following specifications using the Edit Page function results in the HTML and ITL
code displayed below.

Specifications:

    Template:                    Page with top/left areas.
    Page title:                  test
    Page banner:                 test
    Members only:                No
    Component before content:    Best Sellers
    Component after content:     Random items
    Component items horizontal:  3
    Before/after Banner:         New items
    Special tag:                 Specials
    Content:                     <P>My first HTML/ITL page!

Resulting code:

    [comment]
    ui_template: Yes
    ui_template_name: leftonly
    [/comment]

    [set hbanner]New items[/set]
    [set page_title]test[/set]
    [set hpromo_type]specials[/set]
    [set component_hsize]3[/set]
    [set page_banner]test[/set]
    [set members_only]0[/set]

Interchange Documentation (Full)

30.4. Edit Page Function 123



    [set component_before]best_horizontal[/set]
    [set component_after]random_horizontal[/set]
    @_LEFTONLY_TOP_@

    <!−− BEGIN CONTENT −−>
    <P>My first HTML/ITL page!
    <!−− END CONTENT −−>

    @_LEFTONLY_BOTTOM_@

An important point demonstrated here is the inclusion of the region templates LEFTONLY_TOP and
LEFTONLY_BOTTOM through the @_VARIABLE_NAME_@ notation. These are included because of line
4 of the leftonly template definition file:

    4  ui_template_layout: LEFTONLY_TOP, UI_CONTENT, LEFTONLY_BOTTOM

However, understand that you are free to change the region templates used in the file by editing the file itself
or, better yet, using an existing region as a starting point for a region of your own design.

The next section explains the structure of region templates.

30.5. Region Templates

Interchange region templates (or "regions") are portions of HTML and ITL that are included in pages within a
catalog. Using regions, along with the cascading style sheet defined in theme.cfg, allows you to control the
look and feel of specific parts of each catalog page.

The default Foundation region set, found in CATROOT/templates/foundation/regions, includes the following:

    LEFTONLY_TOP
    LEFTONLY_BOTTOM
    LEFTRIGHT_TOP
    LEFTRIGHT_BOTTOM
    NOLEFT_TOP
    NOLEFT_BOTTOM

The Foundation demo uses the Variable feature extensively to simplify hand page editing. Basically, a
Variable is a define that permits the substitution of text for a simple __VARIABLE__ string in a page. For
example, in the test page above, the variables LEFTONLY_TOP and LEFTONLY_BOTTOM correspond to
region templates that provide a logobar, menubar, leftside menu, and copyright footer. Content, consisting of
HTML and ITL, is placed within the BEGIN and END CONTENT comments. The following illustration
shows how this looks on the page:

   +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
   |                      LOGOBAR                           |
   |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
   |                      MENUBAR                           |
   |−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
   |              |                                         |
   |              |                                         |
   |              |                                         |
   |   LEFTSIDE   |          This is your content           |
   |              |                                         |
   |              |                                         |
   |              |                                         |
   |              +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|

Interchange Documentation (Full)

30.5. Region Templates 124



   |              |               COPYRIGHT                 |
   +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

In this diagram, LEFTONLY_TOP contributes the LEFTSIDE, LOGOBAR, and MENUBAR sections, while
LEFTONLY_BOTTOM contributes the COPYRIGHT section.

The following subsections provide an inventory of where each of the region templates, included with the
Foundation demo, are used in the pages and template definition files that make up the catalog.

30.5.1. LEFTONLY_TOP

The LEFTONLY_TOP template region is used in the following template pages:

    pages/aboutus.html
    pages/account.html
    pages/affiliate/index.html
    pages/affiliate/login.html
    pages/canceled.html
    pages/contact.html
    pages/customerservice.html
    pages/flypage.html
    pages/help.html
    pages/login.html
    pages/logout.html
    pages/modular_modify.html
    pages/new_account.html
    pages/ord/basket.html
    pages/privacypolicy.html
    pages/process_return.html
    pages/quantity.html
    pages/query/check_orders.html
    pages/query/order_detail.html
    pages/query/order_return.html
    pages/returns.html
    pages/saved_carts.html
    pages/ship_addresses.html
    pages/ship_addresses_added.html
    pages/ship_addresses_removed.html
    pages/stock−alert−added.html
    pages/stock−alert.html

The LEFTONLY_TOP template region is used in the following templates:

    templates/foundation/cart
    templates/foundation/leftonly
    templates/foundation/simple

30.5.1.1. Region Template Walkthrough −− LEFTONLY_TOP

     1  <!−− BEGIN LEFTONLY_TOP −−>
     2  [if scratch members_only]
     3      [set members_only][/set]
     4      [if !session logged_in]
     5      [set mv_successpage]@@MV_PAGE@@[/set]
     6      [bounce page=login]
     7      [/if]
     8  [/if]
     9

Interchange Documentation (Full)

30.5.1. LEFTONLY_TOP 125



    10  <html>
    11  <head>
    12    <title>[scratch page_title]</title>
    13    __THEME_CSS__
    14  </head>
    15
    16  <body marginheight="0" marginwidth="0">
    17
    18  <!−−− top left and right logo −−−>
    19  <table width="100%" border="0" cellspacing="0" cellpadding="0">
    20  <tr>
    21    <td align="left" valign="middle" class="maincontent">
    22      &nbsp;<img src="__THEME_IMG_DIR____LOGO__">
    23    </td>
    24    <td align="right" valign="middle" class="maincontent">
    25      <img width="174" height="60" src="__THEME_IMG_DIR__logo2.gif">&nbsp;
    26    </td>
    27  </tr>
    28  </table>
    29
    30  <!−−− menu bar along the top −−−>
    31  <table width="100%" border="0" cellspacing="0" cellpadding="0">
    32  <tr>
    33    <td width="100%" class="menubar">
    34      <a href="[area index]"><img name="Home" border="0" src="__THEME_IMG_DIR__home.gif"></a>
    35        <img src="__THEME_IMG_DIR__sep.gif">
    36      <a href="[area login]">
    37      [if session logged_in]
    38        <img alt="Log Out" border="0" src="__THEME_IMG_DIR__logout.gif"></a>
    39      [else]
    40        <img alt="Log In" border="0" src="__THEME_IMG_DIR__login.gif"></a>
    41      [/else]
    42      [/if]
    43        <img src="__THEME_IMG_DIR__sep.gif">
    44      <a href="[area ord/basket]"><img alt="Your Cart" border="0" src="__THEME_IMG_DIR__cart.gif"></a>
    45        <img src="__THEME_IMG_DIR__sep.gif">
    46      <a href="[area ord/checkout]"><img alt="Check Out" border="0" src="__THEME_IMG_DIR__checkout.gif"></a>
    47        <img src="__THEME_IMG_DIR__sep.gif">
    48      <a href="[area customerservice]"><img alt="Customer Service" border="0" src="__THEME_IMG_DIR__service.gif"></a>
    49        <img src="__THEME_IMG_DIR__sep.gif">
    50      <a href="[area aboutus]"><img alt="About Us" border="0" src="__THEME_IMG_DIR__about.gif"></a>
    51    </td>
    52  </tr>
    53  </table>
    54
    55  <!−−− left category column, main content column, and right special column −−−>
    56  <table width="100%" border="0" cellspacing="0" cellpadding="0">
    57  <tr>
    58    <td width="20%" valign="top" align="left" class="categorybar">
    59      <!−−Left Sidebar−−>
    60      <table width="100%" border="0" cellspacing="0" cellpadding="0">
    61        [include file="templates/components/[control component none]"][control]
    62        [include file="templates/components/[control component none]"][control]
    63        [include file="templates/components/[control component none]"][control]
    64      </table>
    65    </td>
    66    <td width="80%" valign="top" align="center" class="maincontent">
    67      [include file="templates/components/[control component none]"][control]
    68

Interchange Documentation (Full)

30.5.1. LEFTONLY_TOP 126



30.5.2. LEFTONLY_BOTTOM

The LEFTONLY_BOTTOM template region is used in the following template pages:

    pages/aboutus.html
    pages/account.html
    pages/affiliate/index.html
    pages/affiliate/login.html
    pages/canceled.html
    pages/contact.html
    pages/customerservice.html
    pages/flypage.html
    pages/help.html
    pages/login.html
    pages/logout.html
    pages/modular_modify.html
    pages/new_account.html
    pages/ord/basket.html
    pages/privacypolicy.html
    pages/process_return.html
    pages/quantity.html
    pages/query/check_orders.html
    pages/query/order_detail.html
    pages/query/order_return.html
    pages/returns.html
    pages/saved_carts.html
    pages/ship_addresses.html
    pages/ship_addresses_added.html
    pages/ship_addresses_removed.html
    pages/stock−alert−added.html
    pages/stock−alert.html

The LEFTONLY_BOTTOM template region is used in the following templates:

    templates/foundation/cart
    templates/foundation/leftonly
    templates/foundation/simple

30.5.3. LEFTRIGHT_TOP

The LEFTRIGHT_TOP template region is used in the following template pages:

    pages/browse.html
    pages/index.html
    pages/results.html
    pages/results_big.html
    pages/swap_results.html

The LEFTRIGHT_TOP template region is used in the following templates:

    templates/foundation/leftright

30.5.4. LEFTRIGHT_BOTTOM

The LEFTRIGHT_BOTTOM template region is used in the following template pages:

    pages/browse.html

Interchange Documentation (Full)

30.5.2. LEFTONLY_BOTTOM 127



    pages/index.html
    pages/results.html
    pages/results_big.html
    pages/swap_results.html

The LEFTRIGHT_BOTTOM template region is used in the following templates:

    templates/foundation/leftright

30.5.5. NOLEFT_BOTTOM

The NOLEFT_BOTTOM template region is used in the following template pages:

    pages/ord/checkout.html
    pages/splash.html

The NOLEFT_BOTTOM template region is used in the following templates:

    templates/foundation/fullwidth

30.5.6. NOLEFT_TOP

The NOLEFT_TOP template region is used in the following template pages:

    pages/ord/checkout.html
    pages/splash.html

The NOLEFT_TOP template region is used in the following templates:

    templates/foundation/fullwidth

30.6. Template Page List

/home/ic/catalogs/ft/pages/:

    aboutus.html
    account.html
    browse.html
    canceled.html
    change_password.html
    contact.html
    customerservice.html
    deliver.html
    flypage.html
    help.html
    index.html
    login.html
    logout.html
    lost_password.html
    modular_modify.html
    new_account.html
    privacypolicy.html
    process_return.html
    quantity.html
    results_big.html
    results_either.html

Interchange Documentation (Full)

30.5.5. NOLEFT_BOTTOM 128



    results.html
    returns.html
    saved_carts.html
    ship_addresses_added.html
    ship_addresses.html
    ship_addresses_removed.html
    splash.html
    stock−alert−added.html
    stock−alert.html
    swap_results.html

/home/ic/catalogs/ft/pages/admin/report_def:

    Order%20Status.html
    Products%20to%20edit.html

/home/ic/catalogs/ft/pages/admin/reports:

    Order%20Status.html
    Products%20to%20edit.html

/home/ic/catalogs/ft/pages/affiliate:

    index.html
    login.html

/home/ic/catalogs/ft/pages/ord:

    basket.html
    checkout.html

/home/ic/catalogs/ft/pages/query:

    check_orders.html
    get_password.html
    order_detail.html
    order_return.html

30.7. Special Page List

/home/ic/catalogs/ft/special_pages/:

    badsearch.html
    canceled.html
    cc_not_valid.html
    confirmation.html
    failed.html
    interact.html
    missing.html
    needfield.html
    nomatch.html
    noproduct.html
    notfound.html
    order_security.html
    reconfig.html
    sec_faq.html
    security.html

Interchange Documentation (Full)

30.7. Special Page List 129



    violation.html

30.8. Components

Added new [control] and [control−set] tags to set series of Scratch− like option areas. Used for
components in UI content editing.

• 

Interchange components are portions of HTML and ITL that are included in pages within a catalog depending
on options set in the Administration Tool. The default component set includes the following:

    affiliate_receptor
    best_horizontal
    best_vertical
    cart
    cart_display
    cart_tiny
    category_vertical
    cross_horizontal
    cross_vertical
    modular_buy
    modular_update
    none
    promo
    promo_horizontal
    promo_vertical
    random
    random_horizontal
    random_vertical
    saved_carts_list_small
    search_box_small
    upsell
    upsell_horizontal
    upsell_vertical

/home/ic/catalogs/ft/templates/components:

30.8.1. affiliate_receptor

Not used in Foundation demo

30.8.2. best_horizontal

The best_horizontal component is used in the following templates:

    templates/foundation/cart
    templates/foundation/leftonly
    templates/foundation/leftright

Not used in Foundation demo pages

30.8.3. best_vertical

The best_vertical component is used in the following template:

    templates/foundation/leftright

Interchange Documentation (Full)

30.8. Components 130



Not used in Foundation demo pages

30.8.4. cart

The cart component is used in the following page:

    pages/ord/basket.html

30.8.5. cart_display

The cart_display component creates a small shopping cart that is displayed on the search results page
(pages/results.html). It is displayed after an item in a list of results from a search is added to the shopping cart.
cart_display is called in results.html by the following include statement:

    [include file="templates/components/cart_display"]

The cart_display component is used in the following pages:

    pages/results.html

30.8.5.1. Component Walkthrough −− cart_display

The remainder of this section is best read in conjunction with the file
CATROOT/templates/components/cart_display in a text editor.

Lines 1−6: Component Specification

     1  [comment]
     2  ui_component: cart_display
     3  ui_component_group: info
     4  ui_component_label: Smaller cart for display in content area
     5
     6  [/comment]
     7

These lines control what is shown in the Edit page screen of the admin interface.

     8  <!−− BEGIN COMPONENT [control component cart_display] −−>

Line 8 is an HTML comment noting the start of the code for the component. (Note that this can serve as a
useful debugging tool to help you locate the component in the resulting HTML generated by Interchange
when you view the source of a page loaded in the browser.)

     9  [if items]

Line 9 checks to see if there are items in the shopping basket. If there are, the remaining code up to the closing
[/if] tag on line 64 is executed. If not, Interchanges continues executing the remaining code in results.html (the
file that calls the cart_display component).

    10  <center>
    11    <table width="95%" border="0" cellspacing="0" cellpadding="0">
    12      <TR class="contentbar2" VALIGN=TOP>
    13        <td align=center class="contentbar2">Action</td>

Interchange Documentation (Full)

30.8.4. cart 131



    14        <td class="contentbar2">
    15          SKU
    16        </td>
    17        <td class="contentbar2">
    18          Description
    19        </td>
    20        <td class="contentbar2">
    21          Quantity
    22        </td>
    23        <td class="contentbar2">
    24          Price
    25        </td>
    26        <td class="contentbar2">
    27          Extension
    28        </td>
    29      </TR>

Line 10 centers the table started in line 11. Lines 12−29 create a header row in the shopping cart consisting of
the header titles Action, SKU, Description, Quantity, Price, and Extension.

    30      <TBODY>
    31  [item−list]
    32

Line 30 defines the remainder of the table as a section while the [item−list] tag on line 31 tells Interchange to
execute the code up to the closing tag ([/item−list] on line 59 for each item the customer has ordered so far.

    33      <tr class="[item−alternate 2]maincontent[else]contentbar1[/else][/item−alternate]">
    34        <td align=center valign=top>
    35          [page ord/basket]edit</A>
    36        </TD>
    37        <td valign=top>[item−code]</TD>
    38        <td valign=top>[page [item−code]][item−description]</A>
    39        </TD>
    40

Line 33 begins the next row in the table. The [item−alternate] tag provided as the value of the class attribute
tells Interchange to alternate between displaying the rows according to the "maincontent" and "contentbar1"
styles (gray and white, respectively).

Lines 34−36 create a link to the shopping cart (basket.html) where the customer can remove or change the
quantity of the item ordered.

Line 37 displays the SKU of the item. Lines 38 and 39 provide a link to the product display page
(flypage.html) for the item. The [item−description] tag providing the content of the [page] tag enables the
item's name to be displayed as the link to the product display page.

    41  [if−item−modifier gift_cert]
    42        <TD ALIGN=CENTER><small>Amount of gift:</small></TD>
    43        <TD ALIGN=CENTER>[item−quantity]</TD>
    44        <TD ALIGN=right>
    45          [item−subtotal]
    46        </TD>
    47  [else]
    48        <TD ALIGN=CENTER>[item−quantity]</TD>
    49        <TD ALIGN=right>
    50          [item−price]
    51        </TD>

Interchange Documentation (Full)

30.8.4. cart 132



    52        <TD ALIGN=right>
    53          [item−subtotal]
    54        </TD>
    55  [/else]
    56  [/if−item−modifier]
    57      </TR>
    58

Line 41 checks whether the item is a gift certificate. If it is it displays "Amount of gift:" and the
[item−quantity] (number of gift certificates, in this case) under the headings "Quantity" and "Price",
respectively. Otherwise, lines 48 through 50 display the quantity and price of the item ordered. Lines 45 or 53
(depending on whether the item is a gift certificate) display the item subtotal (quantity multiplied by price) for
the item under the heading "Extension".

    59  [/item−list]
    60  </TBODY>
    61  </table>
    62  </FORM>
    63  </center>
    64  [/if]
    65
    66  <!−− END COMPONENT [control component cart_display] −−>

Lines 59 through 64 close out the tags for the component, and line 66 indicates the end of the component
code.

30.8.6. cart_tiny

The cart_tiny component is used in the following pages:

    pages/account.html
    pages/browse.html
    pages/canceled.html
    pages/customerservice.html
    pages/flypage.html
    pages/help.html
    pages/index.html
    pages/logout.html
    pages/modular_modify.html
    pages/new_account.html
    pages/privacypolicy.html
    pages/process_return.html
    pages/quantity.html
    pages/query/check_orders.html
    pages/query/order_detail.html
    pages/query/order_return.html
    pages/saved_carts.html
    pages/ship_addresses.html

30.8.7. category_horizontal

Not used in Foundation demo pages or templates.

Interchange Documentation (Full)

30.8.6. cart_tiny 133



30.8.8. category_vertical

The category_vertical component provides a listing of all products in the catalog, organized by prod_group
(e.g., Hand Tools, Ladders). category_vertical is usually displayed in the LEFTSIDE section of the page,
under the search_box_small component.

The category_vertical component is used in the following pages:

    pages/aboutus.html
    pages/account.html
    pages/affiliate/index.html
    pages/affiliate/login.html
    pages/browse.html
    pages/canceled.html
    pages/contact.html
    pages/customerservice.html
    pages/flypage.html
    pages/help.html
    pages/index.html
    pages/login.html
    pages/logout.html
    pages/modular_modify.html
    pages/new_account.html
    pages/ord/basket.html
    pages/privacypolicy.html
    pages/process_return.html
    pages/quantity.html
    pages/query/check_orders.html
    pages/query/order_detail.html
    pages/query/order_return.html
    pages/results.html
    pages/results_big.html
    pages/returns.html
    pages/saved_carts.html
    pages/ship_addresses.html
    pages/stock−alert−added.html
    pages/stock−alert.html
    pages/swap_results.html

30.8.8.1. Component Walkthrough −− category_vertical

The remainder of this section is best read while viewing the file
CATROOT/templates/components/cart_display in a text editor.

Lines 1−6: Component Specification

     1  [comment]
     2  ui_component: category_vertical
     3  ui_component_group: Navigation
     4  ui_component_label: Vertical category list
     5
     6  page_class:
     7          label: Page class
     8          widget: select
     9          lookup: which_page
    10          db: area
    11          help: Defines which sets of items should be displayed
    12          advanced: 1

Interchange Documentation (Full)

30.8.8. category_vertical 134



    13
    14  set_selector:
    15          label: Page area selector
    16          widget: select
    17          db: area
    18          lookup: sel
    19          help: Defines which sets of items should be displayed
    20          advanced: 1
    21  [/comment]
    22

These lines control what is shown in the Edit page screen of the Administration Tool.

    23  <tr><td align="center" class="categorybar">
    24    <br>
    25    <table>
    26
    27  <!−− BEGIN COMPONENT [control component category_vertical] −−>

Lines 23−25 set up the row and table within that row that will hold the vertical category list. Line 27 identifies
the start of the code for the list.

    28  [loop
    29          prefix=box
    30          search="
    31                  fi=area
    32                  st=db
    33                  tf=sort
    34                  ac=0
    35                  ac=0
    36                  co=yes
    37
    38                  sf=sel
    39                  op=eq
    40                  se=[control set_selector left]
    41
    42                  sf=which_page
    43                  op=rm
    44                  se=[control page_class all|@@MV_PAGE@@]
    45  "]
    46

Lines 28−45 build a list of product categories obtained through a search of the area table.

    47    <tr>
    48      <td valign="top" class="categorybar">
    49        <b>[box−exec bar_link]area[/box−exec]</b>
    50      </td>
    51    </tr>
    52    <tr>
    53      <td valign="top" class="categorybar">
    54
    55  [set found_cat][/set]
    56  [loop prefix=cat
    57          search="
    58                  fi=cat
    59                  st=db
    60                  tf=sort
    61                  tf=name
    62                  rf=code,name

Interchange Documentation (Full)

30.8.8. category_vertical 135



    63                  sf=sel
    64                  se=[box−code]
    65          "
    66          ]
    67        &nbsp;&nbsp;[cat−exec bar_link]cat[/cat−exec]<BR>
    68  [/loop]
    69
    70      </td>
    71    </tr>
    72  [/loop]
    73
    74    </table>
    75    <br>
    76  </td></tr>
    77
    78  <!−− END COMPONENT [control component category_vertical] −−>

Lines 47−78 generate a list of links based on the products and product categories identified in the search.

30.8.9. cross_horizontal

The cross_horizontal component is used in the following pages:

    pages/browse.html
    pages/index.html
    pages/results.html
    pages/results_big.html

The cross_horizontal component is used in the following templates:

    templates/foundation/cart
    templates/foundation/leftonly
    templates/foundation/leftright

30.8.10. cross_vertical

Not used in Foundation demo pages.

The cross_horizontal component is used in the following templates:

    templates/foundation/leftright

30.8.11. modular_buy

The modular_buy component is used in the following pages:

    pages/flypage.html

The modular_buy component is used in the following templates:

    templates/components/modular_update

Interchange Documentation (Full)

30.8.9. cross_horizontal 136



30.8.12. modular_update

The modular_update component is used in the following pages:

    pages/modular_modify.html

30.8.13. promo

The promo component is used in the following pages:

    pages/contact.html
    pages/results_big.html

30.8.14. promo_horizontal

The promo_horizontal component is used in the following pages:

    pages/aboutus.html
    pages/canceled.html

The promo_horizontal component is used in the following templates:

    templates/foundation/cart
    templates/foundation/leftonly
    templates/foundation/leftright

30.8.15. promo_vertical

Not used in Foundation demo pages.

The promo_horizontal component is used in the following templates:

    templates/foundation/leftright

30.8.16. random

The random component is used in the following pages:

    pages/browse.html
    pages/index.html
    pages/ord/basket.html
    pages/privacypolicy.html
    pages/process_return.html
    pages/results.html
    pages/swap_results.html

30.8.17. random_horizontal

Not used in Foundation demo pages.

The random_horizontal component is used in the following templates:

Interchange Documentation (Full)

30.8.12. modular_update 137



    templates/foundation/cart
    templates/foundation/leftonly
    templates/foundation/leftright

30.8.18. random_vertical

Not used in Foundation demo pages.

The random_vertical component is used in the following templates:

    templates/foundation/leftright

30.8.19. saved_carts_list_small

The saved_carts_list_small component is used in the following pages:

    pages/ord/basket.html

30.8.20. search_box_small

The search_box_small component is used in the following pages:

    pages/aboutus.html
    pages/account.html
    pages/affiliate/index.html
    pages/affiliate/login.html
    pages/browse.html
    pages/canceled.html
    pages/contact.html
    pages/customerservice.html
    pages/flypage.html
    pages/help.html
    pages/index.html
    pages/login.html
    pages/logout.html
    pages/modular_modify.html
    pages/new_account.html
    pages/ord/basket.html
    pages/privacypolicy.html
    pages/process_return.html
    pages/quantity.html
    pages/query/check_orders.html
    pages/query/order_detail.html
    pages/query/order_return.html
    pages/results.html
    pages/results_big.html
    pages/returns.html
    pages/saved_carts.html
    pages/ship_addresses.html
    pages/stock−alert−added.html
    pages/stock−alert.html
    pages/swap_results.html

The search_box_small component is used in the following templates:

    templates/regions/LEFTONLY_TOP
    templates/regions/LEFTRIGHT_TOP

Interchange Documentation (Full)

30.8.18. random_vertical 138



30.8.21. upsell

Not used in Foundation demo pages.

30.8.22. upsell_horizontal

The upsell_horizontal component is used in the following pages:

    pages/flypage.html

The upsell_horizontal component is used in the following templates:

    templates/foundation/cart
    templates/foundation/leftonly
    templates/foundation/leftright

30.8.23. upsell_vertical

Not used in Foundation demo pages.

The upsell_vertical component is used in the following templates:

    templates/foundation/leftright

Interchange Documentation (Full)

30.8.21. upsell 139



31. The Database Tables
Interchange catalogs are centralized around the database. You can alter any of the standard databases, add new
databases, or remove unneeded databases

The foundation catalog includes the following tables, organized here by content:

Your site content data
area.txt
cat.txt
downloadable.txt
merchandising.txt
options.txt
pricing.txt
products.txt

• 

Customer data
access.asc
gift_certs.txt
userdb.txt

• 

Transaction−related data
inventory.txt
orderline.txt
order_returns.txt
transactions.txt

• 

Third−party relationship data
affiliate.txt
banner.txt

• 

Site administrative data
component.txt
files.txt
ichelp.txt
icmenu.txt
locale.txt
mv_metadata.asc
route.txt
shipping.asc
variable.txt

• 

Shipping and tax
2ndDayAir.csv
450.csv
country.txt
Ground.csv
NextDayAir.csv
salestax.asc
state.txt

• 

You may also see symbolic links pointing to index tables, for example products.category.txt linking
to products.txt.10. These are automatically generated indexes, in this case into the products table to speed
category searches. See Dictionary Indexing With INDEX in the database documentation for details about
auto−indexing of text databases.

31. The Database Tables 140



The following dictionary lists and describes each table used in the Foundation demo.

31.1. 2ndDayAir.csv

Shipping table from UPS (http://www.ups.com/using/services/rave/rate/). This and all shipping tables should
be updated periodically.

31.2. 450.csv

Shipping table from UPS for 450xx Zip Code origin. You will probably need to get your own from the UPS
site (http://www.ups.com/using/services/rave/rate/) and clip the headers.

31.3. Ground.csv

Shipping table from UPS (http://www.ups.com/using/services/rave/rate/).

31.4. NextDayAir.csv

Shipping table from UPS (http://www.ups.com/using/services/rave/rate/).

31.5. access.asc

Administrative access table. This table is used by the Administration Tool. For more description on these
fields, see the Interchange Administration Tool guide.

Fields

Field Description

username Login name or group name (group names begin with ':')

password Hashed password

name Administrator's name

last_login Last login time

super Set to 1 if superuser

yes_tables Tables the user may edit

no_tables Tables the user may not edit

upload No Description

acl No Description

export No Description

edit No Description

pages No Description

files No Description

config No Description

reconfig No Description

groups Administrator's group memberships

Interchange Documentation (Full)

31.1. 2ndDayAir.csv 141



meta No Description

no_functions Explicitly disallowed functions

yes_functionsAllowed functions with permission flags

table_control No Description

personal_css Administrator's personal CSS (for admin screen presentation)

31.5.1. username

Example Data

   :ausers
   :busers
   BigUser
   goody
   ic

The login name for an administrator or an administration group. Group names are prefixed with a colon (':').

31.5.2. password

Example Data

   Ksjs65bMNLjPQ

Hashed password.

31.5.3. name

Example Data

   Interchange Site Administrator
   Interchange Site Associates
   Business Users
   2nd Shift
   Mr. Jones
   Inbound Sales

Descriptive name for the administrator or administration group.

31.5.4. last_login

Example Data

   989424489

Last login time (in unix time() format).

31.5.5. super

Boolean value. If true (1), the administrator has Interchange Site Administrator privilege.

Interchange Documentation (Full)

 31.5.1. username 142



31.5.6. yes_tables

Example Data

   affiliate=vcx component=v gift_certs=v inventory=vx ...
   NONE

Tables this administrator or administration group can access. This is a space−delimited list of
'table_name=permission_flags' entries.

31.5.7. no_tables

Example Data

   access mv_metadata variable

Tables this administrator or administration group can not use. This is a space−delimited list of tables names.

31.5.8. upload

No Description

31.5.9. acl

No Description

31.5.10. export

No Description

31.5.11. edit

No Description

31.5.12. pages

No Description

31.5.13. files

No Description

31.5.14. config

No Description

Example Data

Allowed Values

Interchange Documentation (Full)

 31.5.6. yes_tables 143



31.5.15. reconfig

No Description

31.5.16. groups

Example Data

   ausers
   busers

Allowed Values

Groups the site user belongs to. You can set permissions for groups.

31.5.17. meta

No Description

31.5.18. no_functions

Example Data

   orderstats trafficstats

Space−delimited list of functions explicitly not allowed for the site user.

31.5.19. yes_functions

Example Data

   item=lvecd itemtype=lvc order=lvca orderstats trafficstats ...
   NONE

Functions the site user can perform. This is a space−delimited list of functions, with permission flags if
appropriate.

Usage examples

dist/lib/UI/pages/admin/access_permissions.html• 

31.5.20. table_control

No Description

Usage examples

dist/lib/UI/Primitive.pm• 
dist/lib/UI/pages/admin/special/key_violation.html• 
dist/lib/UI/usertag/if_mm• 

Interchange Documentation (Full)

 31.5.15. reconfig 144



31.5.21. personal_css

Used in the Administration Tool screens to make personal changes to the page presentation. This is done by
creating your own personal CSS (cascading style sheet).

Usage examples

dist/lib/UI/pages/admin/preferences.html• 

31.6. affiliate

cat_root/products/affiliate.txt

This table contains data related to your affiliate programs. See also the affiliate_receptor component.

Fields

Field Description

affiliate Affiliate ID

name Name of affiliate organization

campaigns Campaigns this affiliate participates in

coupon_amountDiscount for customers from affiliate participating in coupon campaign

join_date When the affiliate signed with you

url Your default URL to use for customers coming from the affiliate site (not the affiliate's
home page)

timeout Timeout in seconds after which purchases are no longer credited to the affiliate

active Boolean, set to 1 for active affiliates

password Affiliate login password

image Affiliate's logo

31.6.1. affiliate

Example Data

   consolidated
   hardhat

This field contains the unique Affiliate ID.

31.6.2. name

Example Data

   Consolidated Diversified
   Hardhat Construction

This is the descriptive name of the affiliate.

Interchange Documentation (Full)

 31.5.21. personal_css 145



31.6.3. campaigns

Example Data

   coupon

This field lists the campaigns that the affiliate participates and enables campaign features and tracks traffic
from advertising campaigns. The foundation catalog implements a coupon campaign in the affiliate_receptor
component. If you want to add campaigns, you will also need to develop the appropriate logic within the
affiliate_receptor component and pages that use it.

31.6.4. coupon_amount

Example Data

   5

This is the discount offered customers from the affiliate participating in the coupon campaign.

Note −− This is implemented in the affiliate_receptor component as a flat discount amount. If you wanted a
percentage discount instead, you would modify the [discount] tag in
catalog_root/templates/components/affiliate_receptor (see the [discount] tag for more detail).

31.6.5. join_date

Example Data

   20000827
   20000910

This is the date when the affiliate signed with you.

31.6.6. url

Example Data

   http://demo.akopia.com/~hardhat
   http://www.minivend.com/consolidated/

The value in this field is used to direct visitors coming from the Affiliate to your home page or a page you
have designed specifically for visitors from that Affiliate's site. Note that this should not be the URL of the
Affiliate's home site.

31.6.7. timeout

Example Data

   0
   3600

Interchange Documentation (Full)

 31.6.3. campaigns 146



The value in this field is used to specify the amount of time a customer has to place an order to still give the
Affiliate credit for it. If the customer goes over this amount of time, the Affiliate doesn't get credit for the
customer visit. The timeout delay is measured in seconds, with the value of 0 (zero) disabling it. It is
recommended that you use a value in the thousands to make sure the customer has enough time to shop.

31.6.8. active

This is a boolean value indicating whether the affiliate is active.

31.6.9. password

Example Data

   akopia

Password for affiliate login (see catalog_root//pages/affiliate/login.html). Note that the password is stored in
plaintext by default.

31.6.10. image

Example Data

   http://demo.akopia.com/~hardhat/images/logo.gif
   http://www.minivend.com/consolidated/conslogo.gif

Affiliate's logo image.

31.7. area

cat_root/products/area.txt

This table is used to implement dynamic navigation bars. For example, it is used in the category_horizontal
and category_vertical components. Note the similarity to the cat table, since both area and cat tables supply
data for building links to results pages.

When building entries in a navigation bar, it is the bar_link subroutine in the /dist/catalog_before.cfg
configuration file that actually reads and processes the values from the table.

See also the following catalog and administrative templates:

cat_root/templates/components/category_horizontal• 
cat_root/templates/components/category_vertical• 
dist/lib/UI/pages/admin/layout.html• 
dist/lib/UI/pages/admin/layout_auto.html• 
dist/lib/UI/pages/admin/wizard/do_launch.html• 
dist/lib/UI/pages/admin/wizard/do_save.html• 

Fields

Field Description

Interchange Documentation (Full)

 31.6.8. active 147



code Unique key

sel Space−delimited list of navigation bars to contain the entry

name Display label

which_page Page class in which the navigation bar may appear

sort Sorting prefix for entry (preempts standard alphanumeric sort)

display_type How to label links in the navbar (name, icon, url or image)

image Image URL (if appropriate)

image_prop HTML attributes for output <img> tag (if appropriate)

banner_imageImage name for use in target page

banner_text Text for use in target page

link_type Type of links in the navbar (external, internal, simple, complex)

url Target for internal or external link_type

tab Database table file to use with 'simple' link_type

page Results page to use with 'simple' link_type

search Search spec used with 'complex' link_type

selector The selector used to scan the products table for products in the category

link_template Overrides template used for building navbar links.

31.7.1. code

Example Data

   1
   2
   3

Unique key.

31.7.2. sel

Example Data

   left

Space−delimited list of navigation bars that should contain the entry. Note that comma or null should also
work as a delimiter.

31.7.3. name

Example Data

   Hand Tools
   Hardware
   Ladders
   Measuring Tools
   Painting Supplies
   Safety Equipment
   Specials
   Tool Storage

Interchange Documentation (Full)

 31.7.1. code 148



Label to display.

31.7.4. which_page

Example Data

   all

Page class in which the navigation bar may appear.

31.7.5. sort

Example Data

   00
   03
   04
   05
   06

Lexographic (alphanumeric) sorting prefix. Note use of '03' rather than '3', which would sort after '13'. This
controls the order of the categories in your navigation bar.

If this is not set, your navbar entries will sort in alphabetical order.

31.7.6. display_type

Example Data

   name
   icon
   url
   image

What to use for the labels in the navigation bar (for example, name, icon, url or image). The navigation bars in
the foundation catalog are set up with 'name' display_type.

display type Link shown as

name Displays name only

icon Displays name and specified image

image Displays image only

url Displays link

31.7.7. image

Image URL for image or icon display_type.

31.7.8. image_prop

For image or icon display_type, this contains the HTML attributes for the HTML that will appear in the
navbar, for example:

Interchange Documentation (Full)

 31.7.4. which_page 149



  <img src="image" alt="name" image_prop>name

31.7.9. banner_image

Example Data

   promo_image.gif

This field is not related to banner ads. It is useful if you want to pass to your results page an image that is
specific for the navbar entry (perhaps to display a banner above your results).

If you are using an Interchange search for your links (i.e., 'simple' or 'complex' link_type), then this will add
'va=banner_image=banner_image' to the resulting search specification. This puts the contents of
banner_image into the Values hash of your search results page. You can access it with [value
banner_image] (see the value tag). You will have to modify the standard results page (or set up and specify
your own) in order to display the image.

   <IMG src="[value banner_image]" alt="[value banner_text]">

The foundation catalog does not implement banner_image in the preconfigured navigation bars.

31.7.10. banner_text

Example Data

   This Is A Title For Hand Tools

This field is not related to banner ads. It is useful if you want to pass to your results page some text that is
specific for the navbar entry (perhaps to display a title above your results).

If you are using an Interchange search for your links (i.e., 'simple' or 'complex' link_type), then this will add
'va=banner_text=banner_text' to the resulting search specification. This puts the contents of banner_text
into the Values hash of your search results page. You can access it with [value banner_text] (see the value
tag). You will have to modify the standard results page (or set up and specify your own) in order to display the
text.

The foundation catalog does not implement banner_text in the preconfigured navigation bars.

31.7.11. link_type

Example Data

   none
   external
   internal
   simple
   complex

Link type to create in the navigation bar.

Link type Description

Interchange Documentation (Full)

 31.7.9. banner_image 150



none No link

external External link. The HTML specified in url will go directly into the navigation bar.

internal Internal link. This will be highlit if it is the current page. If you specify both a page and a form for
the link, the url field should contain "page form". See the Search Engine documentation for more
detail on search forms.

simple Allows you to specify an Interchange search with a few values. See the bar_link subroutine in the
/dist/catalog_before.cfg configuration file for more detail.

complex Allows you to fully specify an Interchange search specification. See the bar_link subroutine in the
/dist/catalog_before.cfg configuration file for more detail if you need to use these.

31.7.12. url

Target URL (external link or internal page/search specification). See link_type . The foundation catalog
navigation bars are not set up with link types that use the url field.

31.7.13. tab

Database table file to use with 'simple' link_type (searchspec fi=tab). The foundation catalog navigation bars
are not set up with link types that use the tab field.

31.7.14. page

Results page to use with 'simple' link_type (searchspec sp=page). The foundation catalog navigation bars are
not set up with link types that use the page field.

31.7.15. search

Search spec used with 'complex' link_type. See the Search Engine documentation for more detail on search
forms. The foundation catalog navigation bars are not set up with link types that use the search field.

31.7.16. selector

The selector that is used to scan the products table for products in the category. Used with 'simple'
link_type. The foundation catalog navigation bars are not set up with link types that use the selector field.

31.7.17. link_template

Overrides the usual HTML link template for navbar entries. See the bar_link subroutine in the
/dist/catalog_before.cfg configuration file if you need to modify link templates.

The foundation catalog navigation bars are not set up with link types that use the link_template field.

31.8. banner

cat_root/products/banner.txt

The banner ad table. The foundation catalog does not implement any banner ads with this table.

Interchange Documentation (Full)

 31.7.12. url 151



You do not need to use this table to display ads served by third parties (for example, doubleclick). Since most
banner ads on the internet are served by third parties and are not managed by your catalog, you probably will
not need to set up banners here unless you do your own advertising.

See Banner/Ad rotation in the template documentation for a detailed description of the columns and content of
the banner table. Also, see the banner tag documentation.

Fields

Field Description

code Key for the item. If the banners are not weighted, this should be a category−specific code.

category Category for set of weighted banners

weight Display frequency weight for weighted banner

rotate Boolean: parse banner field for banners to rotate if true (1)

banner Banner name or list of banners to rotate

31.8.1. code

Example Data

   MyBanner
   MyBanner2
   MyBanner3
   default

See Banner/Ad rotation.

31.8.2. category

Example Data

   BannerCat1

See Banner/Ad rotation.

31.8.3. weight

Example Data

   1
   2
   7

See Banner/Ad rotation.

31.8.4. rotate

Boolean value. If true (1), rotates banners listed in banner. See Banner/Ad rotation.

Interchange Documentation (Full)

 31.8.1. code 152



31.8.5. banner

Example Data

   Default banner 1{or}Default banner 2{or}Default banner 3
   First MyBanner
   Second MyBanner
   Third MyBanner

See Banner/Ad rotation.

31.9. cat

cat_root/products/cat.txt

This table contains properties of product categories. Notice the similarity to the area table, since both the area
and cat tables supply data for building links to results pages.

Fields

Field Description

code Unique key

sel Space−delimited list of foreign keys into area table

name Category name

which_page Page class in which the category may appear

sort Sorting prefix for entry (preempts standard alphanumeric sort)

display_type How to label the category links (name, icon, url or image)

image Image URL (if appropriate)

image_prop HTML attributes for output <img> tag (if appropriate)

banner_imageImage name for use in target page

banner_text Text for use in target page

link_type Type of links in the navbar (external, internal, simple, complex)

url Target for internal or external link_type

tab Database table file to use with 'simple' link_type

page Results page to use with 'simple' link_type

search Search spec used with 'complex' link_type

selector The selector used to scan the products table for products in the category

link_template Overrides template used for building links

31.9.1. code

Example Data

   1
   4
   5

Unique key.

Interchange Documentation (Full)

 31.8.5. banner 153



31.9.2. sel

Example Data

   6
   8 9
   9

Space−delimited list of foreign key(s) into area table. The category will appear in each navbar section
(defined by a row in the area table) where the key from cat.sel matches the area.code.

For example, the foundation catalog (tools) places Gift Certificates in more than one category of the left
navbar.

31.9.3. name

Example Data

   Breathing Protection
   Eye Protection
   Gift Certificate
   Picks & Hatchets
   Pliers
   Rulers
   Sandpaper
   Toolboxes

Category name for display.

31.9.4. which_page

The page class. When building links, you can select categories matching a page class. This means you could
set up your catalog to show a different list of links on page 'foo.html' than on page 'bar.html'.

31.9.5. sort

Example Data

   01
   03

Lexographic (alphanumeric) sorting prefix. Notice use of '03' rather than '3', which would sort after '13'. You
can use this to control the order of the categories in a list of links.

31.9.6. display_type

Example Data

   name
   icon
   url
   image

Interchange Documentation (Full)

 31.9.2. sel 154



What to use for the labels in the navigation bar (for example, name, icon, url or image). The links in the
foundation catalog are set up with 'name' display_type.

display type Link shown as

name Displays name only

icon Displays name and specified image

image Displays image only

url Displays link

31.9.7. image

Image URL for image or icon display_type.

31.9.8. image_prop

For image or icon display_type, this contains the HTML <img ...> tag attributes for the links, for example:

  <img src="image" alt="name" image_prop>name

31.9.9. banner_image

Example Data

   promo_image.gif

This field is not related to banner ads. It is useful if you want to pass to your results page an image that is
specific for the navbar entry (perhaps to display a banner above your results).

If you are using an Interchange search for your links (i.e., 'simple' or 'complex' link_type), then this will add
'va=banner_image=banner_image' to the resulting search specification. This puts the contents of
banner_image into the Values hash in your search results page. You can access it with [value
banner_image] (see the value tag). You will have to modify the standard results page (or set up and specify
your own) in order to display the image. For example, you might include the following in your results page:

   <IMG src="[value banner_image]" alt="[value banner_text]">

31.9.10. banner_text

This field is not related to banner ads. It is useful if you want to pass to your results page some text that is
specific for the navbar entry (perhaps to display a title above your results).

If you are using an Interchange search for your links (i.e., 'simple' or 'complex' link_type), then this will add
'va=banner_text=banner_text' to the resulting search specification. This puts the contents of banner_text
into the Values hash in your search results page. You can access it with [value banner_text] (see the value
tag). You will have to modify the standard results page (or set up and specify your own) in order to display the
text.

Interchange Documentation (Full)

 31.9.7. image 155



31.9.11. link_type

Example Data

   none
   external
   internal
   simple
   complex

The link type to create.

Link type Description

none No link

external External link. The HTML specified in url will go directly into the link.

internal Internal link. This will be highlit if it is the current page. If you specify both a page and a form for
the link, the url field should contain "page form". See the Search Engine documentation for more
detail on search forms.

simple Allows you to specify an Interchange search with a few values. See the bar_link subroutine in the
/dist/catalog_before.cfg configuration file for more detail.

complex Allows you to fully specify an Interchange search specification. See the bar_link subroutine in the
/dist/catalog_before.cfg configuration file for more detail if you need to use these.

31.9.12. url

Target URL (external link or internal page/search specification). See link_types above.

31.9.13. tab

Example Data

   products

Database table file to use with 'simple' link_type (searchspec fi=tab).

31.9.14. page

Example Data

   swap_results

Results page to use with 'simple' link_type (searchspec sp=page).

31.9.15. search

Example Data

   fi=merchandising^Msf=featured^Mse=new
   fi=merchandising^Msf=featured^Mse=special^Msu=yes

Interchange Documentation (Full)

 31.9.11. link_type 156



Search spec used with 'complex' link_type. See the Search Engine documentation for more detail on search
forms.

Note: The '^M' delimiters in the sample data represents a carriage return character (Control−M, or
hexadecimal 0x0d).

31.9.16. selector

Example Data

   category=Breathing Protection
   category=Eye Protection
   category=Gift Certificate
   category=Picks & Hatchets
   category=Pliers
   category=Rulers
   category=Sandpaper
   category=Toolboxes

The element that is used to scan the products table for products in the category. Used with 'simple'
link_type.

31.9.17. link_template

Overrides the usual HTML link template for navbar entries. See the bar_link subroutine in the
/dist/catalog_before.cfg configuration file if you need to modify link templates.

31.10. country

A list of countries used to build select boxes and shipping mode choices based on countries.

    code
    sorder
    region
    selector
    shipmodes
    name

31.11. downloadable

This table controls downloadable products. The Marketing Reports data set for the foundation catalog
demonstrates downloadable products. List a product's sku in this table if you want to deliver it through a
download. A customer can then download the file specified in the dl_location field after checkout.

For reference, see the implementation in the following files:

catalog_root/pages/deliver.html• 
catalog_root/etc/receipt.html• 
catalog_root/pages/query/order_detail.html• 

Fields

Interchange Documentation (Full)

 31.9.16. selector 157



Field Description

sku Unique key, matches product.sku

dl_location Location of downloadable file

dl_type MIME type of downloadable file

31.11.1. sku

Example Data

Example Data from the Marketing Reports data set:

   00352as
   22083da
   49503cg
   59330rt
   59402fw
   73358ee
   83491vp
   90773sh

This is the unique key for this table that is also the common key into the products table.

31.11.2. dl_location

Example Data from 'reports' catalog

   download/00352as.pdf
   download/22083da.pdf
   download/49503cg.pdf
   download/59330rt.pdf
   download/59402fw.pdf
   download/73358ee.pdf
   download/83491vp.pdf
   download/90773sh.pdf

File location of downloadable product.

31.11.3. dl_type

Example Data from 'reports' catalog

   application/pdf

MIME type of downloadable content.

31.12. files.txt

A database where files (pages, etc.) can be kept instead of in the Unix filesystem.

31.13. gift_certs.txt

    code
    username

Interchange Documentation (Full)

 31.11.1. sku 158



    order_date
    original_amount
    redeemed_amount
    available_amount
    passcode
    active
    redeemed
    update_date

31.14. inventory.txt

    sku
        Quantity info
    quantity
                Gets decremented after each sale.
    stock_message
                The usual shipping time of the product.
        Out of stock message:
            In stock
            Ships in 3−5 days
            Ships in 4−6 weeks
            Special order
    account
        Accounting info
        Sales account
    cogs_account

31.15. locale.txt

    code
    en_US
    de_DE
    fr_FR

31.16. merchandising.txt

    sku
    featured
    banner_text
    banner_image
    blurb_begin
    blurb_end
        Closer (end text for feature display)
    timed_promotion
    start_date
        Start date
    finish_date
    upsell_to
        Cross−sell SKUs
    cross_sell
    cross_category
    others_bought
    times_ordered

Interchange Documentation (Full)

31.14. inventory.txt 159



31.17. mv_metadata

See the following sections in the icadvanced catalog for more information:

display tag and mv_metadata• 
mv_metadata.asc• 

31.18. options

This table contains data for implementing simple, matrix and modular options.

Simple options are options that a customer can combine arbitrarily, such as size and color. The selected
options might affect price. See the accessories tag for more detail on option values for simple options.

Matrix options are preconfigured combinations of options. For example, if you sell titanium and carbon−fiber
bike frames, but offer only certain combinations of frame material and color, your checkout page might
include a select box with only the following entries:

Silver Titanium: $1672• 
Black Titanium: $1672• 
Red Titanium: $1674• 
Black Carbon Fiber: $1290• 
Yellow Flame Carbon Fiber: $1300• 

Note that there is no Yellow Flame Titanium offering, for example.

Modular options are like a structured bill of materials, where one product is a master item and other products
are subitems for that master item. The subitems can also be master items to subitems at a lower level. In
addition, subitems may be designated as 'phantom', which means that they are placeholders in the hierarchy of
the structured bill of materials with their own subitems, but are not actual items themselves.

The foundation catalog with the computer data set uses modular options.

For more information, see the following pages and components in the foundation catalog:

cat_root/pages/flypage.html• 
cat_root/templates/components/modular_buy• 
cat_root/templates/components/modular_update• 

Note: Subsequent foundation catalog releases may place simple, matrix, and modular option types in separate
tables.

Fields

Field Description

code Unique ID for the product option

o_master SKU of the master item for the option

sku SKU for the option (foreign key into products table)

Interchange Documentation (Full)

31.17. mv_metadata 160



o_group Product grouping code

o_sort Sorting prefix for list display

phantom Boolean −− Item is a phantom placeholder (as in structured bill of materials) with suboptions.

o_enable Boolean −− enables suboptions for the option

o_matrix Matrix−type option (preconfigured combinations of attributes)

o_modular Modular−type option (master/subitem relationship like modular bill of materials)

o_default Default selection for the option group or suboption for a phantom option

o_label Short name for option display

o_value Simple option values (in Interchange option format)

o_widget The HTML widget to use for displaying the option group

o_footer Not used in foundation catalog

o_header Not used in foundation catalog

o_height Height of widget (if applicable)

o_width Width of widget

description Option/Variant description (for description in display)

price Price of this option/variant

wholesale Dealer price of this option/variant

differential Differential to add to the base item price when using a phantom bill of materials

weight Weight difference with this option/variant (for shipping)

volume Volume difference with this option/variant

mv_shipmodeNo Description

o_exclude Option groups to exclude (trumped by o_include). Modular only.

o_include Option groups to include (trumps o_exclude). Modular only.

31.18.1. code

Example Data

   1002
   1003
   1004
   1005

Unique ID for the option.

31.18.2. o_master

Example Data

   00010
   999000
   999001
   999002

SKU of the master item for the option. The master item is one level up in the modular hierarchy, and must be
one of the following:

An item in the products table (matching products.sku)• 

Interchange Documentation (Full)

 31.18.1. code 161



Another option in the options table (matching options.sku)• 
A phantom item in the options table.• 

If an option has a master item, then a customer can not choose that option without having previously selected
the master item.

The price for a master item is the sum of the master item's price and the price for each of the subitems.
Because the subitems are recursively defined, the top−level item reflects the top level price plus the price of
all selected options.

31.18.3. sku

Example Data

   00010
   999000
   7000015
   7000030

The sku for the item or option. This may not be unique for matrix options or if an option that belongs to
multiple o_masters is listed for each master.

31.18.4. o_group

Example Data

   A
   B
   C
   I

Product group (scanned to see whether it applies to this product or not)

31.18.5. o_sort

Example Data

   01
   02
   03
   04
   47
   48
   49
   50

Sorting prefix for listing order of options.

31.18.6. phantom

Modular options only.

Interchange Documentation (Full)

 31.18.3. sku 162



Boolean −− if true (1), then this is a phantom item acting as a placeholder for other items rather than an actual
product. The item's sku will not match an entry in the products table, though the o_master will match either
the sku of another phantom item in the options table or the sku of an item in the products table.

31.18.7. o_enable

Boolean −− Enables subitems for this item or option. Note that an option with o_enable false may itself still
be a subitem for an option or item above it.

31.18.8. o_matrix

Boolean. Set true (1) for matrix−type options. See the options table in the tools data set for examples of matrix
options. Matrix options that are part of a set have the same value for options.sku.

31.18.9. o_modular

Specifies a modular option. See main heading for description of modular options.

31.18.10. o_default

Example Data

   1
   11002
   7000062
   7000087

Selects the default option for a group.

31.18.11. o_label

Example Data

   Add a second hard drive
   Case Color
   Case color
   Case style
   Include tapes
   Red

This is the short name for option display.

31.18.12. o_value

Example Data

   1=One 8GB tape,\r2=Two 8GB tapes,\r=None*
   a=One 8GB tape,\rb=Two 8GB tapes,\r=None*
   baby=Baby Tower,\rmid=Mid−tower,\rfull=Full Tower
   baby=Baby tower,\rmid=Mid−tower,\rfull=Full tower
   red=Passion Red,\rblue=Electric Blue,\rgreen=Sea Green,\rgrey=S...
   red=Passion Red,\ryellow=Lemon Yellow,\rblue=Electric Blue,\rgr...

Interchange Documentation (Full)

 31.18.7. o_enable 163



   red=Rage Red,\ryellow=Honey Yellow

This is an Interchange value set for a simple option. It is typically a comma−delimited list of labels and values
with '*' indicating the default value. See the accessories tag for more detail.

Note that the "\r" characters in the above example represent carriage returns in the actual data ("\r" in perl, or
Ctrl−M, or hexadecimal 0D), and the ... indicates a line too long to show.

31.18.13. o_widget

Example Data

   select

This determines the HTML Widget type (e.g., a select box). For example, the [options] tag uses this entry
when building HTML widgets in a page. See also the [accessories] tag for available widgets.

31.18.14. o_footer

Example Data

Allowed Values

31.18.15. o_header

Example Data

Allowed Values

31.18.16. o_height

This allows you to set the height of the HTML widget, if appropriate.

31.18.17. o_width

This allows you to set the width of the HTML widget, if appropriate.

31.18.18. description

Example Data

   ATX Mid Tower−Grey (3)5.25 (2)3.5 & (1)3.5 Hidden
   Enlight ATX Desktop Case (2)5.25 & (2)3.5
   Enlight ATX Tower Case (4) 5.25 & (2)3.5
   Micro ATX Tower − Honey Yellow
   Micro ATX Tower − Moody Blue
   Micro ATX Tower − Rage Red
   Micro ATX Tower − Smoky Grey
   Super Tower Case (6)5.25 & (3)3.5

Longer description to show when displaying the options.

Interchange Documentation (Full)

 31.18.13. o_widget 164



31.18.19. price

Example Data

   0.00
   10
   20
   29
   75

This sets the retail price of the option.

31.18.20. wholesale

Example Data

   13
   40.00

This sets the dealer price of the option.

31.18.21. differential

Example Data

   −209
   −40
   −79

The phantom bill of materials for an option group can have a differential, which is an amount to add to the
base price of the master product to get to a new base price that accommodates the phantom bill of materials.
Note that the differential can be negative.

For example, in the computer data set of the foundation catalog, SKU 00011 in the products table is an
$849.95 pre−configured Athlon 800MHz computer that includes a 17" monitor (in this case, SKU 7000087 in
the products table).

The monitor by itself would otherwise have cost $209. It is much more convenient if you can use the same
option part number and price for each item. To do this, you need a phantom option (in this case, SKU 999105
in the options table only) with a differential of −209 and the available monitors as suboptions. When you
include the phantom option in the bill of materials for the computer (SKU 00011), the $−209 differential
adjustment makes the price work out properly.

For instance, suppose that a $499 computer is configured as follows:

        500 MHz Athlon         −−  $499
        32 MB SDRAM            −−  ZERO
        10 GB disk             −−  ZERO

        TOTAL                  −−  $499

Suppose it costs $90 to upgrade the base computer to 128M of RAM and $150 for a 30 GB hard disk.

Interchange Documentation (Full)

 31.18.19. price 165



If you also sell an 128MB 800 MHz $899 computer, and the customer upgrades to the 30 GB hard disk,

        800 MHz Athlon          −−  $899
        (memory differential)   −−  $−90
        128 MB RAM              −−   $90
        30 GB  disk             −−  $150

        TOTAL                   −− $1039

If you did not have the differential, you would need a different option part number for each item make the
number come out right.

With the differential, you can use the same part number for 128MB RAM no matter what the base part is. The
price is always $90 −− there is just a −90 differential when ordered with the 800MHz Athlon, making the
effective price zero.

31.18.22. weight

Example Data

   5

Shipping weight of the option. Interchange uses this to calculate shipping cost.

31.18.23. volume

Volume added by the option.

31.18.24. mv_shipmode

No Description

31.18.25. o_exclude

Modular options only.

Lists the option groups to exclude once the include has been done. Takes the form of a number of wildcard
atoms.

31.18.26. o_include

Modular options only.

Lists the option groups to include with your item. Takes the form of a number of wildcard atoms.

31.19. order_returns.txt

    code
    order_number
    session
    username

Interchange Documentation (Full)

 31.18.22. weight 166



    rma_number
    nitems
    total
    return_date
    update_date

31.20. orderline.txt

Every line item that is actually ordered is detailed in this table. The order as a whole is one record in the
transactions table.

See the page query/check_orders.html for how it can be used. See etc/report for how to add to
it.

    code
    store_id
    order_number
    session
    username
    shipmode
    sku
    quantity
    price
    subtotal
    shipping
    taxable
    mv_mi
    mv_si
    size
    color
    options
    order_date
    update_date
    status
            pending = Pending
            shipped = Shipped
            backorder = Back ordered
            credit = Waiting for credit check
            canceled = Cancelled
    parent
    affiliate
    campaign
    description
    mv_mp

31.21. pricing

This database works in conjunction with the CommonAdjust directive to allow quantity pricing for one
product or for a group of products (sometimes known as mix−and−match). The fields q2, q5, q10,
etc. are for the quantity levels; the price_group field selects the mix−and−match category for the
product.

Fields

Field Description

sku Unique key, shared with products table

Interchange Documentation (Full)

31.20. orderline.txt 167



price_group Mix−and−match category

q2 Retail, 2 or more

q5 Retail, 5 or more

q10 Retail, 10 or more

q25 Retail, 25 or more

q100 Retail, 100 or more

w2 Wholesale, 2 or more

w5 Wholesale, 5 or more

w10 Wholesale, 10 or more

w25 Wholesale, 25 or more

w100 Wholesale, 100 or more

31.21.1. sku

Example Data

   os28004
   os28006
   os28057c
   os28069

Unique key, matching the sku for an entry in products table.

31.21.2. price_group

Example Data

   general

This field determines mix−and−match categories if you want to allow mix−and−match quantity pricing (i.e.,
where 5 of these plus 5 of those afford the q10 price for both these and those).

31.21.3. q2

If set, this will be the price per item when the order quantity is 2 or greater.

31.21.4. q5

If set, this will be the price per item when the order quantity is 5 or greater.

31.21.5. q10

If set, this will be the price per item when the order quantity is 10 or greater.

31.21.6. q25

If set, this will be the price per item when the order quantity is 25 or greater.

Interchange Documentation (Full)

 31.21.1. sku 168



31.21.7. q100

If set, this will be the price per item when the order quantity is 100 or greater.

31.21.8. w2

If set, this will be the dealer price per item when the order quantity is 2 or greater.

31.21.9. w5

If set, this will be the dealer price per item when the order quantity is 5 or greater.

31.21.10. w10

If set, this will be the dealer price per item when the order quantity is 10 or greater.

31.21.11. w25

If set, this will be the dealer price per item when the order quantity is 25 or greater.

31.21.12. w100

If set, this will be the dealer price per item when the order quantity is 100 or greater.

31.22. products

This is the main table for product data. See also 'The Product Database' section in the database documentation.

The sku is also the master key in many of the related tables.

Fields

Field Description

sku Unique product ID

description Short description for list display

title Full title for book, CD, artwork, etc.

template_pageNot used in foundation catalog. No description.

comment Longer description for item display (e.g., flypage.html)

thumb Thumbnail image

image Regular−sized image

price Retail quantity one price

wholesale Dealer minimum quantity price

prod_group Product supercategory

category Product category

nontaxable Boolean. Set true (1) if nontaxable

Interchange Documentation (Full)

 31.21.7. q100 169



weight Weight in your units. Should match shipping table.

size List of options used with accessories tag.

color List of options used with accessories tag.

gift_cert Boolean. Set true (1) if this is a gift certificate.

related Deprecated in favor of merchandising.upsell_to

featured Deprecated. Use merchandising table.

inactive Boolean. Set true (1) to inactivate a product

url Not Documented

31.22.1. sku

Example Data

   gift_cert
   os28004
   os28006
   os28057c

Unique identifier for the product. You should use only characters of the class A−Z a−z 0−9 _ − (i.e.,
matching the regular expression, '[−A−Za−z0−9_]+'). Although Interchange itself does not impose this
restriction, you may have problems with SQL databases, file systems, and URL encoding if you use other
characters. For example, a slash (/) can interfere with URLs and filenames, a colon (:) can interfere with
database representations (or file names on some operating systems), i<etc.>

31.22.2. description

Example Data

   Brush Set
   Disposable Brush Set
   Ergo Roller
   Gift Certificate
   Painters Brush Set
   Painters Ladder
   Spackling Knife
   Trim Brush

A short description for the product that is used for displaying in the shopping cart, receipt, and order report.

31.22.3. title

Example Data

   Brush Set
   Disposable Brush Set
   Ergo Roller
   Gift Certificate
   Painters Brush Set
   Painters Ladder
   Spackling Knife
   Trim Brush

Interchange Documentation (Full)

 31.22.1. sku 170



This column is not used in the foundation catalog. Previously used in the Art store (simple) demo for a
painting title. You probably want to use description instead.

You should modify the products and other tables to suit your catalog's requirements. You might use this field
if you want to show titles for books, music, or other titled merchandise. If you do not use a title that is distinct
from the short description, then you probably do not need this column in the table at all.

31.22.4. template_page

Not used in foundation catalog.

No Description.

31.22.5. comment

Example Data

   A must have for all painters!  This spackling knife is ergon...
   Enjoy the perfect feel and swing of our line of hammers. Thi...
   This set includes 2" and 3" trim brushes and our ergonomical...
   This set of disposable foam brushes is ideal for any stainin...

This is the field for a long description of the product. If you are using an Interchange text/gdbm database, the
field size is unlimited; if using another type of database, the length will be dependent on the field type
selected. If you are using a SQL database, see the appropriate cat_root/dbconf subdirectory for a place to set
COLUMN_DEF values. See also the database documentation, 'Importing from an ASCII File', for details
about defaults for columns that you do not define.

31.22.6. thumb

Example Data

   gift_certificate.gif
   os28004_b.gif
   os28005_b.gif
   os28006_b.gif

This is the filename for a small (thumbnail) image of the product.

31.22.7. image

Example Data

   gift_certificate_large.gif
   os28004.gif
   os28005.gif
   os28006.gif

This is the filename for a regular−sized image of the product, as it should appear in an HTML <img
src="image"> tag. You do not need to specify the path if the image files are in the usual Interchange image
directory.

Interchange Documentation (Full)

 31.22.4. template_page 171



31.22.8. price

Example Data

   1.00
   12.99
   14.99
   9.99

The quantity−one price of the product. See the wholesale field and the price table for dealer and quantity
pricing.

31.22.9. wholesale

Example Data

   1
   10
   11
   12

This is the minimum dealer price for the item. For quantity pricing, see the price table.

31.22.10. prod_group

Example Data

   Hand Tools
   Hardware
   Ladders
   Measuring Tools
   Miscellaneous
   Painting Supplies
   Safety Equipment
   Tool Storage

Product group (supercategory). This indicates the grouping of product categories, for example in the
navigation bars created from the area table (note the match with the name data in the area table).

31.22.11. category

Example Data

   Brushes
   Gift Certificate
   Hammers
   Ladders
   Nails
   Paintbrushes
   Putty Knives
   Rollers

This is the category the product should appear in when you select a list. You can put a product in more than
one category, but you may need to accommodate this in display and banner headings. Embedded perl is

Interchange Documentation (Full)

 31.22.8. price 172



helpful for this.

31.22.12. nontaxable

Boolean value. If true (1), the sales tax calculation for an order will not include the cost of the product. See
also the salestax tag.

31.22.13. weight

Example Data

   1
   2
   3

This is a numeric value of the weight used for determining shipping costs (with UPS, for example). In the US,
this is typically the weight in pounds in order to match the UPS, Fed Ex and other standard shipping tables.

31.22.14. size

Example Data

   1", 2", 3"
   1', 1.5'
   1/4", 1/2", 3/4", 1", 2", 3"
   10oz, 15oz, 20 oz
   2"
   6'
   set
   standard, metric

This is where the old Construct Something demo store kept the 'size' options for a product. The foundation
catalog now uses the options table instead to handle product options (also sometimes called product
attributes).

The accessories tag can build HTML widgets from the comma−delimited list of product options. You
can use a delimiter other than comma (if compatible with the table) as long as you also set the delimiter in
the accessories tag.

You probably do not need this field if you use the options table (for example, if you are building from the
foundation catalog).

31.22.15. color

Another product option column. No longer used in the foundation catalog. See size above for description.

31.22.16. gift_cert

Boolean value. If true (1), specifies that this product is a gift certificate. See also the gift_certs table.

Interchange Documentation (Full)

 31.22.12. nontaxable 173



31.22.17. related

Used for displaying "upsells," opportunities to purchase an additional item when this one is purchased.
Contains a comma−separated list of SKUs to be offered.

The foundation catalog now instead uses the upsell_to field of the merchandising table for upselling.

31.22.18. featured

Deprecated in favor of the merchandising table.

31.22.19. inactive

If true (1), renders the product inactive (i.e., it will not appear in the catalog).

31.22.20. url

Not Documented

31.23. route.txt

    code
    attach
    continue
    commit
    commit_tables
    counter
    credit_card
    cyber_mode
    email
    empty
    encrypt
    encrypt_program
    errors_to
    increment
    inline_profile
    individual_track
    individual_track_ext
    partial
    pgp_cc_key
    pgp_key
    profile
    receipt
    reply
    report
    rollback
    rollback_tables
    supplant
    track

31.24. salestax.asc

Interchange Documentation (Full)

 31.22.17. related 174



31.25. shipping.asc

Shipping methods table

31.26. state.txt

State/territory/county information

    code
    sorder
    country
    state
    name
    tax
    postcode
    shipmodes
    tax_name

31.27. transactions.txt

Each individual customer order has an entry in this table. The line items are not entered here, but in the
orderline table.

See the page query/check_orders.html for how it can be used. See etc/report for how to add to
it.

    code
    store_id
    order_number
    session
    username
    shipmode
    nitems
    subtotal
    shipping
    handling
    salestax
    total_cost
    fname
    lname
        Last Name
    company
    address1
    address2
        Address line 2
    city
    state
    zip
    country
    phone_day
        Daytime Phone
    phone_night
        Home Phone
    fax
    email
    b_fname

Interchange Documentation (Full)

31.25. shipping.asc 175



    b_lname
        Billing Last Name
    b_company
    b_address1
    b_address2
        Billing Address Line 2
    b_city
    b_state
        Billing State
    b_zip
        Billing Postcode
    b_country
        Billing Country
    b_phone
    order_date
    order_ymd
    order_wday
    payment_method
    po_number
    avs
    order_id
    update_date
    status
    affiliate
    campaign
    parent
    archived
    deleted
    complete
    comments

31.28. userdb.txt

The user database used for maintaining customer address information, account information, preferences, and
more. See icdatabase for more information.

    username
    password
    acl
    mod_time
    s_nickname
    company
    fname
    lname
    address1
    address2
    address3
    city
    state
    zip
        Postcode
    country
        Country
    phone_day
    mv_shipmode
    b_nickname
    b_fname
    b_lname
    b_address1
    b_address2

Interchange Documentation (Full)

31.28. userdb.txt 176



    b_address3
    b_city
    b_state
    b_zip
    b_country
    b_phone
        Billing Phone
    mv_credit_card_type
    mv_credit_card_exp_month
    mv_credit_card_exp_year
    p_nickname
    email
    fax
    phone_night
    fax_order
        Payment method:
            (none) = Credit Card
            1 = Fax or Mail
            2 = Purchase order
            3 = COD
    address_book
    accounts
    preferences
    carts
    owner
    file_acl
    db_acl
    order_numbers
    email_copy
    mail_list
        Mailing lists the customer has joined:
            offer = Special offers
            newsletter = Newsletter
            alert = Alerts and Recalls
            upgrade = Upgrades
    project_id
    account_id
    order_dest
    credit_limit
    inactive
    dealer
        Dealer:
            (none) = No
            1 = Yes
    b_company
    feedback
        ???

31.29. variable.txt

Configuration database

    code
        Variable name
    Variable
    pref_group
        Preferences area

Interchange Documentation (Full)

31.29. variable.txt 177



32. HTML Hypertext links
Normally, regular hypertext links are not used in Interchange pages. These kinds of links will not include the
session ID. If the customer follows an external link back to the catalog, the list of products ordered so far will
have been lost. The area tag is used to generate a hypertext link which includes a session ID.

Instead of:

   <A HREF="/cgi−bin/mv/shirts">Shirts</A>

Use:

   <A HREF="[area shirts]">Shirts</A>

32. HTML Hypertext links 178



33. Images
Inline images are placed in Interchange pages in the normal fashion with <IMG SRC="URL">. But since
Interchange pages are served by a CGI program, it will by default automatically rewrite relative image links as
absolute ones based on the ImageDir and ImageDirSecure directives.

33. Images 179



34. Browser Cookies
The Foundation store enables the Cookies directive so that users with cookie−capable browsers will retain
session context. Then, standard HREF and Interchange page links can be intermixed without the fear of losing
the shopping basket. Cookie capability is also required to use search caching, page caching, and statically
generated pages. If the user's browser does not support cookies, the cache will be ignored.

If planning to use more than one host name within the same domain for naming purposes (perhaps a secure
server and non−secure server), set the domain with the CookieDomain directive. This must contain at least
two periods (.) as per the cookie specification, and must be located in the same server as the domain.

34. Browser Cookies 180



35. Dependencies in administration
In general, it's a good idea to leave fields empty if you don't want to use them, instead of removing them from
the database altogether. That way nothing in the administration interface or the Foundation pages will break.

Copyright 2001−2002 Red Hat, Inc. Freely redistributable under terms of the GNU General Public License.
line:

35. Dependencies in administration 181



Template Guide

Template Guide 182



36. Introduction
Interchange is designed to build its pages based on templates from a database. This document describes how
to build templates using the Interchange Tag Language (ITL) and explains the different options you can use in
a template.

36.1. Overview

The search builder can be used to generate very complex reports on the database, or to help in the construction
of ITL templates. Select a "Base table" that will be the foundation for the report. Specify the maximum
number of rows to be returned at one time, and whether to show only unique entries.

The "Search filter" narrows down the list of rows returned by matching table columns based on various
criteria. Up to three separate conditions can be specified. The returned rows must match all criteria.

Finally, select any sorting options desired for displaying the results, and narrow down the list of columns
returned if desired. Clicking "Run" will run the search immediately and display the results. "Generate
definition" will display an ITL tag that can be placed in a template and that will return the results when
executed.

To build complex order forms and reports, Interchange has a complete tag language with over 80 different
functions called Interchange Tag Language (ITL). It allows access to and control over any of an unlimited
number of database tables, multiple shopping carts, user name/address information, discount, tax, and
shipping information, search of files and databases, and much more.

There is some limited conditional capability with the [if ...] tag, but when doing complex operations,
use of embedded Perl/ASP should be strongly considered. Most of the tests use Perl code, but Interchange
uses the Safe.pm module with its default restrictions to help ensure that improper code will not crash the
server or modify the wrong data.

Perl can also be embedded within the page and, if given the proper permission by the system administrator,
call upon resources from other computers and networks.

36. Introduction 183



37. About Variable Replacement
Variable substitution is a simple and often used feature of Interchange templates. It allows you to set a
variable to a particular value in the catalog.cfg directory. Then, by placing that variable name on a page,
you invoke that value to be used. Before anything else is done on a template, all variable tokens are replaced
by variable values. There are three types of variable tokens:

__VARIABLENAME__ is replaced by the catalog variable called VARIABLENAME.

@@VARIABLENAME@@ is replaced by the global variable called VARIABLENAME.

@_VARIABLENAME_@ is replaced by the catalog variable VARIABLENAME if it exists; otherwise, it is
replaced by the global variable VARIABLENAME.

For more information on how to use the Variable configuration file directive to set global variables in
interchange.cfg and catalog variables in catalog.cfg, see the Interchange Configuration Guide.

37. About Variable Replacement 184



38. Using Interchange Template Tags
This section describes the different template specific tags and functions that are used when building a your
templates.

38.1. Understanding Tag Syntax

Interchange uses a style similar to HTML, but with [square brackets] replacing <chevrons>. The parameters
that can be passed are similar, where a parameter="parameter value" can be passed.

Summary:

   [tag parameter]             Tag called with positional parameter
   [tag parameter=value]       Tag called with named parameter
   [tag parameter="the value"] Tag called with space in parameter
   [tag 1 2 3]                 Tag called with multiple positional parameters
   [tag foo=1 bar=2 baz=3]     Tag called with multiple named parameters
   [tag foo=`2 + 2`]           Tag called with calculated parameter
   [tag foo="[value bar]"]     Tag called with tag inside parameter
   [tag foo="[value bar]"]
       Container text.         Container tag.
   [/tag]

Most tags can accept some positional parameters. This makes parsing faster and is, in most cases, simpler to
write.

The following is an example tag:

   [value name=city]

This tag causes Interchange to look in the user form value array and return the value of the form parameter
city, which might have been set with:

   City: <INPUT TYPE=text NAME=city VALUE="[value city]">

Note: Keep in mind that the value was pre−set with the value of city (if any). It uses the positional style,
meaning name is the first positional parameter for the [value ...] tag. Positional parameters cannot be derived
from other Interchange tags. For example, [value [value formfield]] will not work. But, if the named
parameter syntax is used, parameters can contain other tags. For example:

   [value name="[value formfield]"]

There are exceptions to the above rule when using list tags such as [item−list], [loop ...], [sql ...], and more.
These tags, and their exceptions, are explained in their corresponding sections.

Many Interchange tags are container tags. For example:

   [set Checkout]
       mv_nextpage=ord/checkout
       mv_todo=return
   [/set]

38. Using Interchange Template Tags 185



Tags and parameter names are not case sensitive, so [VALUE NAME=something] and [value
name=something] work the same. The Interchange development convention is to type HTML tags in upper
case and Interchange tags in lower case. This makes pages and tags easier to read.

Single quotes work the same as double quotes, and can prevent confusion. For example:

   [value name=b_city set='[value city]']

Backticks should be used with extreme caution since they cause the parameter contents to be evaluated as Perl
code using the [calc] tag. For example:

   [value name=row_value set=`$row_value += 1`]

is the same as

   [value name=row_value set="[calc]$row_value += 1[/calc]"]

Vertical bars can also be used as quoting characters, but have the unique behavior of stripping leading and
trailing whitespace. For example:

       [loop list="code        field    field2  field3
       k1    A1    A2    A3
       k2    B1    B2    B3"]
       [loop−increment][loop−code]
       [/loop]

could be better expressed as:

    [loop list=|
            k1    A1    A2    A3
            k2    B1    B2    B3
    |]
        [loop−increment][loop−code]
    [/loop]

How the result of the tag is displayed depends on if it is a container or a standalone tag. A container tag has a
closing tag (for example, [tag] stuff [/tag]). A standalone tag has no end tag (for example, [area
href=somepage]). Note that [page ...] and [order ..] are not container tags. ([/page] and
[/order] are simple macros.)

A container tag will have its output re−parsed for more Interchange tags by default. To inhibit this behavior,
set the attribute reparse to 0. However, it has been found that the default re−parsing is almost always
desirable. On the other hand, the output of a standalone tag will not be re−interpreted for Interchange tag
constructs (with some exceptions, like ([include file]).

Most container tags will not have their contents interpreted (Interchange tags parsed) before being passed the
container text. Exceptions include calc, currency, and seti. All tags accept the interpolate=1 tag
modifier, which causes the interpretation to take place.

38.2. The DATA and FIELD Tags

The [data ...] and [field ...] tags access elements of Interchange databases. They are the form
used outside of the iterating lists, and are used to do lookups when the table, column/field, or key/row is

Interchange Documentation (Full)

38.2. The DATA and FIELD Tags 186



conditional based on a previous operation.

The following are equivalent for attribute names:

   table −−> base
   col   −−> field −−> column
   key   −−> code  −−> row

The [field ...] tag looks in any tables defined as ProductFiles, in that order, for the data and returns the
first non−empty value. In most catalogs, where ProductFiles is not defined, i.e., the demo, [field
title 00−0011] is equivalent to [data products title 00−0011]. For example, [field col=foo
key=bar] will not display something from the table "category" because "category" is not in the directive
ProductFiles or there are multiple ProductFiles and an earlier one has an entry for that key.

[data table column key]

named attributes: [data base="database" field="field" key="key" value="value"
op="increment]
Returns the value of the field in any of the arbitrary databases, or from the variable namespaces. If the option
increment=1 is present, the field will be automatically incremented with the value in value.
If a DBM−based database is to be modified, it must be flagged writable on the page calling the write tag. For
example, use [tag flag write]products[/tag] to mark the products database writable.
In addition, the [data ...] tag can access a number of elements in the Interchange session database:

            accesses      Accesses within the last 30 seconds
            arg           The argument passed in a [page ...] or [area ...] tag
            browser       The user browser string
            host          Interchange's idea of the host (modified by DomainTail)
            last_error    The last error from the error logging
            last_url      The current Interchange path_info
            logged_in     Whether the user is logged in via UserDB
            pageCount     Number of unique URLs generated
            prev_url      The previous path_info
            referer       HTTP_REFERER string
            ship_message  The last error messages from shipping
            source        Source of original entry to Interchange
            time          Time (seconds since Jan 1, 1970) of last access
            user          The REMOTE_USER string
            username      User name logged in as (UserDB)

Databases will hide variables, so if a database is named "session," "scratch," or any of the other reserved
names it won't be able to use the [data ...] tag to read them. Case is sensitive, so the database could be
called "Session," but this is not recommended practice.

[field name code]

named attributes: [field code="code" name="fieldname"]
Expands into the value of the field name for the product as identified by code found by searching the products
database. It will return the first entry found in the series of Product Files in the products database. If this needs
to constrained to a particular table, use a [data table col key] call.

Interchange Documentation (Full)

38.2. The DATA and FIELD Tags 187



38.3. set, seti, scratch and scratchd

Scratch variables are maintained in the user session, which is separate from the form variable values set on
HTML forms. Many things can be controlled with scratch variables, particularly search and order processing,
the mv_click multiple variable setting facility, and key Interchange conditions session URL display.

There are three tags that are used to set the scratch space, [set name]value[/set], [seti
name]value[/seti], [tmp name]value[/tmp], and two tags for reading scratch space.

[set variable]value[/set]

named attributes: [set name="variable"] value [/set]
Sets a scratchpad variable to a value.
Most of the mv_* variables that are used for search and order conditionals are in another namespace. They
can be set through hidden fields in a form.
An order profile would be set with:

          [set checkout]
          name=required Please enter your name.
          address=required No address entered.
          [/set]
          <INPUT TYPE=hidden NAME=mv_order_profile VALUE="checkout">

A search profile would be set with:

          [set substring_case]
          mv_substring_match=yes
          mv_case=yes
          [/set]
          <INPUT TYPE=hidden NAME=mv_profile VALUE="substring_case">

To do the same as [set foo]bar[/set] in embedded Perl:

            [calc]$Scratch−>{foo} = 'bar'; return;[/calc]

[seti variable][value something][/seti]

The same as [set] [/set], except it interpolates the container text. The above is the same as:

            [set name=variable interpolate=1][value something][/set]

[tmp name]value[/tmp]

The same as [seti] but it does not persist.

[scratch name]

Returns the contents of a scratch variable to the page. [scratch foo] is the same as, but faster than:

            [perl]$Scratch−>{foo}[/perl]

[scratchd]

Interchange Documentation (Full)

38.3. set, seti, scratch and scratchd 188



The same as [scratch name], except it deletes the value after returning it. Same as [scratch foo][set foo][/set].

[if scratch name op* compare*] yes [else] no [/else] [/if]

Tests a scratch variable. See the IF tag for more information.

38.4. loop

Loop lists can be used to construct arbitrary lists based on the contents of a database field, a search, or other
value (like a fixed list). Loop accepts a search parameter that will do one−click searches on a database table
(or file).

To iterate over all keys in a table, use the idiom ([loop search="ra=yes/ml=9999"] [/loop].
ra=yes sets mv_return_all, which means "match everything". ml=9999 limits matches to that many
records. If the text file for searching an Interchange DBM database is not used, set st=db (mv_searchtype).

When using st=db, returned keys may be affected by TableRestrict. See catalog.cfg. Both can be
sorted with [sort table:field:mod −start +number] modifiers. See Sorting.

[loop item item item] LIST [/loop]

named attributes: [loop prefix=label* list="item item item"*
search="se=whatever"*]
Returns a string consisting of the LIST, repeated for every item in a comma−separated or space−separated list.
This tag works the same way as the [item−list] tag, except for order−item−specific values. It is intended
to pull multiple attributes from an item modifier, but can be useful for other things, like building a
pre−ordained product list on a page.
Loop lists can be nested by using different prefixes:

            [loop prefix=size list="Small Medium Large"]
                [loop prefix=color list="Red White Blue"]
                    [color−code]−[size−code]<BR>
                [/loop]
                <P>
            [/loop]

This will output:

                        Red−Small
                        White−Small
                        Blue−Small

                        Red−Medium
                        White−Medium
                        Blue−Medium

                        Red−Large
                        White−Large
                        Blue−Large

The search="args" parameter will return an arbitrary search, just as in a one−click search:

            [loop search="se=Americana/sf=category"]
                [loop−code] [loop−field title]

Interchange Documentation (Full)

38.4. loop 189



            [/loop]

The above will show all items with a category containing the whole world "Americana."

[if−loop−data table field] IF [else] ELSE [/else][/if−loop−field]

Outputs the IF if the field in the table is not empty, and the ELSE (if any) otherwise.

Note: This tag does not nest with other [if−loop−data ...] tags.

[if−loop−field field] IF [else] ELSE [/else][/if−loop−field]

Outputs the IF if the field in the products table is not empty, and the ELSE (if any) otherwise.

Note: This tag does not nest with other [if−loop−field ...] tags.

[loop−alternate N] DIVISIBLE [else] NOT DIVISIBLE [/else][/loop−alternate]

Set up an alternation sequence. If the loop−increment is divisible by N, the text will be displayed. If
[else]NOT DIVISIBLE TEXT [/else] is present, then the NOT DIVISIBLE TEXT will be
displayed. For example:

            [loop−alternate 2]EVEN[else]ODD[/else][/loop−alternate]
            [loop−alternate 3]BY 3[else]NOT by 3[/else][/loop−alternate]

[/loop−alternate]

Terminates the alternation area.

[loop−change marker]

Same as [item−change], but within loop lists.

[loop−code]

Evaluates to the first returned parameter for the current returned record.

[loop−data database fieldname]

Evaluates to the field name fieldname in the arbitrary database table database for the current item.

[loop−description]

Evaluates to the product description for the current item. Returns the <Description Field> from the first
products database where that item exists.

[loop−field fieldname]

The [loop−field ...] tag is special in that it looks in any of the tables defined as ProductFiles, in that
order, for the data, and returns the value only if that key is defined. In most catalogs, where ProductFiles
is not defined [loop−field title] is equivalent to [loop−data products title].

Interchange Documentation (Full)

38.4. loop 190



Evaluates to the field name fieldname in the database for the current item.

[loop−increment]

Evaluates to the number of the item in the list. Used for numbering items in the list. Starts from one (1).

[loop−last]tags[/loop−last]

Evaluates the output of the ITL tags encased in the [loop−last] tags. If it evaluates to a numerical non−zero
number (for example, 1, 23, or −1), the loop iteration will terminate. If the evaluated number is negative, the
item itself will be skipped. If the evaluated number is positive, the item itself will be shown, but will be last
on the list.

              [loop−last][calc]
                return −1 if '[loop−field weight]' eq '';
                return 1 if '[loop−field weight]' < 1;
                return 0;
                [/calc][/loop−last]

If this is contained in your [loop list] and the weight field is empty, a numerical −1 will be output from
the [calc][/calc] tags; the list will end and the item will not be shown. If the product's weight field is
less than 1, a numerical 1 is output. The item will be shown, but it will be the last item on the list.

[loop−next]tags[/loop−next]

Evaluates the output of the ITL tags encased in the [loop−next] tags. If it evaluates to a numerical non−zero
number (for example, 1, 23, or −1), the loop will be skipped with no output. Example:

              [loop−next][calc][loop−field weight] < 1[/calc][/loop−next]

If this is contained in your [loop list] and the product's weight field is less than 1, a numerical 1 will be
output from the [calc][/calc] operation. The item will not be shown.

[loop−price n* noformat*]

Evaluates to the price for the optional quantity n (from the products file) of the current item, with currency
formatting. If the optional "noformat" is set, then currency formatting will not be applied.

[loop−calc]PERL[/loop−calc]

Calls embedded Perl with the code in the container. All [loop−...] tags can be placed inside except for
[loop−filter ...][/loop−filter], [loop−exec routine][/loop−exec], [loop−last][/loop−last], and
[loop−next][/loop−next.

Note: All normal embedded Perl operations can be used, but be careful to pre−open any database tables with a
[perl tables="tables you need"][/perl] tag prior to the opening of the [loop].

[loop−exec routine]argument[/loop−exec]

Calls a subroutine predefined either in catalog.cfg with Sub, or in a [loop...] with [loop−sub
routine]PERL[/loop−sub]. The container text is passed as $_[0], and the array (or hash) value of the current

Interchange Documentation (Full)

38.4. loop 191



row is $_[1].

[loop−sub routine]PERL[/loop−sub]

Defines a subroutine that is available to the current (and subsequent) [loop−...] tags within the same page. See
Interchange Programming.

38.5. if

[if type field op* compare*]

named attributes: [if type="type" term="field" op="op" compare="compare"]

[if !type field op* compare*]

named attributes: [if type="!type" term="field" op="op" compare="compare"]

Allows the conditional building of HTML based on the setting of various Interchange session and database
values. The general form is:

        [if type term op compare]
        [then]
                                    If true, this text is printed on the document.
                                    The [then] [/then] is optional in most
                                    cases. If ! is prepended to the type
                                    setting, the sense is reversed and
                                    this text will be output for a false condition.
        [/then]
        [elsif type term op compare]
                                    Optional, tested when if fails.
        [/elsif]
        [else]
                                    Optional, printed on the document when all above fail.
        [/else]
        [/if]

The [if] tag can also have some variants:

        [if explicit][condition] CODE [/condition]
                    Displayed if valid Perl CODE returns a true value.
        [/if]

Some Perl−style regular expressions can be written, and combine conditions:

        [if value name =~ /^mike/i]
                                    This is the if with Mike.
        [elsif value name =~ /^sally/i]
                                    This is an elsif with Sally.
        [/elsif]
        [elsif value name =~ /^barb/i]
        [or value name =~ /^mary/i]
                                    This is an elsif with Barb or Mary.
        [elsif value name =~ /^pat/i]
        [and value othername =~ /^mike/i]
                                    This is an elsif with Pat and Mike.
        [/elsif]

Interchange Documentation (Full)

38.5. if 192



        [else]
                                    This is the else, no name I know.
        [/else]
        [/if]

While the named parameter tag syntax works for [if ...], it is more convenient to use the positional
syntax in most cases. The only exception is when you are planning to do a test on the results of another tag
sequence:

This will not work:

   [if value name =~ /[value b_name]/]
       Shipping name matches billing name.
   [/if]

Do this instead:

   [if type=value term=name op="=~" compare="/[value b_name]/"]
       Shipping name matches billing name.
   [/if]

As an alternative:

   [if type=value term=high_water op="<" compare="[shipping noformat=1]"]
       The shipping cost is too high, charter a truck.
   [/if]

There are many test targets available. The following is a list of some of the available test targets.

config Directive

The Interchange configuration variables. These are set by the directives in the Interchange configuration file.

            [if config CreditCardAuto]
            Auto credit card validation is enabled.
            [/if]

data database::field::key

The Interchange databases. Retrieves a field in the database and returns true or false based on the value.

            [if data products::size::99−102]
            There is size information.
            [else]
            No size information.
            [/else]
            [/if]

            [if data products::size::99−102 =~ /small/i]
            There is a small size available.
            [else]
            No small size available.
            [/else]
            [/if]

If another tag is needed to select the key, and it is not a looping tag construct, named parameters must be used:

Interchange Documentation (Full)

38.5. if 193



            [set code]99−102[/set]
            [if type=data term="products::size::[scratch code]"]
            There is size information.
            [else]
            No size information.
            [/else]
            [/if]

discount

Checks to see if a discount is present for an item.

            [if discount 99−102]
            This item is discounted.
            [/if]

explicit

A test for an explicit value. If Perl code is placed between a [condition][/condition] tag pair, it
will be used to make the comparison. Arguments can be passed to import data from user space, just as with
the [perl] tag.

            [if explicit]
            [condition]
                $country = $ values =~{country};
                return 1 if $country =~ /u\.?s\.?a?/i;
                return 0;
            [/condition]
            You have indicated a US address.
            [else]
            You have indicated a non−US address.
            [/else]
            [/if]

The same thing could be accomplished with [if value country =~ /u\.?s\.?a?/i], but there
are many situations where this example could be useful.

file

Tests for the existence of a file. This is useful for placing image tags only if the image is present.

            [if file /home/user/www/images/[item−code].gif]
            <IMG SRC="[item−code].gif">
            [/if]

            or

            [if type=file term="/home/user/www/images/[item−code].gif"]
            <IMG SRC="[item−code].gif">
            [/if]

The file test requires that the SafeUntrap directive contain ftfile (which is the default).

items

The Interchange shopping carts. If not specified, the cart used is the main cart. This is usually used to test to

Interchange Documentation (Full)

38.5. if 194



see if anything is in the cart. For example:

          [if items]You have items in your shopping cart.[/if]

          [if items layaway]You have items on layaway.[/if]

ordered

Order status of individual items in the Interchange shopping carts. Unless otherwise specified, the cart used is
the main cart. The following items refer to a part number of 99−102.

[if ordered 99−102] ... [/if]
            Checks the status of an item on order, true if item
            99−102 is in the main cart.

[if ordered 99−102 layaway] ... [/if]
            Checks the status of an item on order, true if item
            99−102 is in the layaway cart.

[if ordered 99−102 main size] ... [/if]
            Checks the status of an item on order in the main cart,
            true if it has a size attribute.

[if ordered 99−102 main size =~ /large/i] ... [/if]
            Checks the status of an item on order in the main cart,
            true if it has a size attribute containing 'large'.
            THE CART NAME IS REQUIRED IN THE OLD SYNTAX. The new
            syntax for that one would be:

            [if type=ordered term="99−102" compare="size =~ /large/i"]

            To make sure it is the size that is large, and not another attribute, you could use:

            [if ordered 99−102 main size eq 'large'] ... [/if]

[if ordered 99−102 main lines] ... [/if]
              Special case −− counts the lines that the item code is
              present on. (Only useful, of course, when mv_separate_items
              or SeparateItems is defined.)

scratch

The Interchange scratchpad variables, which can be set with the [set name]value[/set] element.

            [if scratch mv_separate_items]
            Ordered items will be placed on a separate line.
            [else]
            Ordered items will be placed on the same line.
            [/else]
            [/if]

session

The Interchange session variables. Of particular interest are logged_in, source, browser, and username.

validcc

Interchange Documentation (Full)

38.5. if 195



A special case, it takes the form [if validcc no type exp_date]. Evaluates to true if the supplied
credit card number, type of card, and expiration date pass a validity test. It performs a LUHN−10 calculation
to weed out typos or phony card numbers.

value

The Interchange user variables, typically set in search, control, or order forms. Variables beginning with mv_
are Interchange special values, and should be tested and used with caution.

variable

See Interchange Variable values.

The field term is the specifier for that area. For example, [if session frames] would return true if the
frames session parameter was set.

As an example, consider buttonbars for frame−based setups. You might decide to display a different buttonbar
with no frame targets for sessions that are not using frames:

   [if session frames]
       [buttonbar 1]
   [else]
       [buttonbar 2]
   [/else]
   [/if]

Another example might be the when search matches are displayed. If using the string [value
mv_match_count] titles found, it will display a plural result even if there is only one match. Use:

   [if value mv_match_count != 1]
       [value mv_match_count] matches found.
   [else]
       Only one match was found.
   [/else]
   [/if]

The op term is the compare operation to be used. Compare operations are the same as they are in Perl:

   ==  numeric equivalence
   eq  string equivalence
   >   numeric greater−than
   gt  string greater−than
   <   numeric less−than
   lt  string less−than
   !=  numeric non−equivalence
   ne  string equivalence

Any simple Perl test can be used, including some limited regex matching. More complex tests should be done
with [if explicit].

[then] text [/then]

This is optional if not nesting "if" conditions. The text immediately following the [if ..] tag is used as the
conditionally substituted text. If nesting [if ...] tags, use [then][/then] on any outside conditions to

Interchange Documentation (Full)

38.5. if 196



ensure proper interpolation.

[elsif type field op* compare*]

named attributes: [elsif type="type" term="field" op="op" compare="compare"]
Additional conditions for test, applied if the initial [if ..] test fails.

[else] text [/else]

The optional else−text for an if or if−item−field conditional.

[condition] text [/condition]

Only used with the [if explicit] tag. Allows an arbitrary expression in Perl to be placed inside, with its
return value interpreted as the result of the test. If arguments are added to [if explicit args], those
will be passed as arguments in the [perl] construct.

[/if]

Terminates an if conditional.

Interchange Documentation (Full)

38.5. if 197



39. Programming
Interchange has a powerful paradigm for extending and enhancing its functionality. It uses two mechanisms,
user−defined tags and user subroutines on two different security levels, global and catalog. In addition,
embedded Perl code can be used to build functionality into pages.

User−defined tags are defined with the UserTag directive in either interchange.cfg or catalog.cfg.
The tags in interchange.cfg are global and they are not constrained by the Safe Perl module as to
which opcodes and routines they may use. The user−defined tags in catalog.cfg are constrained by
Safe. However, if the AllowGlobal global directive is set for the particular catalog in use, its UserTag
and Sub definitions will have global capability.

39.1. Overriding Interchange Routines

Many of the internal Interchange routines can be accessed by programmers who can read the source and find
entry points. Also, many internal Interchange routines can be overridden:

   GlobalSub <<EOS
   sub just_for_overriding {
       package Vend::Module;
       use MyModule;
       sub to_override {
           &MyModule::do_something_funky($Values−>{my_variable});
       }
   }
   EOS

The effect of the above code is to override the to_override routine in the module Vend::Module. This
is preferable to hacking the code for functionality changes that are not expected to change frequently. In most
cases, updating the Interchange code will not affect the overridden code.

Note: Internal entry points are not guaranteed to exist in future versions of Interchange.

39.2. Embedding Perl Code

Perl code can be directly embedded in Interchange pages. The code is specified as:

   [perl]
       $name    = $Values−>{name};
       $browser = $Session−>{browser};
       return "Hi, $name! How do you like your $browser?";
   [/perl]

ASP syntax can be used with:

   [mvasp]
       <%
       $name    = $Values−>{name};
       $browser = $Session−>{browser};
       %>
       Hi, <%= $name %>!
       <%
           HTML "How do you like your $browser?";

39. Programming 198



       %>
   [/mvasp]

The two examples above are essentially equivalent. See the perl and mvasp tags for usage details.

The [perl] tag enforces Safe.pm checking, so many standard Perl operators are not available. This prevents
user access to all files and programs on the system without the Interchange daemon's permissions. See
GlobalSub and User−defined Tags for ways to make external files and programs available to
Interchange.

Named parameters:
See the perl tag for a description of the tag parameters and attributes. These include:

       [perl tables="tables−to−open"*
               subs=1*
             global=1*
          no_return=1*
            failure="Return value in case of compile or runtime error"*
               file="include_file"*]

Required parameters: none

Any Interchange tag (except ones using SQL) can be accessed using the $Tag object. If using SQL queries
inside a Perl element, AllowGlobal permissions are required and and the global=1 parameter must be
set. Installing the module Safe::Hole along with sharing the database table with <tables=tablename> will
enable SQL use.

For example:

           # If the item might contain a single quote
           [perl]
           $comments = $Values−>{comments};
           [/perl]

Important Note: Global subroutines are not subject to the stringent security check from the Safe module.
This means that the subroutine will be able to modify any variable in Interchange, and will be able to write to
read and write any file that the Interchange daemon has permission to write. Because of this, the subroutines
should be used with caution. They are defined in the main interchange.cfg file, and can't be reached by
from individual users in a multi−catalog system.

Global subroutines are defined in interchange.cfg with the GlobalSub directive, or in user catalogs
which have been enabled through AllowGlobal. Catalog subroutines are defined in catalog.cfg, with
the Sub directive and are subject to the stringent Safe.pm security restrictions that are controlled by the global
directive SafeUntrap.

The code can be as complex as you want them to be, but cannot be used by operators that modify the file
system or use unsafe operations like "system," "exec," or backticks. These constraints are enforced with the
default permissions of the standard Perl module Safe. Operations may be untrapped on a system−wide basis
with the SafeUntrap directive.

The result of this tag will be the result of the last expression evaluated, just as in a subroutine. If there is a
syntax error or other problem with the code, there will be no output.

Interchange Documentation (Full)

39. Programming 199

http://www.perl.com/pub/doc/manual/html/lib/Safe.html


Here is a simple one which does the equivalent of the classic hello.pl program:

   [perl] my $tmp = "Hello, world!"; $tmp; [/perl]

There is no need to set the variable. It is there only to show the capability.

To echo the user's browser, but within some HTML tags:

   [perl]
   my $html = '<H5>';
   $html .= $Session−>{browser};
   $html .= '</H5>';
   $html;
   [/perl]

To show the user their name and the current time:

   [perl]

   my $string = "Hi, " . $Values−>{name} ". The time is now ";
   $string .= $Tag−>time();
   $string;

   [/perl]

39.3. ASP−Like Perl

Interchange supports an ASP−like syntax using the [mvasp] tag.

   [mvasp]
   <HTML><BODY>
       This is HTML.<BR>

   <% HTML "This is code<BR>"; %>
       More HTML.<BR>
   <% $Document−>write("Code again.<BR>") %>
   [/mvasp]

If no closing [/mvasp] tag is present, the remainder of the page will also be seen as ASP.

ASP is simple. Anything between <% and %> is code, and the string %> can not occur anywhere inside.
Anything not between those anchors is plain HTML that is placed unchanged on the page. Interchange
variables, [L][/L], and [LC][/LC] areas will still be inserted, but any Interchange tags will not.

There is a shorthand <% = $foo %>, which is equivalent to <% $Document−>write($foo); %> or <% HTML
$foo; %>

   [mvasp]
   <HTML><BODY>
       This is HTML.<BR>
       [value name] will show up as &#91;value name].<BR>

       &#95_VARIABLE__ value is equal to: __VARIABLE__

   <% = "This is code<BR>" %>

Interchange Documentation (Full)

39.3. ASP−Like Perl 200



The __VARIABLE__ will be replaced by the value of Variable VARIABLE, but [value name] will be
shown unchanged.

Important Note: If using the SQL::Statement module, the catalog must be set to AllowGlobal in
interchange.cfg. It will not work in "Safe" mode due to the limitations of object creation in Safe. Also,
the Safe::Hole module must be installed to have SQL databases work in Safe mode.

39.4. Error Reporting

If your Perl code fails with a compile or runtime error, Interchange writes the error message from the Perl
interpreter into the catalog's error log. This is usually 'catalog_root/error.log'. Error messages do not appear
on your web page as the return value of the Perl tag or routine.

You will not have direct access to the 'strict' and 'warnings' pragmas where Interchange runs your perl
code under Safe (for example, within a [perl] or [mvasp] tag).

Interchange Documentation (Full)

39.4. Error Reporting 201



40. Interchange Perl Objects
You can access all objects associated with the catalog and the user settings with opcode restrictions based on
the standard Perl module Safe.pm. There are some unique things to know about programming with
Interchange.

Under Safe, certain things cannot be used. For instance, the following can not be used when running Safe:

   $variable = `cat file/contents`;

The backtick operator violates a number of the default Safe opcode restrictions. Also, direct file opens can not
be used. For example:

   open(SOMETHING, "something.txt")
       or die;

This will also cause a trap, and the code will fail to compile. However, equivalent Interchange routines can be
used:

   # This will work if your administrator doesn't have NoAbsolute set
   $users = $Tag−>file('/home/you/list');

   # This will always work, file names are based in the catalog directory
   $users = $Tag−>file('userlist');

The following is a list of Interchange Perl standard objects are:

$CGI

This is a hash reference to %CGI::values, the value of user variables as submitted in the current
page/form. To get the value of a variable submitted as

            <INPUT TYPE=hidden NAME=foo VALUE=bar>

use

            <% $Document−>write("Value of foo is $CGI−>{foo}"); %>

Remember, multiple settings of the same variable are separated by a NULL character. To get the array value,
use $CGI_array.

$CGI_array

This is a hash reference to %CGI::values_array, arrays containing the value or values of user variables
as submitted in the current page/form. To get the value of a variable submitted as

            <INPUT TYPE=hidden NAME=foo VALUE='bar'>
            <INPUT TYPE=hidden NAME=foo VALUE='baz'>

use

            <% = "The values of foo are", join (' and ', @{$CGI_array−>{'foo'}}) %>

40. Interchange Perl Objects 202

http://www.perl.com/pub/doc/manual/html/lib/Safe.html


Remember, multiple settings of the same variable are separated by a NULL character. To get the array value,
use $CGI_array.

$Carts

A reference to the shopping cart hash $Vend::Session−>{carts}. The normal default cart is "main". A typical
alias is $Items.
Shopping carts are an array of hash references. Here is an example of a session cart array containing a main
and a layaway cart.

            {
                'main' => [
                            {
                                'code' => '00−0011',
                                'mv_ib' => 'products',
                                'quantity' => 1,
                                'size' => undef,
                                'color' => undef
                            },
                            {
                                'code' => '99−102',
                                'mv_ib' => 'products',
                                'quantity' => 2,
                                'size' => 'L',
                                'color' => 'BLUE'
                            }
                        ],
                'layaway' => [
                            {
                                'code' => '00−341',
                                'mv_ib' => 'products',
                                'quantity' => 1,
                                'size' => undef,
                                'color' => undef
                            }
                        ]
            }

In this cart array, $Carts−>{main}[1]{code} is equal to 99−102. Normally, it would be equivalent to
$Items−>[1]{code}.

$Config

A reference to the $Vend::Cfg array. This is normally used with a large amount of the Interchange source
code, but for simple things use something like:

    # Allow searching the User database this page only
    $Config−>{NoSearch} =~ s/\buserdb\b//;

Changes are not persistent −− they are reset upon the next page access.

%Db

A hash of databases shared with the [mvasp tables="foo"] parameter to the tag call. Once the database
is shared, it is open and can be accessed by any of its methods. This will not work with SQL unless
AllowGlobal is set for the catalog.

Interchange Documentation (Full)

40. Interchange Perl Objects 203



To get a reference to a particular table, specify its hash element:

            $ref = $Db{products};

The available methods are:

            # access an element of the table
            $field = $ref−>field($key, $column);

            # set an element of the table
            $ref−>set_field($key, $column_name, $value);

            # atomic increment of an element of the table
            $ref−>inc_field($key, $column_name, 1);

            # see if element of the table is numeric
            $is_numeric = $ref−>numeric($column_name);

            # Quote for SQL query purposes
            $quoted = $ref−>quote($value, $column_name);

            # Check configuration of the database
            $delimiter = $ref−>config('DELIMITER');

            # Find the names of the columns (not including the key)
            @columns = $ref−>columns();
            # Insert the key column name
            unshift @columns, $ref−>config('KEY');

            # See if a column is in the table
            $is_a_column = defined $ref−>test_column($column_name);

            # See if a row is in the table
            $is_present = $ref−>record_exists($key);

            # Create a subroutine to return a single column from the table
            $sub = $ref−>field_accessor($column);
            for (@keys) {
                push @values, $sub−>($key);
            }

            # Create a subroutine to set a single column in the database
            $sub = $ref−>field_settor($column);
            for (@keys) {
                $sub−>($key, $value);
            }

            # Create a subroutine to set a slice of the database
            $sub = $ref−>row_settor(@columns);
            for (@keys) {
                $sub−>($key, @values);
            }

            # Return a complete array of the database (minus the key)
            @values = $ref−>row($key);

            # Return a complete hash of the database row (minus the key)
            $hashref = $ref−>row_hash($key);

            # Delete a record/row from the table
            $ref−>delete_record($key);

Interchange Documentation (Full)

40. Interchange Perl Objects 204



%Sql

A hash of SQL databases that you shared with the [mvasp tables="foo"] parameter to the tag call. It
returns the DBI database handle, so operations like the following can be performed:

          <%
            my $dbh = $Sql{products}
                or return HTML "Database not shared.";
            my $sth = $dbh−>prepare('select * from products')
                or return HTML "Couldn't open database.";
            $sth−>execute();
            my @record;
            while(@record = $sth−>fetchrow()) {
                foo();
            }
            $sth = $dbh−>prepare('select * from othertable')
                or return HTML "Couldn't open database.";
            $sth−>execute();
            while(@record = $sth−>fetchrow()) {
                bar();
            }
          %>

This will not work with unless AllowGlobal is set for your catalog.

$DbSearch

A search object that will search a database without using the text file. It is the same as Interchange's db
searchtype. Options are specified in a hash and passed to the object. All multiple−field options should be
passed as array references. Before using the $DbSearch object, it must be told which table to search. For
example, to use the table foo, it must have been shared with [mvasp foo].
There are three search methods: array, hash, and list.

            array    Returns a reference to an array of arrays (best)
            hash     Returns a reference to an array of hashes (slower)
            list     Returns a reference to an array of tab−delimited lines

\Example:

            $DbSearch−>{table} = $Db{foo};

            $search = {

                    mv_searchspec => 'Mona Lisa',
                    mv_search_field => [ 'title', 'artist', 'price' ],
                    mv_return_fields    => [ 'title' ]

                };

            my $ary = $DbSearch−>array($search);

            if(! scalar @$ary) {
                return HTML "No match.\n";
            }

            for(@$ary) {

Interchange Documentation (Full)

40. Interchange Perl Objects 205



$Document

This is an object that has several routines associated with it.

         HTML $foo;                     # Append $foo to the write buffer array
         $Document−>write($foo);        # object call to append $foo to the write
                                        # buffer array
         $Document−>insert($foo);       # Insert $foo to front of write buffer array
         $Document−>header($foo, $opt); # Append $foo to page header
         $Document−>send();             # Send write buffer array to output, done
                                        # automatically upon end of ASP, clears buffer
                                        # and invalidates $Document−>header()
         $Document−>hot(1);             # Cause writes to send immediately
         $Document−>hot(0);             # Stop immediate send
         @ary = $Document−>review();    # Place contents of write buffer in @ary
         $Document−>replace(@ary)       # Replace contents of write buffer with @ary
         $ary_ref = $Document−>ref();   # Return ref to output buffer

$Document−>write($foo)

Write $foo to the page in a buffered fashion. The buffer is an array containing the results of all previous
$Document−>write() operations. If $Document−>hot(1) has been set, the output immediately goes to
the user.

$Document−>insert($foo)

Insert $foo to the page buffer. The following example will output "123"

            $Document−>write("23");
            $Document−>insert("1");
            $Document−>send();

while this example will output "231"

            $Document−>write("23");
            $Document−>write("1");
            $Document−>send();

will output "231".

$Document−>header($foo, $opt)

Add the header line $foo to the HTTP header. This is used to change the page content type, cache options, or
other attributes. The code below changes the content type (MIME type) to text/plain:

            $Document−>header("Content−type: text/plain");

There is an optional hash that can be sent with the only valid value being "replace." The code below scrubs all
previous header lines:

            $Document−>header("Content−type: text/plain", { replace => 1 } );

Once output has been sent with $Document−>send(), this can no longer be done.

$Document−>hot($foo)

Interchange Documentation (Full)

40. Interchange Perl Objects 206



If the value of $foo is true (in a Perl sense), then all $Document−>write() operations will be immediately sent
until a $Document−>hot(0) is executed.

$Document−>send()

Causes the document write buffer to be sent to the browser and empties the buffer. Any further
$Document−>header() calls will be ignored. Can be used to implement non−parsed−header operation.

$Document−>review()

Returns the value of the write buffer.

            @ary = $Document−>review();

$Document−>replace(@new)

Completely replaces the write buffer with the arguments.

$Document−>ref()

Returns a reference to the write buffer.

            # Remove the first item in the write buffer
            my $ary_ref = $Document−>ref();
            shift @$ary_ref;

HTML

Writes a string (or list of strings) to the write buffer array. The call

            HTML $foo, $bar;

is exactly equivalent to

            $Document−>write($foo, $bar);

Honors the $Document−>hot() setting.

$Items

A reference to the current shopping cart. Unless an Interchange [cart ...] tag is used, it is normally the
same as $Carts−>{main}.

$Scratch

A reference to the scratch values ala [scratch foo].

           <% $Scratch−>{foo} = 'bar'; %>

is equivalent to:

            [set foo]bar[/set]

Interchange Documentation (Full)

40. Interchange Perl Objects 207



$Session

A reference to the session values ala [data session username].

            <%
                my $out = $Session−>{browser};
                $Document−>write($out);
            %>

is equivalent to:

            [data session browser]

Values can also be set. If the value of [data session source] needed to be changed, for example, set:

            <%
                $Session−>{source} = 'New_partner';
            %>

$Tag

Using the $Tag object, any Interchange tag including user−defined tags can be accessed.

IMPORTANT NOTE: If the tag will access a database that has not been previously opened, the table name
must be passed in the ASP call. For example:

Named parameters:

            [mvasp tables="products pricing"]

or
Positional parameters:

            [mvasp products pricing]

Any tag can be called.

            <%
                my $user = $Session−>{username};
                my $name_from_db = $Tag−>data('userdb', 'name', $user );
                $Document−>write($name_from_db);
            %>

is the same as:

            [data table=userdb column=name key="[data session username]"]

If the tag has a dash (−) in it, use an underscore instead:

            # WRONG!!!
            $Tag−>shipping−desc('upsg');
            # Right
            $Tag−>shipping_desc('upsg');

Interchange Documentation (Full)

40. Interchange Perl Objects 208



There are two ways of specifying parameters. Either use the positional parameters as documented (for an
authoritative look at the parameters, see the %Routine value in Vend::Parse), or specify it all with an option
hash parameter names as in any named parameters as specified in an Interchange tag. The calls

            $Tag−>data('products', 'title', '00−0011');

and

            my $opt = {
                            table   => 'products',
                            column  => 'title',
                            key     => '00−0011',
                        };

            $Tag−>data( $opt );

are equivalent for the data tag.
If using the option hash method, and the tag has container text, either specify it in the hash parameter body or
add it as the next argument. The two calls:

            $Tag−>item_list( {
                                'body' => "[item−code] [item−field title]",
                            });

and

            $Tag−>item_list( { }, "[item−code] [item−field title]")

are equivalent.
Parameter names are ALWAYS lower case.

$Values

A reference to the user form values ala [value foo].

            <% $Document−>write($Values−>{foo}); %>

is equivalent to:

            [value foo]

&Log

Send a message to the error log (same as ::logError in GlobalSub or global UserTag).

            <%
                Log("error log entry");
            %>

It prepends the normal timestamp with user and page information. To suppress that information, begin the
message with a backslash (\).

            <%
                Log("\\error log entry without timestamp");

Interchange Documentation (Full)

40. Interchange Perl Objects 209



                Log('\another error log entry without timestamp');
                Log("error log entry with timestamp");
            %>

Interchange Documentation (Full)

40. Interchange Perl Objects 210



41. Debugging
No debug output is provided by default. The source files contain commented−out '::logDebug(SOMETHING)'
statements which can be edited to activate them. Set the value of DebugFile to a file that will be written to:

   DebugFile /tmp/icdebug

41.1. Export

Named Parameters: [export table="dbtable"]
Positional Parameters: [export db_table]
The attribute hash reference is passed to the subroutine after the parameters as the last argument. This may
mean that there are parameters not shown here. Must pass named parameter interpolate=1 to cause
interpolation.
Invalidates cache: YES
Called Routine:
ASP/perl tag calls:

            $Tag−>export(
                {
                 table => VALUE,
                }
            )

OR

            $Tag−>export($table, $ATTRHASH);

Attribute aliases:

                base ==> table
                database ==> table

41.2. Time

Named Parameters: [time locale="loc"]
Positional Parameters: [time loc]
The attribute hash reference is passed after the parameters but before the container text argument. This may
mean that there are parameters not shown here. Must pass named parameter interpolate=1 to cause
interpolation.
This is a container tag, i.e., [time] FOO [/time].
Nesting: NO.
Invalidates cache: NO.
Called Routine:
ASP/perl tag calls:

            $Tag−>time(
                {
                 locale => VALUE,
                },
                BODY
            )

41. Debugging 211



OR

            $Tag−>time($locale, $ATTRHASH, $BODY);

41.3. Import

Named Parameters: [import table=table_name type=(TAB|PIPE|CSV|%%|LINE)
continue=(NOTES|UNIX|DITTO) separator=c]
Positional Parameters: [import table_name TAB]
The attribute hash reference is passed after the parameters but before the container text argument. This may
mean that there are parameters not shown here. Interpolates container text by default>.
This is a container tag, i.e., [import] FOO [/import].
Nesting: NO
Invalidates cache: YES.
Called Routine:
ASP/perl tag calls:

            $Tag−>import(
                {
                 table => VALUE,
                 type => VALUE,
                },
                BODY
            )

OR

            $Tag−>import($table, $type, $ATTRHASH, $BODY);

Attribute aliases:

                base ==> table
                database ==> table

Description:
Import one or more records into a database. The type is any of the valid Interchange delimiter types, with the
default being defined by the setting of the database DELIMITER. The table must already be a defined
Interchange database table; it cannot be created on−the−fly. (Use SQL for on−the−fly tables.)
The type of LINE and continue setting of NOTES is particularly useful, for it allows the naming of fields so
that the order in which they appear in the database will not have to be remembered. The following two
imports are identical in effect:

            [import table=orders type=LINE continue=NOTES]
            code: [value mv_order_number]
            shipping_mode: [shipping−description]
            status: pending
            [/import]

            [import table=orders type=LINE continue=NOTES]
            shipping_mode: [shipping−description]
            status: pending
            code: [value mv_order_number]
            [/import]

Interchange Documentation (Full)

41.3. Import 212



The code or key must always be present, and is always named code. If NOTES mode is not used, import the
fields in the same order as they appear in the ASCII source file. The [import ....] TEXT [/import] region may
contain multiple records. If using NOTES mode, use a separator, which by default is a form−feed character
(^L).

41.4. Log

Named Parameters: [log file=file_name]
Positional Parameters: [log file_name]
The attribute hash reference is passed after the parameters but before the container text argument. This may
mean that there are parameters not shown here. Must pass named parameter interpolate=1 to cause
interpolation. This is a container tag, i.e., [log] FOO [/log].
Nesting: NO.
Invalidates cache: NO.
Called Routine:
ASP/perl tag calls:

            $Tag−>log(
                {
                 file => VALUE,
                },
                BODY
            )

OR

            $Tag−>log($file, $ATTRHASH, $BODY);

Attribute aliases:

                arg ==> file

41.5. Header

41.6. price, description, accessories

[price code quantity* database* noformat*]

named attributes: [price code="code" quantity="N" base="database" noformat=1*
optionX="value"]
Expands into the price of the product identified by code as found in the products database. If there is more
than one products file defined, they will be searched in order unless constrained by the optional argument
base. The optional argument quantity selects an entry from the quantity price list. To receive a raw number,
with no currency formatting, use the option noformat=1.
If an named attribute corresponding to a product option is passed, and that option would cause a change in the
price, the appropriate price will be displayed.
Demo example: The T−Shirt (product code 99−102), with a base price of $10.00, can vary in price depending
on size and color. S, the small size, is 50 cents less; XL, the extra large size, is $1.00 more, and the color RED
is 0.75 extra. There are also quantity pricing breaks (see the demo pricing database. So the following will
be true:

Interchange Documentation (Full)

41.4. Log 213



            [price  code=99−102
                    size=L]              is $10.00

            [price  code=99−102
                    size=XL]             is $11.00

            [price  code=99−102
                    color=RED
                    size=XL]             is $11.75

            [price  code=99−102
                    size=XL
                    quantity=10]         is $10.00

            [price  code=99−102
                    size=S]              is $9.50

An illustration of this is on the simple flypage template when passed that item code.

[description code table*]

named attributes: [description code="code" base="database"]
Expands into the description of the product identified by code as found in the products database. If there is
more than one products file defined, they will be searched in order unless constrained by the optional
argument table.

[accessories code attribute*, type*, field*, database*, name*, outboard*]

named attributes: [accessories code="code" arg="attribute*, type*, field*,
database*, name*, outboard*"]
Initiates special processing of item attributes based on entries in the product database. See Item Attributes for
a complete description of the arguments.
When called with an attribute, the database is consulted and looks for a comma−separated list of attribute
options. They take the form:

            name=Label Text, name=Label Text*

The label text is optional. If none is given, the name will be used.
If an asterisk is the last character of the label text, the item is the default selection. If no default is specified,
the first will be the default. An example:

            [accessories TK112 color]

This will search the product database for a field named "color." If an entry "beige=Almond, gold=Harvest
Gold, White*, green=Avocado" is found, a select box like this will be built:

            <SELECT NAME="mv_order_color">
            <OPTION VALUE="beige">Almond
            <OPTION VALUE="gold">Harvest Gold
            <OPTION SELECTED>White
            <OPTION VALUE="green">Avocado
            </SELECT>

In combination with the mv_order_item and mv_order_quantity variables, this can be used to allow
entry of an attribute at time of order.

Interchange Documentation (Full)

41.4. Log 214



41.7. FILE and INCLUDE

These elements read a file from the disk and insert the contents in the location of the tag. [include ...]
will allow insertion of Interchange variables and ITL tags.

[file ...]

named: [file name="name" type="dos|mac|unix"*]
positional: [file name]
Inserts the contents of the named file. The file should normally be relative to the catalog directory. File names
beginning with / or .. are only allowed if the Interchange server administrator has disabled NoAbsolute. The
optional type parameter will do an appropriate ASCII translation on the file before it is sent.

[include file]

named attributes: [include file="name"]
Same as [file name] except interpolates for all Interchange tags and variables.

41.8. Banner/Ad rotation

Interchange has a built−in banner rotation system designed to show ads or other messages according to
category and an optional weighting.

The [banner ...] ITL tag is used to implement it.

The weighting system pre−builds banners in the directory 'Banners,' under the temporary directory. It will
build one copy of the banner for every one weight. If one banner is weighted 7, one 2, and one 1, then a total
of 10 pre−built banners will be made. The first will be displayed 70 percent of the time, the second 20 percent,
and the third 10 percent, in random fashion. If all banners need to be equal, give each a weight of 1.

Each category may have separate weighting. If the above is placed in category tech, then it will behave as
above when placed in [banner category=tech] in the page. A separate category, say art, would have
its own rotation and weighting.

The [banner ...] tag is based on a database table, named banners by default. It expects a total of five
(5) fields in the table:

code

This is the key for the item. If the banners are not weighted, this should be a category specific code.

category

To choose to categorize weighted ads, this contains the category to select. If empty, it will be placed in the
default (or blank) category.

weight

Must be an integer number 1 or greater to include this ad in the weighting. If 0 or blank, the ad will be ignored
when weighted ads are built.

Interchange Documentation (Full)

41.7. FILE and INCLUDE 215



rotate

If the weighted banners are not used, this must contain some value. If the field is empty, the banner will not be
displayed. If the value is specifically 0 (zero), then the entire contents of the banner field will be displayed
when this category is used. If it is non−zero, then the contents of the banner field will be split into segments
(by the separator {or}). For each segment, the banners will rotate in sequence for that user only. Obviously,
the first banner in the sequence is more likely to be displayed than the last.
Summary of values of rotate field:

            non−zero, non−blank: Rotating ads
            blank:               Ad not displayed
            0:                   Ad is entire contents of banner field

banner

This contains the banner text. If more than one banner is in the field, they should be separated by the text
{or} (which will not be displayed).

Interchange expects the banner field to contains the banner text. It can contain more than one banner,
separated by the string '{or}.' To activate the ad, place any string in the field rotate.

The special key "default" is the banner that is displayed if no banners are found. (Doesn't apply to weighted
banners.)

Weighted banners are built the first time they are accessed after catalog reconfiguration. They will not be
rebuilt until the catalog is reconfigured, or the file tmp/Banners/total_weight and
tmp/Banners/<category>/total_weight is removed.

If the option once is passed (i.e., [banner once=1 weighted=1], then the banners will not be rebuilt until the
total_weight file is removed.

The database specification should make the weight field numeric so that the proper query can be made.
Here is the example from Interchange's demo:

   Database   banner   banner.txt   TAB
   Database   banner   NUMERIC      weight

Examples:

weighted, categorized

To select categorized and weighted banners:
The banner table would look like this:

            code    category   weight   rotate   banner
            t1      tech       1                 Click here for a 10% banner
            t2      tech       2                 Click here for a 20% banner
            t3      tech       7                 Click here for a 70% banner
            a1      art        1                 Click here for a 10% banner
            a2      art        2                 Click here for a 20% banner
            a3      art        7                 Click here for a 70% banner

Tag would be:

Interchange Documentation (Full)

41.7. FILE and INCLUDE 216



            [banner weighted=1 category="tech"]

This will find *all* banners with a weight >= 1 where the category field is equal to tech. The files will be
made into the director tmp/Banners/tech.

weighted

To select weighted banners:

            [banner weighted=1]

This will find *all* banners with a weight >= 1. (Remember, integers only.) The files will be made into the
director tmp/Banners.

            code    category   weight   rotate   banner
            t1      tech       1                 Tech banner 1
            t2      tech       2                 Tech banner 2
            t3      tech       7                 Tech banner 3
            a1      art        1                 Art banner 1
            a2      art        2                 Art banner 2
            a3      art        7                 Art banner 3

Each of the above with a weight of 7 will actually be displayed 35 percent of the time.

categorized, not rotating

            [banner category="tech"]

This is equivalent to:

            [data table=banner col=banner key=tech

The differences are that it is not selected if "rotate" field is blank; if not selected, the default banner is
displayed.
The banner table would look like this:

            code    category   weight   rotate   banner
            tech               0        0        Tech banner

Interchange tags can be inserted in the category parameter, if desired:

            [banner category="[value interest]"]

categorized and rotating

            [banner category="tech"]

The difference between this and above is the database.
The banner table would look like this:

            code    category   weight   rotate   banner
            tech               0        1        Tech banner 1{or}Tech banner 2
            art                0        1        Art banner 1{or}Art banner 2

Interchange Documentation (Full)

41.7. FILE and INCLUDE 217



This would rotate between banner 1 and 2 for the category tech for each user. Banner 1 is always displayed
first. The art banner would never be displayed unless the tag [banner category=art] was used, of
course.
Interchange tags can be inserted in the category parameter, if desired:

            [banner category="[value interest]"]

multi−level categorized

            [banner category="tech:hw"] or [banner category="tech:sw"]

If have a colon−separated category, Interchange will select the most specific ad available. If the banner
table looks like this:

            code    category   weight   rotate   banner
            tech               0        1        Tech banner 1{or}Tech banner 2
            tech:hw            0        1        Hardware banner 1{or}HW banner 2
            tech:sw            0        1        Software banner 1{or}SW banner 2

This works the same as single−level categories, except that the category tech:hw will select that banner. The
category tech:sw will select its own. But, the category tech:html would just get the "tech" banner. Otherwise,
it works just as in other categorized ads. Rotation will work if set non−zero/non−blank, and it will be inactive
if the rotate field is blank. Each category rotates on its own.

Advanced

All parameters are optional since they are marked with an asterisk (*).
Tag syntax:

            [banner
                weighted=1*
                category=category*
                once=1*
                separator=sep*
                delimiter=delim*
                table=banner_table*
                a_field=banner_field*
                w_field=weight_field*
                r_field=rotate_field*
            ]

Defaults are blank except:

            table       banner    selects table used
            a_field     banner    selects field for banner text
            delimiter   {or}      delimiter for rotating ads
            r_field     rotate    rotate field
            separator   :         separator for multi−level categories
            w_field     weight    rotate field

41.9. Tags for Summarizing Shopping Basket/Cart

The following elements are used to access common items which need to be displayed on baskets and checkout
pages.

Interchange Documentation (Full)

41.9. Tags for Summarizing Shopping Basket/Cart 218



* marks an optional parameter

[item−list cart*]

named attributes: [item−list name="cart"]
Places an iterative list of the items in the specified shopping cart, the main cart by default. See Item Lists for a
description.

[/item−list]

Terminates the [item−list] tag.

[nitems cart*]

Expands into the total number of items ordered so far. Takes an optional cart name as a parameter.

[subtotal]

Expands into the subtotal cost, exclusive of sales tax, of all the items ordered so far.

[salestax cart*]

Expands into the sales tax on the subtotal of all the items ordered so far. If there is no key field to derive the
proper percentage, such as state or zip code, it is set to 0. See SALES TAX for more information.

[shipping−description mode*]

named attributes: [shipping−description name="mode"]
The text description of mode. The default is the shipping mode currently selected.

[shipping mode*]

named attributes: [shipping name="mode"]
The shipping cost of the items in the basket via mode. The default mode is the shipping mode currently
selected in the mv_shipmode variable. See SHIPPING.

[total−cost cart*]

Expands into the total cost of all the items in the current shopping cart, including sales tax, if any.

[currency convert*]

named attributes: [currency convert=1*]
When passed a value of a single number, formats it according to the currency specification. For instance:

            [currency]4[/currency]

will display:

            4.00

Interchange Documentation (Full)

41.9. Tags for Summarizing Shopping Basket/Cart 219



Uses the Locale and PriceCommas settings as appropriate, and can contain a [calc] region. If the optional
"convert" parameter is set, it will convert according to PriceDivide> for the current locale. If Locale is set to
fr_FR, and PriceDivide for fr_FR is 0.167, using the following sequence:

            [currency convert=1] [calc] 500.00 + 1000.00 [/calc] [/currency]

will cause the number 8.982,04 to be displayed.

[/currency]

Terminates the currency region.

[cart name]

named attributes: [cart name="name"]
Sets the name of the current shopping cart for display of shipping, price, total, subtotal, and nitems tags. If a
different price is used for the cart, all of the above except [shipping] will reflect the normal price field.
Those operations must be emulated with embedded Perl or the [item−list], [calc], and [currency]
tags, or use the PriceAdjustment feature to set it.

[row nn]

named attributes: [row width="nn"]
Formats text in tables. Intended for use in emailed reports or <PRE></PRE> HTML areas. The parameter nn
gives the number of columns to use. Inside the row tag, [col param=value ...] tags may be used.

[/row]

Terminates a [row nn] element.

[col width=nn wrap=yes|no gutter=n align=left|right|input spacing=n]

Sets up a column for use in a [row]. This parameter can only be contained inside a [row nn] [/row]
tag pair. Any number of columns (that fit within the size of the row) can be defined.
The parameters are:

            width=nn        The column width, including the gutter. Must be
                            supplied, there is no default. A shorthand method
                            is to just supply the number as the first parameter,
                            as in [col 20].

            gutter=n        The number of spaces used to separate the column (on
                            the right−hand side) from the next. Default is 2.

            spacing=n       The line spacing used for wrapped text. Default is 1,
                            or single−spaced.

            wrap=(yes|no)   Determines whether text that is greater in length than
                            the column width will be wrapped to the next line. Default
                            is yes.

            align=(L|R|I)   Determines whether text is aligned to the left (the default),
                            the right, or in a way that might display an HTML text
                            input field correctly.

Interchange Documentation (Full)

41.9. Tags for Summarizing Shopping Basket/Cart 220



[/col]

Terminates the column field.

41.10. Item Lists

Within any page, the [item−list cart*] element shows a list of all the items ordered by the customer
so far. It works by repeating the source between [item−list] and [/item−list] once for each item
ordered.

Note: The special tags that reference item within the list are not normal Interchange tags, do not take named
attributes, and cannot be contained in an HTML tag (other than to substitute for one of its values or provide a
conditional container). They are interpreted only inside their corresponding list container. Normal Interchange
tags can be interspersed, though they will be interpreted after all of the list−specific tags.

Between the item_list markers the following elements will return information for the current item:

[if−item−data table column]

If the database field column in table table is non−blank, the following text up to the [/if−item−data]
tag is substituted. This can be used to substitute IMG or other tags only if the corresponding source item is
present. Also accepts a [else]else text[/else] pair for the opposite condition.

Note: This tag does not nest with other [if−item−data ...] tags.

[if−item−data table column]

Reverses sense for [if−item−data].

[/if−item−data]

Terminates an [if−item−data table column] element.

[if−item−field fieldname]

If the products database field fieldname is non−blank, the following text up to the [/if−item−field] tag
is substituted. If there are more than one products database table (see ProductFiles), it will check them in order
until a matching key is found. This can be used to substitute IMG or other tags only if the corresponding
source item is present. Also accepts a [else]else text[/else] pair for the opposite condition.

Note: This tag does not nest with other [if−item−field ...] tags.

[if−item−field fieldname]

Reverses sense for [if−item−field].

[/if−item−field]

Terminates an [if−item−field fieldname] element.

Interchange Documentation (Full)

41.10. Item Lists 221



[item−accessories attribute*, type*, field*, database*, name*]

Evaluates to the value of the Accessories database entry for the item. If passed any of the optional arguments,
initiates special processing of item attributes based on entries in the product database.

[item−alternate N] DIVISIBLE [else] NOT DIVISIBLE [/else][/item−alternate]

Sets up an alternation sequence. If the item−increment is divisible by N, the text will be displayed. If an
[else]NOT DIVISIBLE TEXT[/else] is present, the NOT DIVISIBLE TEXT will be displayed.
For example:

            [item−alternate 2]EVEN[else]ODD[/else][/item−alternate]
            [item−alternate 3]BY 3[else]NOT by 3[/else][/item−alternate]

[/item−alternate]

Terminates the alternation area.

[item−code]

Evaluates to the product code for the current item.

[item−data database fieldname]

Evaluates to the field name fieldname in the arbitrary database table database for the current item.

[item−description]

Evaluates to the product description (from the products file) for the current item.

[item−field fieldname]

The [item−field ...] tag is special in that it looks in any of the tables defined as ProductFiles, in that
order, for the data, returning the value only if that key is defined. In most catalogs, where ProductFiles is
not defined (i.e., the demo), [item−field title] is equivalent to [item−data products
title].
Evaluates to the field name fieldname in the products database for the current item. If the item is not found in
the first of the ProductFiles, all will be searched in sequence.

[item−increment]

Evaluates to the number of the item in the match list. Used for numbering search matches or order items in the
list.

[item−last]tags[/item−last]

Evaluates the output of the Interchange tags encased inside the tags. If it evaluates to a numerical non−zero
number (i.e., 1, 23, or −1), the list iteration will terminate. If the evaluated number is negative, the item itself
will be skipped. If the evaluated number is positive, the item itself will be shown but will be last on the list.

              [item−last][calc]
                return −1 if '[item−field weight]' eq '';

Interchange Documentation (Full)

41.10. Item Lists 222



                return 1 if '[item−field weight]' < 1;
                return 0;
                [/calc][/item−last]

If this is contained in the [item−list] (or [search−list] or flypage) and the weight field is empty, a
numerical −1 will be output from the [calc][/calc] tags; the list will end and the item will not be
shown. If the product's weight field is less than 1, a numerical 1 is output. The item will be shown, but will be
the last item shown. (If it is an [item−list], any price for the item will still be added to the subtotal.)
NOTE: there is no equivalent HTML style.

[item−modifier attribute]

Evaluates to the modifier value of attribute for the current item.

[item−next]tags[/item_next]

Evaluates the output of the Interchange tags encased inside. If it evaluates to a numerical non−zero number
(i.e., 1, 23, or −1), the item will be skipped with no output. Example:

              [item−next][calc][item−field weight] < 1[/calc][/item−next]

If this is contained in the [item−list] (or [search−list] or flypage) and the product's weight field is
less than 1, a numerical 1 will be output from the [calc][/calc] operation. The item will not be shown. (If it is
an [item−list], any price for the item will still be added to the subtotal.)

[item−price n* noformat*]

Evaluates to the price for quantity n (from the products file) of the current item, with currency formatting. If
the optional "noformat" is set, currency formatting will not be applied.

[discount−price n* noformat*]

Evaluates to the discount price for quantity n (from the products file) of the current item, with currency
formatting. If the optional "noformat" is set, currency formatting will not be applied. Returns regular price if
not discounted.

[item−discount]

Returns the difference between the regular price and the discounted price.

[item−quantity]

Evaluates to the quantity ordered for the current item.

[item−subtotal]

Evaluates to the subtotal (quantity * price) for the current item. Quantity price breaks are taken into account.

[modifier−name attribute]

Evaluates to the name to give an input box in which the customer can specify the modifier to the ordered item.

Interchange Documentation (Full)

41.10. Item Lists 223



[quantity−name]

Evaluates to the name to give an input box in which the customer can enter the quantity to order.

Interchange Documentation (Full)

41.10. Item Lists 224



42. Interchange Page Display
Interchange has several methods for displaying pages:

Display page by name
If a page with [page some_page] or <A HREF="[area some_page]"> is called and that
some_page.html exists in the pages directory (PageDir), it will be displayed.

• 

On−the−fly page
If a page with [page 00−0011] or <A HREF="[area 00−0011]"> is called and 00−0011
exists as a product in one of the products databases (ProductFiles), Interchange will use the
special page descriptor flypage as a template and build based on that part number. This is partly for
convenience; the same thing can be accomplished by calling [page your_template
00−0011] and using the [data session arg] to perform the templating. But there is special
logic associated with the PageSelectField configuration attribute to allow pages to be built with
varying templates.

• 

Determine page via form action and variables
If a form action, in almost all cases the page to display will be determined by the mv_nextpage
form value. Example:

• 

            <FORM ACTION="[process]">
            <INPUT TYPE=hidden NAME=mv_todo VALUE=return>
            <SELECT NAME=mv_nextpage>
            <OPTION VALUE=index>Main page
            <OPTION VALUE=browse>Product listing
            <OPTION VALUE="ord/basket">Shopping cart
            </SELECT>
            <INPUT TYPE=submit VALUE=Go>
            </FORM>

The mv_nextpage dropdown will determine the page the user goes to.

42.1. On−the−fly Catalog Pages

If an item is displayed on the search list (or order list) and there is a link to a special page keyed on the item,
Interchange will attempt to build the page "on the fly." It will look for the special page flypage.html, which is
used as a template for building the page. If [item−field fieldname], [item−price], and similar
elements are used on the page, complex and information−packed pages can be built. The [if−item−field
fieldname] HTML [/if−item−field] pair can be used to insert HTML only if there is a non−blank
value in a particular field.

Important note: Because the tags are substituted globally on the page, [item−*] tags cannot be used on
the default on−the−fly page. To use a [search−region] or [item−list] tag, change the default with the prefix
parameter. Example:

   [item−list prefix=cart]
   [cart−code] −− title=[cart−data products title]
   [/item−list]

To have an on−the−fly page mixed in reliably, use the idiom [fly−list prefix=fly code="[data
session arg]"] [/flylist] pair.

[fly−list code="product_code" base="table"] ... [/fly−list]

42. Interchange Page Display 225



Other parameters:

            prefix=label     Allows [label−code], [label−description]

Defines an area in a random page which performs the flypage lookup function, implementing the tags below:

           [fly−list code="[data session arg]"]
            (contents of flypage.html)
           [/fly−list]

If placed around the contents of the demo flypage, in a file named <flypage2.html>, it will make these two
calls display identical pages:

            [page 00−0011] One way to display the Mona Lisa [/page]
            [page flypage2 00−0011] Another way to display the Mona Lisa [/page]

If the directive PageSelectField is set to a valid product database field which contains a valid Interchange page
name (relative to the catalog pages directory, without the .html suffix), it will be used to build the on−the−fly
page.

Active tags in their order of interpolation:

[if−item−field field]    Tests for a non−empty, non−zero value in field
[if−item−data db field]  Tests for a non−empty, non−zero field in db
[item−code]              Product code of the displayed item
[item−accessories args]  Accessory information (see accessories)
[item−description]       Description field information
[item−price quantity*]   Product price (at quantity)
[item−field field]       Product database field
[item−data db field]     Database db entry for field

42.2. Special Pages

A number of HTML pages are special for Interchange operation. Typically, they are used to transmit error
messages, status of search or order operations, and other out of boundary conditions.

Note: The distributed demo does not use all of the default values.

The names of these pages can be set with the SpecialPage directive. The standard pages and their default
locations:

canceled (special_pages/canceled.html)

The page displayed by Interchange when an order has been canceled by the user.

catalog (special_pages/catalog.html)

The main catalog page presented by Interchange when another page is not specified.

failed (special_pages/failed.html)

If the sendmail program could not be invoked to email the completed order, the failed.html page is displayed.

Interchange Documentation (Full)

42.2. Special Pages 226



flypage (special_pages/flypage.html)

If the catalog page for an item was not found when its [item−link] is clicked, this page is used as a
template to build an on−the−fly page. See On−the−fly Catalog Pages.

interact (special_pages/interact.html)

Displayed if an unexpected response was received from the browser, such as not getting expected fields from
submitting a form. This would probably happen from typos in the html pages, but could be a browser bug.

missing (special_pages/missing.html)

This page is displayed if the URL from the browser specifies a page that does not have a matching .html file
in the pages directory. This can happen if the customer saved a bookmark to a page that was later removed
from the database, for example, or if there is a defect in the code.
Essentially this is the same as a 404 error in HTTP. To deliberately display a 404 error, just put this in
special_pages/missing.html:

            [tag op=header]Status: 404 missing[/tag]

noproduct (special_pages/noproduct.html)

This page is displayed if the URL from the browser specifies the ordering of a product code which is not in
the products file.

order (ord/basket.html)

This page is displayed when the customer orders an item. It can contain any or all of the customer−entered
values, but is commonly used as a status display (or "shopping basket").

search (results.html)

Contains the default output page for the search engine results. Also required is an input page, which can be the
same as search.html or an additional page. By convention Interchange defines this as the page results.

            SpecialPage   search   results

violation (special pages/violation.html)

Displayed if a security violation is noted, such as an attempt to access a page denied by an access_gate.
See UserDB.

42.3. Checking Page HTML

Interchange allows debugging of page HTML with an external page checking program. Because leaving this
enabled on a production system is potentially a very bad performance degradation, the program is set in a the
global configuration file with the CheckHTML directive. To check a page for validity, set the global directive
CheckHTML to the name of the program (don't do any output redirection). A good choice is the freely
available program Weblint. It would be set in interchange.cfg with:

   CheckHTML  /usr/local/bin/weblint −s −

Interchange Documentation (Full)

42.3. Checking Page HTML 227



Of course, the server must be restarted for it to be recognized. The full path to the program should be used. If
having trouble, check it from the command line (as with all external programs called by Interchange).

Insert [flag type=checkhtml][/tag] at the top or bottom of pages to check, and the output of the
checker should be appended to the browser output as a comment, visible if the page or frame source are
viewed. To do this occasionally, use a Variable setting:

   Variable  CHECK_HTML    [flag type=checkhtml]

and place __CHECK_HTML__ in the pages. Then set the Variable to the empty string to disable it.

Interchange Documentation (Full)

42.3. Checking Page HTML 228



43. Forms and Interchange
Interchange uses HTML forms for many of its functions, including ordering, searching, updating account
information, and maintaining databases. Order operations possibly include ordering an item, selecting item
size or other attributes, and reading user information for payment and shipment. Search operations may also
be triggered by a form.

Interchange supports file upload with the multipart/form−data type. The file is placed in memory and
discarded if not accessed with the [value−extended name=filevar file_contents=1] tag or
written with [value−extended name=filevar outfile=your_file_name]. See Extended
Value Access and File Upload.

Interchange passes variables from page to page automatically. Every user session that is started by
Interchange automatically creates a variable set for the user. As long as the user session is maintained, and
does not expire, any variables you set on a form will be "remembered" in future sessions.

Don't use the prefix mv_ for your own variables. Interchange treats these specially and they may not behave
as you wish. Use the mv_ variables only as they are documented.

Interchange does not unset variables it does not find on the current form. That means you can't expect a
checkbox to become unchecked unless you explicitly reset it.

43.1. Special Form Fields

Interchange treats some form fields specially, to link to the search engine and provide more control over user
presentation. It has a number of predefined variables, most of whose names are prefixed with mv_ to prevent
name clashes with your variables. It also uses a few variables which are post−fixed with integer digits; those
are used to provide control in its iterating lists.

Most of these special fields begin with mv_, and include:

(O = order, S = search, C = control, A = all, X in scratch space)

Name               scan Type  Description

mv_all_chars         ac  S   Turns on punctuation matching
mv_arg[0−9]+             A   Parameters for mv_subroutine (mv_arg0,mv_arg1,...)
mv_base_directory    bd  S   Sets base directory for search file names
mv_begin_string      bs  S   Pattern must match beginning of field
mv_case              cs  S   Turns on case sensitivity
mv_cartname              O   Sets the shopping cart name
mv_check                 A   Any form, sets multiple user variables after update
mv_click                 A   Any form, sets multiple form variables before update
mv_click                 XA  Default mv_click routine, click is mv_click_arg
mv_click <name>          XA  Routine for a click <name>, sends click as arg
mv_click_arg             XA  Argument name in scratch space
mv_coordinate        co  S   Enables field/spec matching coordination
mv_column_op         op  S   Operation for coordinated search
mv_credit_card*          O   Discussed in order security (some are read−only)
mv_dict_end          de  S   Upper bound for binary search
mv_dict_fold         df  S   Non−case sensitive binary search
mv_dict_limit        di  S   Sets upper bound based on character position
mv_dict_look         dl  S   Search specification for binary search

43. Forms and Interchange 229



mv_dict_order        do  S   Sets dictionary order mode
mv_doit                  A   Sets default action
mv_email                 O   Reply−to address for orders
mv_exact_match       em  S   Sets word−matching mode
mv_failpage          fp  O,S Sets page to display on failed order check/search
mv_field_file        ff  S   Sets file to find field names for Glimpse
mv_field_names       fn  S   Sets field names for search, starting at 1
mv_first_match       fm  S   Start displaying search at specified match
mv_head_skip         hs  S   Sets skipping of header line(s) in index
mv_index_delim       id  S   Delimiter for search fields (TAB default)
mv_matchlimit        ml  S   Sets match page size
mv_max_matches       mm  S   Sets maximum match return (only for Glimpse)
mv_min_string        ms  S   Sets minimum search spec size
mv_negate            ne  S   Records NOT matching will be found
mv_nextpage          np  A   Sets next page user will go to
mv_numeric           nu  S   Comparison numeric in coordinated search
mv_order_group           O   Allows grouping of master item/sub item
mv_order_item            O   Causes the order of an item
mv_order_number          O   Order number of the last order (read−only)
mv_order_quantity        O   Sets the quantity of an ordered item
mv_order_profile         O   Selects the order check profile
mv_order_receipt         O   Sets the receipt displayed
mv_order_report          O   Sets the order report sent
mv_order_subject         O   Sets the subject line of order email
mv_orsearch          os  S   Selects AND/OR of search words
mv_profile           mp  S   Selects search profile
mv_range_alpha       rg  S   Sets alphanumeric range searching
mv_range_look        rl  S   Sets the field to do a range check on
mv_range_max         rx  S   Upper bound of range check
mv_range_min         rm  S   Lower bound of range check
mv_record_delim      dr  S   Search index record delimiter
mv_return_all        ra  S   Return all lines found (subject to range search)
mv_return_delim      rd  S   Return record delimiter
mv_return_fields     rf  S   Fields to return on a search
mv_return_file_name  rn  S   Set return of file name for searches
mv_return_spec       rs  S   Return the search string as the only result
mv_save_session          C   Set to non−zero to prevent expiration of user session
mv_search_field      sf  S   Sets the fields to be searched
mv_search_file       fi  S   Sets the file(s) to be searched
mv_search_line_return lr S   Each line is a return code (loop search)
mv_search_match_count    S   Returns the number of matches found (read−only)
mv_search_page       sp  S   Sets the page for search display
mv_searchspec        se  S   Search specification
mv_searchtype        st  S   Sets search type (text, glimpse, db or sql)
mv_separate_items        O   Sets separate order lines (one per item ordered)
mv_session_id        id  A   Suggests user session id (overridden by cookie)
mv_shipmode              O   Sets shipping mode for custom shipping
mv_sort_field        tf  S   Field(s) to sort on
mv_sort_option       to  S   Options for sort
mv_spelling_errors   er  S   Number of spelling errors for Glimpse
mv_substring_match   su  S   Turns off word−matching mode
mv_successpage           O   Page to display on successful order check
mv_todo                  A   Common to all forms, sets form action
mv_todo.map              A   Contains form imagemap
mv_todo.checkout.x       O   Causes checkout action on click of image
mv_todo.return.x         O   Causes return action on click of image
mv_todo.submit.x         O   Causes submit action on click of image
mv_todo.x                A   Set by form imagemap
mv_todo.y                A   Set by form imagemap
mv_unique            un  S   Return unique search results only
mv_value             va  S   Sets value on one−click search (va=var=value)

Interchange Documentation (Full)

43. Forms and Interchange 230



43.2. Form Actions

Interchange form processing is based on an action and a todo. The predefined actions at the first level are:

   process       process a todo
   search        form−based search
   scan          path−based search
   order         order an item

Any action can be defined with ActionMap.

The process action has a second todo level called with mv_todo or mv_doit. The mv_todo takes
preference over mv_doit, which can be used to set a default if no mv_todo is set.

The action can be specified with any of:

page name

Calling the page "search" will cause the search action. process will cause a form process action, etc.
Examples:

            <FORM ACTION="/cgi−bin/simple/search" METHOD=POST>
            <INPUT NAME=mv_searchspec>
            </FORM>

The above is a complete search in Interchange. It causes a simple text search of the default products
database(s). Normally hard−coded paths are not used, but a Interchange tag can be used to specify it for
portability:

            <FORM ACTION="[area search]" METHOD=POST>
            <INPUT NAME=mv_searchspec>
            </FORM>

The tag [process] is often seen in Interchange forms. The above can be called equivalently with:

            <FORM ACTION="[process]" METHOD=POST>
            <INPUT TYPE=hidden NAME=mv_todo VALUE=search>
            <INPUT NAME=mv_searchspec>
            </FORM>

mv_action

Setting the special variable mv_action causes the page name to be ignored as the action source. The above
forms can use this as a synonym:

            <FORM ACTION="[area foo]" METHOD=post>
            <INPUT TYPE=hidden NAME=mv_action VALUE=search>
            <INPUT NAME=mv_searchspec>
            </FORM>

The page name will be used to set mv_nextpage, if it is not otherwise defined. If mv_nextpage is present
in the form, it will be ignored.

Interchange Documentation (Full)

43.2. Form Actions 231



The second level todo for the process action has these defined by default:

   back         Go to mv_nextpage, don't update variables
   search   Trigger a search
   submit   Submit a form for validation (and possibly a final order)
   go       Go to mv_nextpage (same as return)
   return   Go to mv_nextpage, update variables
   set      Update a database table
   refresh  Go to mv_orderpage|mv_nextpage and check for
            ordered items
   cancel   Erase the user session

If a page name is defined as an action with ActionMap or use of Interchange's predefined action process,
it will cause form processing. First level is setting the special page name process, or mv_action set to do a
form process, the Interchange form can be used for any number of actions. The actions are mapped by the
ActionMap directive in the catalog configuration file, and are selected on the form with either the mv_todo or
mv_doit variables.

To set a default action for a process form, set the variable mv_doit as a hidden variable:

   <INPUT TYPE=hidden NAME=mv_doit VALUE=refresh>

When the mv_todo value is not found, the refresh action defined in mv_doit will be used instead.

More on the defined actions:

back

Goes to the page in mv_nextpage. No user variable update.

cancel

All user information is erased, and the shopping cart is emptied. The user is then sent to mv_nextpage.

refresh

Checks for newly−ordered items in mv_order_item, looking for on−the−fly items if that is defined, then
updates the shopping cart with any changed quantities or options. Finally updates the user variables and
returns to the page defined in mv_orderpage or mv_nextpage (in that order of preference).

return

Updates the user variables and returns to the page defined in mv_nextpage.

search

The shopping cart and user variables are updated, then the form variables are interpreted and the search
specification contained therein is dispatched to the search engine. Results are returned on the defined search
page (set by mv_search_page or the search page directives).

submit

Interchange Documentation (Full)

43.2. Form Actions 232



Submits the form for order processing. If no order profile is defined with the mv_order_profile variable,
the order is checked to see if the current cart contains any items and the order is submitted.
If there is an order profile defined, the form will be checked against the definition in the order profile and
submitted if the pragma &final is set to yes. If &final is set to no (the default), and the check succeeds, the
user will be routed to the Interchange page defined in mv_successpage, or mv_nextpage. If the check fails, the
user will be routed to mv_failpage or mv_nextpage in that order.

43.3. One−click Multiple Variables

Interchange can set multiple variables with a single button or form control. First define the variable set (or
profile, as in search and order profiles) inside a scratch variable:

 [set Search by Category]
 mv_search_field=category
 mv_search_file=categories
 mv_todo=search
 [/set]

The special variable mv_click sets variables just as if they were put in on the form. It is controlled by a
single button, as in:

   <INPUT TYPE=submit NAME=mv_click VALUE="Search by Category">

When the user clicks the submit button, all three variables will take on the values defined in the "Search by
Category" scratch variable. Set the scratch variable on the same form as the button is on. This is
recommended for clarity. The mv_click variable will not be carried from form to form, it must be set on the
form being submitted.

The special variable mv_check sets variables for the form actions <checkout, control, refresh, return,
search,> and <submit>. This function operates after the values are set from the form, including the ones set by
mv_click, and can be used to condition input to search routines or orders.

The variable sets can contain and be generated by most Interchange tags. The profile is interpolated for
Interchange tags before being used. This may not always operate as expected. For instance, if the following
was set:

   [set check]
   [cgi name=mv_todo set=bar hide=1]
   mv_todo=search
   [if cgi mv_todo eq 'search']
   do something
   [/if]
   [/set]

The if condition is guaranteed to be false, because the tag interpretation takes place before the evaluation of
the variable setting.

Any setting of variables already containing a value will overwrite the variable. To build sets of fields (as in
mv_search_field and mv_return_fields), comma separation if that is supported for the field must be used.

It is very convenient to use mv_click as a trigger for embedded Perl:

   <FORM ...

Interchange Documentation (Full)

43.3. One−click Multiple Variables 233



   <INPUT TYPE=hidden NAME=mv_check VALUE="Invalid Input">
   ...
   </FORM>

   [set Invalid Input]
   [perl]
   my $type        = $CGI−>{mv_searchtype};
   my $spell_check = $CGI−>{mv_spelling_errors};
   my $out = '';
   if($spell_check and $type eq 'text') {
       $CGI−>{mv_todo}     = 'return';
       $CGI−>{mv_nextpage} = 'special/cannot_spell_check';
   }
   return;
   [/perl]
   [/set]

43.4. Checks and Selections

A "memory" for drop−down menus, radio buttons, and checkboxes can be provided with the [checked]
and [selected] tags.

[checked var_name value]

named attributes: [checked name="var_name" value="value" cgi=0|1 multiple=0|1
default=0|1 case=0|1]
This will output CHECKED if the variable var_name is equal to value. Set the cgi attribute to use cgi
instead of values data. Not case sensitive unless case is set.
If the multiple attribute is defined and set to a non−zero value (1 is implicit) and if the value matches on a
word/non−word boundary, it will be CHECKED. If the default attribute is set to a non−zero value, the box
will be checked if the variable var_name is empty or zero.

[selected var_name value]

named attributes: [selected name="var_name" value="value" cgi=0|1 multiple=0|1
default=0|1 case=0|1]
This will output SELECTED if the variable var_name is equal to value. Set the cgi attribute to use cgi
instead of values data. Not case sensitive unless case is set.
If the multiple argument is present, it will look for any of a variety of values. If the default attribute is
set, SELECT will be output if the variable is empty or zero. Not case sensitive unless case is set.
Here is a drop−down menu that remembers an item−modifier color selection:

            <SELECT NAME="color">
            <OPTION [selected name=color value=blue]> Blue
            <OPTION [selected name=color value=green]> Green
            <OPTION [selected name=color value=red]> Red
            </SELECT>

For databases or large lists of items, sometimes it is easier to use [loop list="foo bar"] and its
option parameter. The above can be achieved with:

            <SELECT NAME=color>
            [loop list="Blue Green Red" option=color]
            <OPTION> [loop−code]
            [/loop]

Interchange Documentation (Full)

43.4. Checks and Selections 234



            </SELECT>

See also the ictags documentation on the [loop] tag.

43.5. Integrated Image Maps

Imagemaps can also be defined on forms, with the special form variable mv_todo.map. A series of map
actions can be defined. The action specified in the default entry will be applied if none of the other
coordinates match. The image is specified with a standard HTML 2.0 form field of type IMAGE. Here is an
example:

<INPUT TYPE=hidden NAME="mv_todo.map" VALUE="rect submit 0,0 100,20">
<INPUT TYPE=hidden NAME="mv_todo.map" VALUE="rect cancel 290,2 342,18">
<INPUT TYPE=hidden NAME="mv_todo.map" VALUE="default refresh">
<INPUT TYPE=image  NAME="mv_todo" SRC="url_of_image">

All of the actions will be combined together into one image map with NCSA−style functionality (see the
NCSA imagemap documentation for details), except that Interchange form actions are defined instead of
URLs.

43.6. Setting Form Security

You can cause a form to be submitted securely (to the base URL in the SecureURL directive, that is) by
specifying your form input to be ACTION="[process secure=1]".

To submit a form to the regular non−secure server, just omit the secure modifier.

43.7. Stacking Variables on the Form

Many Interchange variables can be "stacked," meaning they can have multiple values for the same variable
name. As an example, to allow the user to order multiple items with one click, set up a form like this:

<FORM METHOD=POST ACTION="[process]">
<input type=checkbox name="mv_order_item" value="M3243"> Item M3243
<input type=checkbox name="mv_order_item" value="M3244"> Item M3244
<input type=checkbox name="mv_order_item" value="M3245"> Item M3245
<input type=hidden name="mv_doit" value="refresh">
<input type=submit name="mv_junk" value="Order Checked Items">
</FORM>

The stackable mv_order_item variable with be decoded with multiple values, causing the order of any
items that are checked.

To place a "delete" checkbox on the shopping basket display:

<FORM METHOD=POST ACTION="[process]">
[item−list]
  <input type=checkbox name="[quantity−name]" value="0"> Delete
  Part number: [item−code]
  Quantity: <input type=text name="[quantity−name]" value="[item−quantity]">
  Description: [item−description]
[/item−list]
<input type=hidden name="mv_doit" value="refresh">

Interchange Documentation (Full)

43.5. Integrated Image Maps 235



<input type=submit name="mv_junk" value="Order Checked Items">
</FORM>

In this case, first instance of the variable name set by [quantity−name] will be used as the order quantity,
deleting the item from the form.

Of course, not all variables are stackable. Check the documentation for which ones can be stacked or
experiment.

43.8. Extended Value Access and File Upload

Interchange has a facility for greater control over the display of form variables; it also can parse
multipart/form−data forms for file upload.

File upload is simple. Define a form like:

   <FORM ACTION="[process−target] METHOD=POST ENCTYPE="multipart/form−data">
   <INPUT TYPE=hidden NAME=mv_todo     VALUE=return>
   <INPUT TYPE=hidden NAME=mv_nextpage VALUE=test>
   <INPUT TYPE=file NAME=newfile>
   <INPUT TYPE=submit VALUE="Go!">
   </FORM>

The [value−extended ...] tag performs the fetch and storage of the file. If the following is on the test.html
page (as specified with mv_nextpage and used with the above form, it will write the file specified:

   <PRE>
   Uploaded file name: [value−extended name=newfile]
   Is newfile a file? [value−extended name=newfile yes=Yes no=No test=isfile]

   Write the file. [value−extended name=newfile outfile=junk.upload]
   Write again with
    indication: [value−extended name=newfile
                               outfile=junk.upload
                               yes="Written."]
                               no=FAILED]

   And the file contents:
   [value−extended name=newfile file_contents=1]
   </PRE>

The [value−extended] tag also allows access to the array values of stacked variables. Use the following form:

   <FORM ACTION="[process−target] METHOD=POST ENCTYPE="multipart/form−data">
   <INPUT TYPE=hidden NAME=testvar VALUE="value0">
   <INPUT TYPE=hidden NAME=testvar VALUE="value1">
   <INPUT TYPE=hidden NAME=testvar VALUE="value2">
   <INPUT TYPE=submit VALUE="Go!">
   </FORM>

and page:

   testvar element 0: [value−extended name=testvar index=0]
   testvar element 1: [value−extended name=testvar index=1]
   testvar elements:
    joined with a space:   |[value−extended name=testvar]|

Interchange Documentation (Full)

43.8. Extended Value Access and File Upload 236



    joined with a newline: |[value−extended
                               joiner="\n"
                               name=testvar
                               index="*"]|
    first two only:    |[value−extended
                               name=testvar
                               index="0..1"]|
    first and last:    |[value−extended
                               name=testvar
                               index="0,2"]|

to observe this in action.

The syntax for [value−extended ...] is:

named: [value−extended
           name=formfield
           outfile=filename*
           ascii=1*
           yes="Yes"*
           no="No"*
           joiner="char|string"*
           test="isfile|length|defined"*
           index="N|N..N|*"
           file_contents=1*
           elements=1*]

positional: [value−extended name]

Expands into the current value of the customer/form input field named by field. If there are multiple elements
of that variable, it will return the value at index; by default all joined together with a space.

If the variable is a file variable coming from a multipart/form−data file upload, then the contents of that
upload can be returned to the page or optionally written to the outfile.

name

The form variable NAME. If no other parameters are present, the value of the variable will be returned. If
there are multiple elements, by default they will all be returned joined by a space. If joiner is present, they
will be joined by its value.
In the special case of a file upload, the value returned is the name of the file as passed for upload.

joiner

The character or string that will join the elements of the array. It will accept string literals such as "\n" or "\r".

test

There are three tests. isfile returns true if the variable is a file upload. length returns the length.
defined returns whether the value has ever been set at all on a form.

index

The index of the element to return if not all are wanted. This is useful especially for pre−setting multiple
search variables. If set to *, it will return all (joined by joiner). If a range, such as 0 .. 2, it will return

Interchange Documentation (Full)

43.8. Extended Value Access and File Upload 237



multiple elements.

file_contents

Returns the contents of a file upload if set to a non−blank, non−zero value. If the variable is not a file, it
returns nothing.

outfile

Names a file to write the contents of a file upload to. It will not accept an absolute file name; the name must
be relative to the catalog directory. If images or other files are to be written to go to HTML space, use the
HTTP server's Alias facilities or make a symbolic link.

ascii

To do an auto−ASCII translation before writing the outfile, set the ascii parameter to a non−blank,
non−zero value. The default is no translation.

yes

The value that will be returned if a test is true or a file is written successfully. It defaults to 1 for tests and the
empty string for uploads.

no

The value that will be returned if a test is false or a file write fails. It defaults to the empty string.

43.9. Updating Interchange Database Tables with a Form

Any Interchange database can be updated with a form using the following method. The Interchange user
interface uses this facility extensively.

Note: All operations are performed on the database, not the ASCII source file. An [export table_name]
operation will have to be performed for the ASCII source file to reflect the results of the update. Records in
any database may be inserted or updated with the [query] tag, but form−based updates or inserts may also be
performed.

In an update form, special Interchange variables are used to select the database parameters:

mv_data_enable (scratch)

\IMPORTANT: This must be set to a non−zero, non−blank value in the scratch space to allow data set
functions. Usually it is put in an mv_click that precedes the data set function. For example:

            [set update_database]
            [if type=data term="userdb::trusted::[data session username]"]
                [set mv_data_enable]1[/set]
            [else]
                [set mv_data_enable]0[/set]
            [/else]
            [/if]

Interchange Documentation (Full)

43.9. Updating Interchange Database Tables with a Form 238



            [/set]
            <INPUT TYPE=hidden NAME=mv_click VALUE=update_database>

mv_data_table

The table to update.

mv_data_key

The field that is the primary key in the table. It must match the existing database definition.

mv_data_function

UPDATE, INSERT or DELETE. The variable mv_data_verify must be set true on the form for a
DELETE to occur.

mv_data_verify

Confirms a DELETE.

mv_data_fields

Fields from the form which should be inserted or updated. Must be existing columns in the table in question.

mv_update_empty

Normally a variable that is blank will not replace the field. If mv_update_empty is set to true, a blank
value will erase the field in the database.

mv_data_filter_(field)

Instantiates a filter for (field), using any of the defined Interchange filters. For example, if
mv_data_filter_foo is set to digits, only digits will be passed into the database field during the set
operation. A common value might be "entities", which protects any HTML by translating < into &lt;, " into
&quot;, etc.

The Interchange action set causes the update. Here are a pair of example forms. One is used to set the key to
access the record (careful with the name, this one goes into the user session values). The second actually
performs the update. It uses the [loop] tag with only one value to place default/existing values in the form
based on the input from the first form:

   <FORM METHOD=POST ACTION="[process]">
    <INPUT TYPE=HIDDEN name="mv_doit" value="return">
    <INPUT TYPE=HIDDEN name="mv_nextpage" value="update_proj">
    Sales Order Number <INPUT TYPE=TEXT SIZE=8
                            NAME="update_code"
                            VALUE="[value update_code]">
    <INPUT TYPE=SUBMIT name="mv_submit"  Value="Select">
    </FORM>
<FORM METHOD=POST ACTION="[process]">
   <INPUT TYPE=HIDDEN NAME="mv_data_table"    VALUE="ship_status">
   <INPUT TYPE=HIDDEN NAME="mv_data_key"      VALUE="code">
   <INPUT TYPE=HIDDEN NAME="mv_data_function" VALUE="update">
   <INPUT TYPE=HIDDEN NAME="mv_nextpage"      VALUE="updated">

Interchange Documentation (Full)

43.9. Updating Interchange Database Tables with a Form 239



   <INPUT TYPE=HIDDEN NAME="mv_data_fields"
               VALUE="code,custid,comments,status">
   <PRE>

   [loop arg="[value update_code]"]
   Sales Order <INPUT TYPE=TEXT NAME="code    SIZE=10 VALUE="[loop−code]">
  Customer No. <INPUT TYPE=TEXT NAME="custid" SIZE=30
                   VALUE="[loop−field custid]">
      Comments <INPUT TYPE=TEXT NAME="comments"
                   SIZE=30 VALUE="[loop−field comments]">
        Status <INPUT TYPE=TEXT NAME="status"
                   SIZE=10 VALUE="[loop−field status]">
   [/loop]
   </PRE>

       <INPUT TYPE=hidden NAME="mv_todo" VALUE="set">
       <INPUT TYPE=submit VALUE="Update table">
   </FORM>

The variables in the form do not update the user's session values, so they can correspond to database field
names without fear of corrupting the user session.

43.9.1. Can I use Interchange with my existing static catalog pages?

Yes, but you probably won't want to in the long run. Interchange is designed to build pages based on
templates from a database. If all you want is a shopping cart, you can mix standard static pages with
Interchange, but it is not as convenient and doesn't take advantage of the many dynamic features Interchange
offers.

That being said, all you usually have to do to place an order link on a page is:

   <A HREF="/cgi−bin/construct/order?mv_order_item=SKU_OF_ITEM">Order!</A>

Replace /cgi−bin/construct with the path to your Interchange link.

Interchange Documentation (Full)

43.9.1. Can I use Interchange with my existing static catalog pages? 240



44. Internationalization
Interchange has a rich set of internationalization (I18N) features that allow conditional message display,
differing price formats, different currency definitions, price factoring, sorting, and other settings. The
definitions are maintained in the catalog.cfg file through the use of built−in POSIX support and Interchange's
Locale directive. All settings are independent for each catalog and each user visiting that catalog, since
customers can access the same catalog in an unlimited number of languages and currencies.

44.1. Configuring the Locale

It is recommended to use the ScratchDefault directive for setting the catalog's default locale:

   ScratchDefault mv_locale de_DE

44.2. Setting the Locale

The locale could be set to fr_FR (French for France) in one of two ways:

[setlocale locale=locale* currency=locale* persist=1*]

Immediately sets the locale to locale, and will cause it to persist in future user pages if the persist is set
to a non−zero, non−blank value. If the currency attribute is set, the pricing and currency−specific locale
keys and Interchange configuration directives are modified to that locale. If there are no arguments, it sets it
back to the user's default locale as defined in the scratch variables mv_locale and mv_currency.
This allows:

            Dollar Pricing:

            [setlocale en_US]
            [item−list]
            [item−code]: [item−price]<BR>
            [/item−list]

            Franc Pricing:

            [setlocale fr_FR]
            [item−list]
            [item−code]: [item−price]<BR>
            [/item−list]

            [comment] Return to the user's default locale [/comment]
            [setlocale]

[page process/locale/fr_FR/page/catalog]

This is the same as [page catalog], except when the link is followed it will set the locale to fr_FR
before displaying the page. This is persistent.

[page process/locale/fr_FR/currency/en_US/page/catalog]

This is the same as [page catalog], except when the link is followed it will set the locale to fr_FR and
the pricing/number display to the locale en_US before displaying the page. This is persistent.

44. Internationalization 241



Once the locale is persistently set for a user, it is in effect for the duration of their session.

44.3. Interchange Locale Settings

The Locale directive has many possible settings that allow complete internationalization of page sets and
currencies. The Locale directive is defined in a series of key/value pairs with a key that contains word
characters only being followed by a value. The value must be enclosed in double quotes if it contains
whitespace. In this example, the key is Value setting.

   Locale fr_FR "Value setting" "Configuration de valeur"
   Locale de_DE "Value setting" Werteinstellung

When accessed using the special tag [L]Value setting[/L], the value Configuration de
valeur will be displayed only if the locale is set to fr_FR. If the locale is set to de_DE, the string
Werteinstellung will be displayed. If it is neither, the default value of Value setting will be
displayed.

The [L] and [/L] must be capitalized. This is done for speed of processing as well as easy differentiation in
text.

Another, way to do this is right in the page. The [LC] ... [/LC] pragma pair permits specification of
locale−dependent text.

 [LC]
           This is the default text.
   [fr_FR] Text for the fr_FR locale. [/fr_FR]
   [de_DE] Text for the de_DE locale. [/de_DE]
 [/LC]

You can also place an entirely new page in place of the default one if the locale key is defined. When a locale
is in force, and a key named HTMLsuffix is set to that locale, Interchange first looks for a page with a suffix
corresponding to the locale. For example:

<A HREF="[area index]">Catalog home page</A>

If a page index.html exists, it will be the default. If the current locale is fr_FR, a page "index.fr_FR" exists,
and Locale looks like this:

   Locale fr_FR HTMLsuffix  .fr_FR

Then, the .fr_FR page will be used instead of the .html page. For a longer series of strings, the
configuration file recognizes:

   Locale fr_FR <<EOF
   {
       "Value setting",
       "Configuration de valeur",

       "Search",
       "Recherche"
   }
   EOF

Interchange Documentation (Full)

44.3. Interchange Locale Settings 242



This example sets two string substitutions. As long as this is a valid Perl syntax describing a series of settings,
the text will be matched. It can contain any arbitrary set of characters that don't contain [L] and [/L]. If
using double quotes, string literals like \n and \t are recognized.

A database can also be used to set locale information. Locale information can be added to any database in the
catalog.cfg file, and the values in it will overwrite previous settings. For more information, see
LocaleDatabase. The [L]default text[/L] is set before any other page processing takes place. It is
equivalent to the characters "default text" or the appropriate Locale translation for all intents and purposes.
Interchange tags and Variable values can be embedded.

Because the [L] message [/L] substitution is done before any tag processing, the command
[L][item−data table field][/L] will fail. There is an additional [loc] message [/loc]
UserTag supplied with the distribution. It does the same thing as [L] [/L] except it is programmed after all
tag substitution is done. See the interchange.cfg.dist file for the definition.

Note: Be careful when editing pages containing localization information. Even changing one character of the
message can change the key value and invalidate the message for other languages. To prevent this, use:

   [L key]The default.[/L]

The key msg_key will then be used to index the message. This may be preferable for many applications.

A localize script is included with Interchange. It will parse files included on the command line and
produce output that can be easily edited to produce localized information. Given an existing file, it will merge
new information where appropriate.

44.4. Special Locale Keys for Price Representation

Interchange honors the standard POSIX keys:

   mon_decimal_point    or      decimal_point
   mon_thousands_sep    or      thousands_sep
   currency_symbol      or      int_currency_symbol
   frac_digits  or      p_cs_precedes

See the POSIX setlocale(3) man page for more information. These keys will be used for formatting prices and
approximates the number format used in most countries. To set a custom price format, use these special keys:

price_picture

Interchange will format a currency number based on a "picture" given to it. The basic form is:

            Locale en_US price_picture "$ ###,###,###.##"

The en_US locale, for the United States, would display 4452.3 as $ 4,452.30. The same display can be
achieved with:

             Locale en_US mon_thousands_sep ,
             Locale en_US mon_decimal_point .
             Locale en_US p_cs_precedes     1
             Locale en_US currency_symbol   $

Interchange Documentation (Full)

44.4. Special Locale Keys for Price Representation 243



A common price_picture for European countries would be ###.###.###,##, which would display that
same number as 4.452,30. To add a franc notation at the end for the locale fr_FR, use the setting:

            Locale fr_FR price_picture "##.###,## fr"

IMPORTANT NOTE: The decimal point in use, set by mon_decimal_point, and the thousands
separator, set by mon_thousands_sep must match the settings in the price_picture. The frac_digits
setting is not used in this case. It is derived from the location of the decimal (if any).

The same setting for fr_FR above can be achieved with:

             Locale fr_FR mon_thousands_sep .
             Locale fr_FR mon_decimal_point ,
             Locale fr_FR p_cs_precedes     0
             Locale fr_FR currency_symbol   fr

If the number of digits is greater than the # locations in the price_picture, the digits will be changed to
asterisks. An overflow number above would show as **.***,** fr.

picture

Same as price_picture, but sets the value returned if the [currency] tag is not used. If the number of
digits is greater than the # locations in the picture, the digits will be changed to asterisks, displaying
something like **,***.**.

44.5. Dynamic Locale Directive Changes

If a Locale key is set to correspond to an Interchange catalog.cfg directive, that value will be set when
the locale is set.

PageDir

To use a different page directory for different locales, set the PageDir key. For example, to have two
separate language page sets, French and English, set:

            # Establish the default at startup
            PageDir   english
            Locale fr_FR  PageDir  francais
            Locale en_US  PageDir  english

ImageDir

To use a different image directory for different locales, set the ImageDir key. To have two separate
language button sets, French and English, set:

            # Establish the default at startup
            ImageDir   /images/english/
            Locale fr_FR  ImageDir   /images/francais/
            Locale en_US  ImageDir   /images/english/

ImageDirSecure

Interchange Documentation (Full)

44.5. Dynamic Locale Directive Changes 244



See ImageDir.

PriceField

To use a different field in the products database for pricing based on locale, set the PriceField locale
setting. For example:

            # Establish the default at startup
            PriceField    price
            Locale fr_FR  PriceField  prix

The default will always be price, but if the locale fr_FR is set, the PriceField directive will change to
prix to give prices in francs instead of dollars.
If PriceBreaks is enabled, the prix field from the pricing database will be used to develop the
quantity pricing.

Note: If no Locale settings are present, the display will always be price, regardless of what was set in
PriceField. Otherwise, it will match PriceField.

PriceDivide

Normally used to enable penny pricing with a setting of 100, PriceField can be used to do an automatic
conversion calculation factor based on locale.

            # Default at startup is 1 if not set
            # Franc is strong these days!
            Locale fr_FR  PriceDivide  .20

The price will now be divided by .20, making the franc price five times higher than the dollar.

PriceCommas

This controls whether the mon_thousands_sep will be used for standard currency formatting. This setting
will be ignored if you are using price_picture. Set the value to 1 or 0, to enable or disable it. Do not use
yes or no.

            # Default at startup is Yes if not set
            PriceCommas  Yes
            Locale fr_FR  PriceCommas  0
            Locale en_US  PriceCommas  1

UseModifier

Changes the fields from the set shopping cart options.

            # Default at startup is 1 if not set
            # Franc is strong these days!
            UseModifier format
            Locale fr_FR  UseModifier formats

If a previous setting was made for an item based on another locale, it will be maintained.

PriceAdjustment

Interchange Documentation (Full)

44.5. Dynamic Locale Directive Changes 245



Changes the fields set by UseModifier that will be used to adjust pricing for an automatic conversion
factor based on locale. For example:

            # Default at startup
            PriceAdjustment  format
            Locale fr_FR  PriceAdjustment  formats

TaxShipping,SalesTax

Same as the standard directives.

DescriptionField

This changes the field accessed by default with the [item−description] and [description code]
tags. For example

            # Establish the default at startup
            DescriptionField    description
            Locale fr_FR  DescriptionField desc_fr

The [locale] tag

Standard error messages can be set based on Locale settings. Make sure not to use any of the predefined keys.
It is safest to begin a key with msg_ . The default message is set between the [locale key] and
[/locale] tags. See the example above.

44.6. Sorting Based on Locale

The Interchange [sort database:field] keys will use the LC_COLLATE setting for a locale
provided that:

The operating system and C compiler support locales for POSIX, and have the locale definitions set.• 
The locale setting matches any configured locales.• 

If this arbitrary database named letters:

   code        letter
   00−0011     f
   99−102      é
   19−202      a

and this loop:

   [loop 19−202 00−0011 99−102]
   [sort letters:letter]
   [loop−data letters letter]   [loop−code]
   [/loop]

used the default C setting for LC_COLLATE, the following would be displayed:

   a  19−202
   f  00−0011
   é  99−102

Interchange Documentation (Full)

44.6. Sorting Based on Locale 246



If the proper LC_COLLATE settings for locale fr_FR were in effect, then the above would become:

   a  19−202
   é  99−102
   f  00−0011

44.7. Placing Locale Information in a Database

Interchange has the capability to read its locale information from a database, named with the
LocaleDatabase directive. The database can be of any valid Interchange type. The locales are in columns,
and the keys are in rows. For example, to set up price information:

   key                 en_US   fr_FR   de_DE
   PriceDivide         1       .1590   .58
   mon_decimal_point   .       ,       ,
   mon_thousands_sep   ,       .
   currency_symbol     $        frs    DM
   ps_cs_precedes      1       0       0

This would translate to the following:

   Locale en_US PriceDivide         1
   Locale en_US mon_decimal_point   .
   Locale en_US mon_thousands_sep   ,
   Locale en_US currency_symbol     $
   Locale en_US ps_cs_precedes      1

   Locale fr_FR PriceDivide         .1590
   Locale fr_FR mon_decimal_point   ,
   Locale fr_FR mon_thousands_sep   .
   Locale fr_FR currency_symbol     " frs"
   Locale fr_FR ps_cs_precedes      0

   Locale de_DE PriceDivide         .58
   Locale de_DE mon_decimal_point   ,
   Locale de_DE mon_thousands_sep   " "
   Locale de_DE currency_symbol     "DM "
   Locale de_DE ps_cs_precedes      1

These settings append and overwrite any that are set in the catalog configuration files, including any include
files.

Important note: This information is only read during catalog configuration. It is not reasonable to access a
database for translation or currency conversion in the normal course of events.

Copyright 2001−2002 Red Hat, Inc. Freely redistributable under terms of the GNU General Public License.
line:

Interchange Documentation (Full)

44.7. Placing Locale Information in a Database 247



Interchange Databases

Interchange Databases 248



45. Databases and Interchange
Interchange can use GDBM, DB_File, SQL, LDAP, or in−memory databases. In most cases, these different
database formats should operate the same when called by Interchange's access methods.

Also, Interchange does not require an external SQL database. If you have a small database and do not want to
integrate your own tool set, you might want to use Interchange's internal database. However, the order
management functions of Interchange will be slower and not as robust without an SQL database. SQL is
strongly recommended for at least the orderline, transactions, and userdb tables.

Keeping a database in an SQL manager makes it easier to integrate Interchange with other tools. Interchange
can be used to maintain a spreadsheet containing product information through modifying the file
products.txt as needed. References to SQL, DBI, and DBD can be ignored.

45.1. Text Source Files

Interchange reads delimited text files to obtain data. However, the text files are not the database. They are the
source information for the database tables.

By default, all database source files are located in the products subdirectory of the catalog directory. The
main products database is in the products/products.txt file in the supplied demo catalog.

Note: If you are using one of the internal database methods, any changes made to the ASCII source file will
be reflected in the database in the next user session. If the product database contains less than a thousand
records, updates will be instantaneous. If the product database is larger, updates will take longer. Use the
NoImport reference tag to stop auto updating.

In the following configuration directive:

   Database  products  products.txt   TAB

the products table will obtain its source information from the file products.txt. What is done with it
depends on the type of underlying database being used. The different types and their behavior are described
below:

GDBM

The database source file is checked to see if it is newer than the actual database file, products.gdbm. If it
is, the database table is re−imported from the file.
This behavior can be changed in a few ways. If files should not be imported unless the .gdbm file disappears,
set the NoImport directive:

            NoImport  products

If the database source file is only to be imported at catalog start−up time, use the IMPORT_ONCE modifier:

            Database products IMPORT_ONCE 1

GDBM is the default database type if the GDBM_File Perl module is installed (as it is on LINUX).

45. Databases and Interchange 249



DB_File

The database source file is checked to see if it is newer than the actual database file, products.db. If it is,
the database table is re−imported from the file. You can change this behavior in the same way as GDBM_File,
described above.
DB_File is the default database type if the GDBM_File Perl module is not installed. This is common on
FreeBSD. To specify DB_File as your database type, set it in catalog.cfg with a Database directive:

           Database  products  DB_FILE   1

DBI/SQL

If a file named products.sql is in the same directory as products.txt, the database table will
not be imported from the ASCII source. If there is no products.sql, the following will occur:
DBI/SQL imports will only happen at catalog configuration time.

Interchange will connect to the SQL database using the specified DSN. (DBI parameter meaning "Database
Source Name".)
The table will be dropped with "DROP TABLE products;". This will occur without warning. NOTE: This can
be prevented in several ways. See NoImport External or the SQL documentation for more information.
The table will be created. If there are COLUMN_DEF specifications in catalog.cfg, they will be used.
Otherwise, the key (first field in the text file by default) will be created with a char(16) type and all other
fields will be created as char(128). The table creation statement will be written to the error.log file.
The text source file will be imported into the SQL database. Interchange will place the data in the columns.
Data typing must be user−configured. This means that if "none" is placed in a field, and it is defined as a
numeric type, the database import will not succeed. And if it does not succeed, the catalog will not become
active.

In−Memory

Every time the catalog is configured, the products.txt file is imported into memory and forms the
database. Otherwise, the database is not changed. The in−memory database is the default database if there is
no GDBM_File or DB_File Perl module installed; specify it with:

           Database   products   MEMORY   1

45.2. Interchange Database Conventions

This section describes naming and file usage conventions used with Interchange.

Note: Throughout the documentation, the following terms and their definitions are used interchangeably:

key, code

A reference to the database key. In Interchange, this is usually the product code or SKU, which is the part
number for the product. Other key values may be used to generate relationships to other database tables.
It is recommended that the key be the first column of the ASCII source file, since Interchange's import,
export, and search facilities rely on this practice.

field, column

Interchange Documentation (Full)

45.2. Interchange Database Conventions 250



The vertical row of a database. One of the columns is always the key and it is usually the first one.

table, database

A table in the database. Because Interchange has evolved from a single−table database to an access method
for an unlimited number of tables (and databases, for that matter), a table will occasionally be referred to as a
database. The only time the term database refers to something different is when describing the concept as it
relates to SQL, where a database contains a series of tables. While Interchange cannot create SQL databases,
it can drop and create tables with that database if given the proper permissions.

If necessary, Interchange can read the data to be placed in tables from a standard ASCII−delimited file. All of
the ASCII source files are kept in the products directory, which is normally in the catalog directory (where
catalog.cfg is located). The ASCII files can have ^M (carriage return) characters, but must have a new line
character at the end of the line to work. NOTE: Mac users uploading files must use ASCII mode, not binary
mode.

Interchange's default ASCII delimiter is TAB.

Note: The items must be separated by a single delimiter. The items in this document are lined up for reading
convenience.

TAB

Fields are separated by ^I characters. No whitespace is allowable at the beginning of the line.

            code    description             price   image
            SH543   Men's fine cotton shirt 14.95   shirts.jpg

PIPE

Fields are separated by pipe | characters. No whitespace is allowable at the beginning of the line.

            code|description|price|image
            SH543|Men's fine cotton shirt|14.95|shirts.jpg

CSV

Fields are enclosed in quotes, separated by commas. No whitespace should be at the beginning of the line.

            "code","description","price","image"
            "SH543","Men's fine cotton shirt","14.95","shirts.jpg"

Note: Using the default TAB delimiter is recommended if you plan on searching the ASCII source file of the
database. PIPE works fairly well, but CSV delimiter schemes might cause problems with searching.

IMPORTANT NOTE: Field names are usually case−sensitive. Use consistency when naming or you might
encounter problems. All lower or all upper case names are recommended.

Interchange Documentation (Full)

45.2. Interchange Database Conventions 251



Interchange uses one mandatory database, which is referred to as the products database. In the
supplied demo catalog, it is called products and the ASCII source is kept in the file products.txt
in the products directory. This is also the default file for searching with the THE SEARCH ENGINE.
Interchange also has a two of standard, but optional, databases that are in fixed formats:
shipping.asc

The database of shipping options that is accessed if the CustomShipping directive is in use. This
is a fixed−format database, and must be created as specified. For more information, see the Shipping
ITL tag in the Interchange Tag Reference Guide.
salestax.asc

The database of sales tax information if the [salestax] tag is to be used. A default is supplied. NOTE:
Caution, these things change! This is a fixed−format database, and must be created as specified. See Sales
Tax.
These are never stored in SQL or DBM.

45.3. The Product Database

Each product being sold should be given a product code, usually referred to as SKU, a short code that
identifies the product on the ordering page and in the catalog. The products.txt file is a ASCII−delimited list
of all the product codes, along with an arbitrary number of fields which must contain at least the fields
description and price (or however the PriceField and DescriptionField directives have
been set). Any additional information needed in the catalog can be placed in any arbitrary field. See
Interchange Database Capability for details on the format.

Field names can be case−sensitive depending on the underlying database type. Unless there are fields with the
names "description" and "price" field, set the PriceField and DescriptionField directives to use the
[item−price] and [item−description] tags.

The product code, or SKU, must be the first field in the line, and must be unique. Product codes can contain
the characters A−Za−z0−9, along with hyphen (−), underscore (_), pound sign/hash mark (#), slash (/), and
period (.). Note that slash (/) will interfere with on−the−fly page references. Avoid if at all possible.

The words should be separated by one of the approved delimiting schemes (TAB, PIPE, or CSV), and are
case−sensitive in some cases. If the case of the "description" or "price" fields have been modified, the
PriceField and DescriptionField directives must be appropriately set.

Note: CSV is not recommended as the scheme for the products database. It is much slower than TAB− or
PIPE−delimited, and dramatically reduces search engine functionality. No field−specific searches are
possible. Using CSV for any small database that will not be searched is fine.

IMPORTANT NOTE: The field names must be on the first line of the products.txt file. These field
names must match exactly the field names of the [item−field] tags in the catalog pages, or the
Interchange server will not access them properly. Field names can contain the characters A−Za−z0−9 and
underscore (_).

More than one database may be used as a products database. If the catalog directive, ProductFiles, is set to a
space−separated list of valid Interchange database identifiers, those databases will be searched (in the order
specified) for any items that are ordered, or for product information (as in the [price code] and [field

Interchange Documentation (Full)

45.3. The Product Database 252



code] tags).

When the database table source file (i.e., products.txt) changes after import or edit, a DBM database is
re−built upon the next user access. No restart of the server is necessary.

If changing the database on−the−fly, it is recommended that the file be locked while it is being modified.
Interchange's supplied import routines do this.

45.4. Multiple Database Tables

Interchange can manage an unlimited number of arbitrary database tables. They use the TAB delimiter by
default, but several flexible delimiter schemes are available. These are defined by default:

   Type 1      DEFAULT − uses default TAB delimiter
   Type 2      LINE
               Each field on its own line, a blank line
               separates the record. Watch those carriage
               returns! Also has a special format when CONTINUE
               is set to be NOTES.
   Type 3      %%
               Fields separated by a \n%%\n combination, records by
               \n%%%\n (where \n is a newline). Watch those carriage
               returns!
   Type 4      CSV
   Type 5      PIPE
   Type 6      TAB
   Type 7      reserved
   Type 8      SQL

The databases are specified in Database directives, as:

   Database    arbitrary arbitrary.csv CSV

This specifies a Type 4 database, the ASCII version of which is located in the file arbitrary.csv, and the
identifier it will be accessed under in Interchange is "arbitrary." The DBM file, if any, will be created in the
same directory if the ASCII file is newer, or if the DBM file does not exist. The files will be created as
arbitrary.db or arbitrary.gdbm, depending on DBM type.

The identifier is case sensitive, and can only contain characters in the class [A−Za−z0−9_]. Fields are
accessed with the [item_data identifier field] or [data identifier field key] elements. NOTE: Use of
lower−case letters is strongly recommended.

If one of the first six types is specified, the database will automatically be built in the default Interchange DB
style. The type can be specified with DB_FILE, GDBM, or MEMORY, if the type varies from that default.
They will coexist with an unlimited number of DBI databases of different types.

In addition to the database, the session files will be kept in the default format, and are affected by the
following actions.

The order of preference is:

GDBM

Interchange Documentation (Full)

45.4. Multiple Database Tables 253



This uses the Perl GDBM_File module to build a GDBM database. The following command will indicate if
GDBM is in Perl:

            perl −e 'require GDBM_File and print "I have GDBM.\n"'

Installing GDBM_File requires rebuilding Perl after obtaining the GNU GDBM package, and is beyond the
scope of this document. LINUX will typically have this by default; most other operating systems will need to
specifically build in this capability.

DB_File (Berkeley DB)

This uses the DB_File module to build a Berkeley DB (hash) database. The following command will
indicate if DB_File is in Perl:

            perl −e 'require DB_File and print "I have Berkeley DB.\n"'

Installing DB_File requires rebuilding Perl after obtaining the Berkeley DB package, and is beyond the
scope of this document. BSDI, FreeBSD, and LINUX will typically have it by default; most other operating
systems will need to specifically build this in.
If using DB_File, even though GDBM_File is in Perl, set the environment variable MINIVEND_DBFILE
to a true (non−zero, non−blank) value:

            # csh or tcsh
            setenv MINIVEND_DBFILE 1

            # sh, bash, or ksh
            MINIVEND_DBFILE=1 ; export MINIVEND_DBFILE

Then, re−start the server.
Or, to set a particular table to use Berkeley DB, the DB_FILE class in catalog.cfg can be specified:

            Database arbitrary  DB_FILE  1

In−memory

This uses Perl hashes to store the data directly in memory. Every time the Interchange server is restarted, it
will re−import all in−memory databases for every catalog.
If this is used, despite the presence of GDBM_File or DB_File, set the environment variable
MINIVEND_NODBM as above or specify the memory type in the Database directive:

            Database arbitrary  MEMORY  1

Note: The use of memory databases is not recommended.

45.5. Character Usage Restrictions

To review, database identifiers, field names, and product codes (database keys) are restricted in the characters
they may use. The following table shows the restrictions:

                                      Legal characters
                                      −−−−−−−−−−−−−−−−−−−−−
   Database identifiers               A−Z a−z 0−9 _

Interchange Documentation (Full)

45.5. Character Usage Restrictions 254



   Field names                        A−Z a−z 0−9 _
   Database keys (product code/SKU)   A−Z a−z 0−9 _ # − . /
   Database values                    Any (subject to field/record delimiter)

Some SQL databases have reserved words which cannot be used as field names; Interchange databases do not
have this restriction.

For easy HTML compatibility, it is not recommended that a / be used in a part number if using the flypage
capability. It can still be called [page href=flypage arg="S/KU"].

45.6. Database Attributes

Especially in SQL databases, there are certain functions that can be set with additional database attributes. For
text import, the CONTINUE extended database import attribute allows additional control over the format of
imported text.

Note: CONTINUE applies to all types except CSV. (Do not use NOTES unless using type LINE.)

CONTINUE

One of UNIX, DITTO, LINE, NONE, or NOTES. The default, NONE, is to simply split the line/record
according to the delimiter, with no possible spanning of records. Setting CONTINUE to UNIX appends the
next line to the current when it encounters a backslash (\) at the end of a record, just like many UNIX
commands and shells.
DITTO is invoked when the key field is blank. It adds the contents of following fields to the one above,
separated by a new line character. This allows additional text to be added to a field beyond the 255 characters
available with most spreadsheets and flat−file databases.
Example in catalog.cfg:

          Database products products.txt  TAB
          Database products CONTINUE      DITTO

Products.asc file:

          code     price     description
          00−0011  500000    The Mona Lisa, one of the worlds great masterpieces.
                             Now at a reduced price!

The description for product 00−0011 will contain the contents of the description field on both lines,
separated by a new line.

Note: Fields are separated by tabs, formatted for reading convenience.

This will work for multiple fields in the same record. If the field contains any non−empty value, it will be
appended.
LINE is a special setting so a multi−line field can be used. Normally, when using the LINE type, there is only
data on one line separated by one blank line. When using CONTINUE LINE, there may be some number of
fields which are each on a line, while the last one spans multiple lines up until the first blank line.
Example in catalog.cfg:

Interchange Documentation (Full)

45.6. Database Attributes 255



          Database products products.txt  LINE
          Database products CONTINUE      LINE

Products.asc file:

            code
            price
            description

            00−0011
            500000
            The Mona Lisa, one of the worlds great masterpieces.
            Now at a reduced price!

            00−0011a
            1000
            A special frame for the Mona Lisa.

NOTES reads a Lotus Notes "structured text" file. The format is any number of fields, all except one of which
must have a field name followed by a colon and then the data. There is optional whitespace after the colon.
Records are separated by a settable delimiting character which goes on a line by itself, much like a "here
document." By default, it is a form feed (^L) character. The final field begins at the first blank line and
continues to the end of the record. This final field is named notes_field, unless set as mentioned below.
Interchange reads the field names from the first paragraph of the file. The key field should be first, followed
by other fields in any order. If one (and only one) field name has whitespace, then its name is used for the
notes_field. Any characters after a space or TAB are used as the record delimiter.
If there are none, then the delimiter returns to the default form feed (^L) and the field name reverts to
notes_field. The field in question will be discarded, but a second field with whitespace will cause an
import error. Following records are then read by name, and only fields with data in them need be set. Only the
notes_field may contain a new line. It is always the last field in the record, and begins at the first blank
line.
The following example sets the delimiter to a tilde (~) and renames the notes_field to description.
Example in catalog.cfg:

          Database products products.txt  LINE
          Database products CONTINUE      NOTES

Products.asc file:

            code
            title
            price
            image
            description ~
            size
            color

            title: Mona Lisa
            price: 500000
            code: 00−0011
            image: 00−0011.jpg

            The Mona Lisa, one of the worlds great masterpieces.
            Now at a reduced price!
            ~
            title: The Art Store T−Shirt
            code: 99−102

Interchange Documentation (Full)

45.6. Database Attributes 256



            size: Medium, Large*, XL=Extra Large
            color: Green, Blue, Red, White*, Black
            price: 2000

            Extra large 1.00 extra.
            ~

EXCEL

Microsoft Excel is a widely−used tool to maintain Interchange databases, but has several problems with its
standard TAB−delimited export, like enclosing fields containing commas in quotes, generating extra carriage
returns embedded in records, and not including trailing blank fields. To avoid problems, use a text−qualifier
of none.
Set the EXCEL attribute to 1 to fix these problems on import:

            Database products EXCEL 1

This is normally used only with TAB−delimited files.

LARGE

Interchange databases containing many records can result in a noticeable slowdown when displayed by the UI.
Set the LARGE attribute to 1 to avoid this problem:

        Database transactions LARGE 1

In this case the UI supplies only input boxes to search records in the database instead of drawing all the
records from the database, sorting them and creating more lists.

45.7. Dictionary Indexing With INDEX

Interchange will automatically build index files for a fast binary search of an individual field. This type of
search is useful for looking up the author of a book based on the beginning of their last name, a book title
based on its beginning, or other similar situations.

Such a search requires a dictionary ordered index with the field to be searched contained in the first field and
the database key (product code) in the second field. If the INDEX field modifier is specified, Interchange
will build the index upon database import:

  Database  products  products.txt   TAB
  Database  products  INDEX          title

If the title field is the fourth column in the products database table, a file products.txt.4 will be
built, containing two tab−separated fields something like:

   American Gothic   19−202
   Mona Lisa         00−0011
   Sunflowers        00−342
   The Starry Night  00−343

Options can be appended to the field name after a colon (:). The most useful will be f, which does a
case−insensitive sort. The mv_dict_fold option must be added to the search in this case.

Interchange Documentation (Full)

45.7. Dictionary Indexing With INDEX 257



Another option is c, which stands for "comma index." To index on comma−separated sub−fields within a
field, use the :c option:

  Database  products  products.txt   TAB
  Database  products  INDEX          category:c

This can get slow for larger databases and fields. Interchange will split the field on a comma (stripping
surrounding whitespace) and make index entries for each one. This allows multiple categories in one field
while retaining the fast category search mechanism. It might also be useful for a keywords field.

The fast binary search is described in greater detail in THE SEARCH ENGINE below.

45.8. MEMORY for Memory−Only Databases

Interchange's memory−based databases are the fastest possible way to organize and store frequently used data.
To force a database to be built in memory instead of DBM, use the MEMORY modifier:

  Database  country  country.asc   TAB
  Database  country  MEMORY        1

Obviously, large tables will use a great deal of memory, and the data will need to be re−imported from the
ASCII source file at every catalog reconfiguration or Interchange restart. The big advantage of using
MEMORY is that the database remains open at all times and does not need to be reinitialized at every
connect. Use it for smaller tables that will be frequently accessed.

The MEMORY modifier forces IMPORT_ONCE.

45.9. IMPORT_ONCE

The IMPORT_ONCE modifier tells Interchange not to re−import the database from the ASCII file every time
it changes. Normally, Interchange does a comparison of the database file modification time with the ASCII
source every time it is accessed, and if the ASCII source is newer it will re−import the file.

IMPORT_ONCE tells it only to import on a server restart or catalog reconfiguration:

  Database  products  products.txt   TAB
  Database  products  IMPORT_ONCE    1

SQL databases don't normally need this. They will only be imported once in normal operation. Also see
NoImport for a way to guarantee that the table will never be imported.

IMPORT_ONCE is always in effect for MEMORY databases. A catalog reconfiguration is required to force a
change.

45.10. Importing in a Page

To add a data record to a database as a result of an order or other operation, use Interchange's [import
...] tag.

[import table type*] RECORD [/import]

Interchange Documentation (Full)

45.8. MEMORY for Memory−Only Databases 258



Named parameters:

         [import table=table_name
                 file=filename*
                 type=(TAB|PIPE|CSV|%%|LINE)*
                 continue=(NOTES|UNIX|DITTO)*
                 separator=c*]

Import one or more records into a database. The type is any of the valid Interchange delimiter types, with the
default being TAB. The table must already be a defined Interchange database table. It cannot be created
on−the−fly. If on−the−fly functionality is need, it is time to use SQL.

The import type selected need not match the type the database was specified. Different delimiters may be
used.

The type of LINE and continue setting of NOTES is particularly useful, for it allows fields to be named
and not have to be in any particular order of appearance in the database. The following two imports are
identical in effect:

   [import table=orders]
            code: [value mv_order_number]
   shipping_mode: [shipping−description]
          status: pending
   [/import]

   [import table=orders]
   shipping_mode: [shipping−description]
   status:        pending
   code:          [value mv_order_number]
   [/import]

The code or key must always be present, and is always named code. If NOTES mode is not used, the fields
must be imported in the same order as they appear in the ASCII source file.

The file option overrides the container text and imports directly from a named file based in the catalog
directory. To import from products.txt, specify file="products/products.txt". If the
NoAbsolute directive is set to Yes in interchange.cfg, only relative path names will be allowed.

The [import ....] TEXT [/import] region may contain multiple records. If using NOTES mode, a
separator must be used, which, by default, is a form−feed character (^L). See Import Attributes for more
information.

45.11. Exporting from a Database

To export an existing database to a file suitable for searching by Interchange, create a page that contains a
[tag export ...][/tag] element. Perhaps a better method is to define the same sort of tags in an
OrderProfile, and use forms and buttons to access the profile.

45.12. Write Control

Interchange databases can be written in the normal course of events, either using the [import ...] tag or
with a tag like [data table=table column=field key=code value=new−value]. To control
writing of a global database, or to a certain catalog within a series of subcatalogs, or make one read only, see

Interchange Documentation (Full)

45.11. Exporting from a Database 259



the following:

To enable write control:

   Database   products  WRITE_CONTROL  1

Once this is done, to make a database read only, which won't allow writing even if [tag flag
write]products[/tag] is specified:

   Database   products  READ_ONLY  1

To have control with [tag flag write]products[/tag]:

   Database   products  WRITE_TAGGED  1

To limit write to certain catalogs, set:

   Database   products  WRITE_CATALOG  simple=0, sample=1

The "simple" catalog will not be able to write, while "sample" will if [tag flag
write]products[/tag] is enabled. If a database is to always be writable, without having to specify
[tag flag write] ... [/tag], then define:

   Database   products  WRITE_ALWAYS  1

The default behavior of SQL databases is equivalent to WRITE_ALWAYS, while the default for
GDBM_File, DB_File, and Memory databases is equivalent to:

   Database   products  WRITE_CONTROL 1
   Database   products  WRITE_TAGGED  1

45.13. Global Databases

If a database is to be available to all catalogs on the Interchange server, it may be defined in
interchange.cfg. Any catalog running under that server will be able to use it. It is writable by any
catalog unless WRITE_CONTROL is used.

Interchange Documentation (Full)

45.13. Global Databases 260



46. SQL Support
Interchange can use any of a number of SQL databases through the powerful Perl DBI/DBD access methods.
This allows transparent access to any database engine that is supported by a DBD module. The current list
includes mSQL, MySQL, Solid, PostgreSQL, Oracle, Sybase, Informix, Ingres, Dbase, DB2, Fulcrum, and
others. Any ODBC (with appropriate driver) should also be supported.

No SQL database is included with Interchange, but there are a number widely available on the Internet. Most
commonly used with Interchange are PostgreSQL, MySQL, and Oracle. It is beyond the scope of this
document to describe SQL or DBI/DBD. Sufficient familiarity is assumed.

In most cases, Interchange cannot perform administrative functions, like creating a database or setting access
permissions. This must be done with the tools provided with a SQL distribution. But, if given a blank database
and the permission to read and write it, Interchange can import ASCII files and bootstrap from there.

46.1. SQL Support via DBI

The configuration of the DBI database is accomplished by setting attributes in additional Database directives
after the initial defining line as described above. For example, the following defines the database arbitrary as
a DBI database, sets the data source (DSN) to an appropriate value for an mSQL database named minivend
on port 1114 of the local machine:

   Database arbitrary arbitrary.asc SQL
   Database arbitrary DSN           dbi:mSQL:minivend:localhost:1114

As a shorthand method, include the DSN as the type:

   Database arbitrary arbitrary.asc dbi:mSQL:minivend:localhost:1114

Supported configuration attributes include (but are not limited to):

DSN

A specification of the DBI driver and its data source. To use the DBD::mSQL driver for DBI, use:

            dbi:mSQL:minivend:othermachine.my.com:1112

where mSQL selects the driver (case IS important), minivend selects the database,
othermachine.my.com selects the host, and 1112 is the port. On many systems,
dbi:mSQL:minivend will work fine. Of course, the minivend database must already exist.
This is the same as the DBI_DSN environment variable, if the DSN parameter is not set. Then, the value of
DBI_DSN will be used to try and find the proper database to connect to.

USER

The user name used to log into the database. It is the same as the environment variable DBI_USER. If a user
name is not needed, just don't set the USER directive.

PASS

46. SQL Support 261



The password used to log into the database. It is the same as the environment variable DBI_PASS. If a
password is not needed, just don't set the PASS directive.

COLUMN_DEF

A comma−separated set of lines in the form NAME=TYPE(N), where NAME is the name of the
field/column, TYPE is the SQL data type reference, and N is the length (if needed). Most Interchange fields
should be the fixed−length character type, something like char(128). In fact, this is the default if a type is not
chosen for a column. There can be as many lines as needed. This is not a DBI parameter, it is specific to
Interchange.

NAME

A space−separated field of column names for a table. Normally not used. Interchange should resolve the
column names properly upon query. Set this if a catalog errors out with "dbi: can't find field names" or the
like. The first field should always be code. This is not a DBI parameter, it is specific to Interchange. All
columns must be listed, in order of their position in the table.

NUMERIC

Tells Interchange not to quote values for this field. It allows numeric data types for SQL databases. It is
placed as a comma−separated field of column names for a table, in no particular order. This should be defined
if a numeric value is used because many DBD drivers do not yet support type queries.

UPPERCASE

Tells Interchange to force field names to UPPER case for row accesses using the [item−data ...],
[loop−data ...], [item−field ..., etc. Typically used for Oracle and some other SQL
implementations.

DELIMITER

A Interchange delimiter type, either TAB,CSV,PIPE,%%,LINE or the corresponding numeric type. The
default for SQL databases is TAB. Use DELIMITER if another type will be used to import. This is not a DBI
parameter. It is specific to Interchange.

KEY

The keying default of code in the first column of the database can be changed with the KEY directive. Don't
use this unless prepared to alter all searches, imports, and exports accordingly. It is best to just accept the
default and make the first column the key for any Interchange database.

ChopBlanks, LongReadLen, LongTruncOK, RaiseError, etc.

Sets the corresponding DBI attribute. Of particular interest is ChopBlanks, which should be set on drivers
which by default return space−padded fixed−length character fields (Solid is an example).
The supported list as of this release of Interchange is:

          ChopBlanks
          CompatMode
          LongReadLen
          LongTruncOk

Interchange Documentation (Full)

46. SQL Support 262



          PrintError
          RaiseError
          Warn

Issue the shell command perldoc DBI for more information.

Here is an example of a completely set up DBI database on MySQL, using a comma−separated value input,
setting the DBI attribute LongReadLen to retrieve an entire field, and changing some field definitions from
the default char(128):

 Database   products  products.csv  dbi:mysql:minivend
 Database   products  USER          minivend
 Database   products  PASS          nevairbe
 Database   products  DELIMITER     CSV

 # Set a DBI attribute
 Database   products  LongReadLen   128

 # change some fields from the default field type of char(128)
 # Only applies if Interchange is importing from ASCII file
 # If you set a field to a numeric type, you must set the
 # NUMERIC attribute
 Database   products  COLUMN_DEF    "code=char(20) NOT NULL primary key"
 Database   products  COLUMN_DEF    price=float, discount=float
 Database   products  COLUMN_DEF    author=char(40), title=char(64)
 Database   products  COLUMN_DEF    nontaxable=char(3)
 Database   products  NUMERIC       price
 Database   products  NUMERIC       discount

MySQL, DBI, and DBD::mysql must be completely installed and tested, and have created the database
minivend, for this to work. Permissions are difficult on MySQL. if having trouble, try starting the MySQL
daemon with safe_mysqld −−skip−grant−tables & for testing purposes.

To change to ODBC, the only changes required might be:

   Database products  DSN         dbi:ODBC:TCP/IP localhost 1313
   Database products  ChopBlanks  1

The DSN setting is specific to a ODBC setup. The ChopBlanks setting takes care of the space−padding in
Solid and some other databases. It is not specific to ODBC. Once again, DBI, DBD::ODBC, and the
appropriate ODBC driver must be installed and tested.

46.2. SQL Access Methods

An Interchange SQL database can be accessed with the same tags as any of the other databases can. Arbitrary
SQL queries can be passed with the [query sql="SQL STATEMENT"] ITL tag.

46.3. Importing from an ASCII File

When importing a file for SQL, Interchange by default uses the first column of the ASCII file as the primary
key, with a char(16) type, and assigns all other columns a char (128) definition. These definitions can
be changed by placing the proper definitions in COLUMN_DEF Database directive attribute:

 Database  products  COLUMN_DEF  price=char(20), nontaxable=char(3)

Interchange Documentation (Full)

46.2. SQL Access Methods 263



This can be set as many times as desired, if it will not fit on the line.

 Database  products  COLUMN_DEF  price=char(20), nontaxable=char(3)
 Database  products  COLUMN_DEF  description=char(254)

To create an index automatically, append the information when the value is in quotes:

 Database  products  COLUMN_DEF  "code=char(14) primary key"

The field delimiter to use is TAB by default, but can be changed with the Database DELIMITER directive:

 Database  products products.csv dbi:mSQL:minivend:localhost:1114
 Database  products DELIMITER  CSV

To create other secondary keys to speed sorts and searches, do so in the COLUMN_DEF:

 Database  products COLUMN_DEF  "author=char(64) secondary key"

Or use external database tools. NOTE: Not all SQL databases use the same index commands.

To use an existing SQL database instead of importing, set the NoImport directive in catalog.cfg to include any
database identifiers not to be imported:

   NoImport  products inventory

WARNING: If Interchange has write permission on the products database, be careful to set the NoImport
directive or create the proper .sql file. If that is not done, and the database source file is changed, the SQL
database could be overwritten. In any case, always back up the database before enabling it for use by
Interchange.

Interchange Documentation (Full)

46.2. SQL Access Methods 264



47. Managing DBM Databases

47.1. Making the Database

The DBM databases can be built offline with the offline command. The directory to be used for output is
specified either on the command line with the −d option, or is taken from the catalog.cfg directive
OfflineDir −− offline in the catalog directory by default. The directory must exist. The source ASCII
files should be present in that directory, and the DBM files are created there. Existing files will be
overwritten.

   offline −c catalog [−d offline_dir]

Do a perldoc VENDROOT/bin/offline for full documentation.

47.2. Updating Individual Records

If it takes a long time to build a very large DBM database, consider using the bin/update script to change
just one field in a record, or to add from a corrections list.

The database is specified with the −n option, or is 'products' by default.

The following updates the products database price field for item 19−202 with the new value 25.00:

   update −c catalog −f price 25.00

More than one field can be updated on a single command line.

   update −c catalog −f price −f comment 25.00 "That pitchfork couple"

The following takes input from file, which must be formatted exactly like the original database, and
adds/corrects any records contained therein.

   update −c catalog −i file

Invoke the command without any arguments for a usage message describing the options.

47. Managing DBM Databases 265



48. The Search Engine
Interchange implements a search engine which will search the product database (or any other file) for items
based on customer input. It uses either forms or link−based searches that are called with the special page name
scan. The search engine uses many special Interchange tags and variables.

If the search is implemented in a link or a form, it will always display formatted results on the results page, an
Interchange page that uses some combination of the [search−region], [search−list],
[more−list], [more], and other Interchange tags to format and display the results. The search results are
usually a series of product codes/SKUs or other database keys, which are then iterated over similar to the
[item−list].

Note: Examples of search forms and result pages are included in the demos.

Two search engine interfaces are provided, and five types of searching are available. The default is a
text−based search of the first products database source file (i.e., products.txt). A binary search of a
dictionary−ordered file can be specified. An optional Glimpse search is enabled by placing the command
specification for Glimpse in the catalog.cfg directive Glimpse. There is a range−based search, used in
combination with one of the above. And finally, there is a fully−coordinated search with grouping.

The default, a text based search, sequentially scans the lines in the target file. By default it returns the first
field (delineated by the delimiter for that database) for every line matching the search specification. This
corresponds to the product code, which is then used to key specific accesses to the database.

The text−based search is capable of sophisticated field−specific searches with fully−independent
case−sensitivity, substring, and negated matching.

48.1. The Search Form

A number of variables can be set on search forms to determine which search will be used, what fields in the
database it will search, and what search behavior will be.

Here is a simple search form:

 <FORM ACTION="[area search]" METHOD=POST>
 <INPUT TYPE="text" SIZE="30" NAME="mv_searchspec">
 <INPUT TYPE="submit" VALUE="Search">
 </FORM>

When the "Search" submit button is pressed (or <ENTER> is pressed), Interchange will search the
products.txt file for the string entered into the text field mv_searchspec, and return the product code
pertaining to that line.

The same search for a fixed string, say "shirt," could be performed with the use of a hot link, using the special
scan URL:

 [page search="se=shirt"]See our shirt collection![/page]

The default is to search every field on the line. To match on the string "shirt" in the product database field
"description," modify the search:

48. The Search Engine 266



 <INPUT TYPE="hidden" NAME="mv_search_field" VALUE="description">

In the hot−linked URL search:

 [page search="
               se=shirt
               sf=category
           "]See our shirt collection![/page]

To let the user decide on the search parameters, use checkboxes or radiobox fields to set the fields:

   Search by author
      <INPUT TYPE="checkbox" NAME="mv_search_field" VALUE="author">
   Search by title
       <INPUT TYPE="checkbox" NAME="mv_search_field" VALUE="title">

Fields can be stacked. If more than one is checked, all checked fields will be searched.

48.2. Glimpse

To use the Glimpse search, the Glimpse index must be built based on files in the ProductDir, or wherever the
files to be searched will be located. If the catalog is in /var/lib/interchange/foundation, the
command line to build the index for the products file would be:

   chdir /var/lib/interchange/foundation/products
   glimpseindex −b −H . products.txt

There are several ways to improve search speed for large catalogs. One method that works well for large
products.txt files is to split the products.txt file into small index files (in the example, 100 lines)
with the split(1) UNIX/POSIX command. Then, index it with Glimpse:

   split −100 products.txt index.txt.
   glimpseindex −H /var/lib/interchange/foundation/products index.txt.*

This will dramatically increase search speeds for large catalogs, at least if the search term is relatively unique.
If it is a common string, in a category search, for example, it is better to use the text−based search.

To search for numbers, add the −n option to the Glimpse command line.

Note: A large catalog is one of more than several thousand items; smaller ones have acceptable speed in any
of the search modes.

If the Glimpse executable is not found at Interchange startup, the Glimpse search will be disabled and the
regular text−based search used instead.

There are several things to watch for while using Glimpse, and a liberal dose of the Glimpse documentation is
suggested. In particular, the spelling error capability will not work in combination with the field−specific
search. Glimpse selects the line, but Interchange's text−based search routines disqualify it when checking to
see if the search string is within one of the specified fields.

To use field−specific searching on Glimpse, tell it what the field names are. If the search is on the products
database (file), nothing is needed for the default is to use the field names from the products database. If it is

Interchange Documentation (Full)

48.2. Glimpse 267



some other field layout, specify the file to get the field names from with mv_field_file (ff).

48.3. Fast Binary Search

Fast binary searching is useful for scanning large databases for strings that match the beginning of a line.
They use the standard Perl module Search::Dict, and are enabled through use of the mv_dict_look,
mv_dict_end, mv_dict_limit, mv_dict_fold, and mv_dict_order variables.

The field to search is the first field in the file, the product code should be in the second field, delimited by
TAB. Set the mv_return_fields=1 to return the product code in the search.

The search must be done on a dictionary−ordered pre−built index, which can be produced with the database
INDEX modifier. See Dictionary indexing with INDEX.

If using the mv_dict_look parameter by itself, and the proper index file is present, Interchange will set the
options:

   mv_return_fields=1
   mv_dict_limit=−1

This will make the search behave much like the simple search described above, except it will be much faster
on large files and will match only from the beginning of the field. Here is an example. A title index has
been built by including in catalog.cfg:

   Database   products   INDEX    title

Note: The ASCII source file must be "touched" to rebuild the index and the database.

Now, specify in a form:

   <FORM ACTION="[process href=search]" METHOD=POST>
   <INPUT TYPE=hidden NAME=mv_dict_limit VALUE=title>
   <INPUT NAME=mv_dict_look>
   </FORM>

or in a URL:

   [page search="dl=Van Gogh/di=title"]

This search is case−sensitive. To do the same thing case−insensitively:

   Database   products   INDEX    title:f

   <FORM ACTION="[process href=search]" METHOD=POST>
   <INPUT TYPE=hidden NAME=mv_dict_limit VALUE=title>
   <INPUT TYPE=hidden NAME=mv_dict_fold  VALUE=1>
   <INPUT NAME=mv_dict_look>
   </FORM>

   [page search="dl=Van Gogh/di=title/df=1"]

Interchange Documentation (Full)

48.3. Fast Binary Search 268



48.4. Coordinated and Joined Searching

Interchange will do a complete range of tests on individual columns in the database. To use this function, set
mv_coordinate to Yes (co=yes in the one−click syntax). In order to use coordinated searching, the
number of search fields must equal the number of search strings.

To make sure that is the case, use the mv_search_map variable. It allows variables to be mapped to others
in the search specification. For example:

   <INPUT TYPE=hidden NAME=mv_search_map VALUE="
       mv_searchspec=search1
       mv_searchspec=search2
       mv_searchspec=search3
       ">
   <INPUT TYPE=hidden NAME=mv_search_field VALUE=title>
   <INPUT TYPE=hidden NAME=mv_search_field VALUE=artist>
   <INPUT TYPE=hidden NAME=mv_search_field VALUE=category>
   Artist: <INPUT NAME=search1 VALUE="">
   Title:  <INPUT NAME=search2 VALUE="">
   Genre:  <INPUT NAME=search3 VALUE="">

Even if the user leaves one blank, the search will work.

Leading/trailing whitespace is stripped from all lines in the mv_search_map variable, so it can be
positioned as shown for convenience.

Coordinated searches may be joined with the output of another table if set one of the mv_search_field
values is set to a table:column pair. Note that this will slow down large searches considerably unless
there is another search specification, as the database must be accessed for every search line If there is a search
field that qualifies for a regular expression search function, or conducting a binary search with
mv_dict_look, or are not doing an OR search, the penalty should not be too great as only matching lines
will cause an access to the database.

Individual field operations can then be specified with the mv_column_op (or op) parameter. The operations
include:

   operation            string     numeric   equivalent
   −−−−−−−−−
   equal to               eq         ==           =
   not equal              ne         !=           <>
   greater than           gt         >
   less than              lt         <
   less than/equal to     le         <=
   greater than/equal to  ge         >=
   regular expression     rm                       =~ , LIKE
   regular expression NOT rn                       !~
   exact match            em

An example:

   [page search="
           co=yes
           sf=title
           se=Sunflowers
           op=em

Interchange Documentation (Full)

48.4. Coordinated and Joined Searching 269



           sf=artist
           se=Van Gogh
           op=rm
   "] Sunflowers, Van Gogh </a>

   [page search="
           co=yes

           sf=title
           se=Sunflowers
           nu=0
           op=!~

           sf=artist
           se=Van Gogh
           op=rm
           nu=0

           sf=inventory:qty
           se=1
           op=>=
           nu=1
   "] Any in stock except Sunflowers, Van Gogh </a>

Note that in the second example, nu=0 must be specified even though that is the default. This is to set the
proper correspondence. To avoid having to do this, use Interchange's option array feature:

   [page search.0="
                   sf=title
                   se=Sunflowers
                   op=!~
               "
         search.1="
                   sf=artist
                   se=Van Gogh
               "
         search.2="
                   sf=inventory:qty
                   se=1
                   op=>=
                   nu=1
               "
       ] Any in stock except Sunflowers, Van Gogh </a>

The co=yes is assumed when specifying a multiple search.

The second search will check the stock status of the painting provided there is an inventory table as in
some of the Interchange demo catalogs. If the qty field is greater than or equal to 1, the product will be
picked. If out of stock, it will not be found.

It always helps to have an rm type included in the search. This is used to pre−screen records so that database
accesses only need be made for already−matching entries. If accesses must be made for every record, large
searches can get quite slow.

48.5. Specifying a Text−Based Search with SQL Syntax

If the Perl SQL::Statement module is installed, SQL syntax can be specified for the text−based search.

Interchange Documentation (Full)

48.5. Specifying a Text−Based Search with SQL Syntax 270



This is not the same as the external SQL database search, treated below separately. This works on the ASCII
text source file, not on the actual database.

This syntax allows this form setup:

   Artist: <INPUT NAME="artist">
   Title:  <INPUT NAME="title">
   <INPUT TYPE=hidden NAME="mv_sql_query"
           VALUE="
               SELECT code FROM products
               WHERE artist LIKE artist
               AND    title LIKE title">

If the right hand side of an expression looks like a column, i.e., is not quoted, the appropriate form variable is
substituted. (If used in a one−click, the corresponding scratch variable is used instead.) The assumption is
reversed for the left−hand side. If it is a quoted string, the column name is read from the passed values.
Otherwise, the column name is literal.

   Search for: <INPUT NAME="searchstring"><BR>
   Search in   <INPUT TYPE="radio" NAME="column" VALUE="title"> title
       <INPUT TYPE="radio" NAME="column" VALUE="artist"> artist
       <INPUT TYPE=hidden NAME="mv_sql_query"
         VALUE="SELECT code FROM products WHERE 'column' LIKE searchstring">

Once again, this does not conduct a search on an SQL database, but formats a corresponding text−based
search. Parentheses will have no effect, and an OR condition will cause all conditions to be OR. The searches
above would be similar to:

   [page search="
               co=yes
               sf=artist
               op=rm
               se=[value artist]
               sf=title
               op=rm
               se=[value title]
           "  ]
       Search for [value artist], [value title]
   [/page]

   [page search="
               co=yes
               sf=[value column]
               op=rm
               se=[value searchstring]
           "  ]
   Search for [value searchstring]
          in  [value column]
   [/page]

48.6. Range Searching

Range searching allows qualification of search returns with a field that must be within a certain numeric or
alphanumeric range. To use it, set the mv_range_look variable to the products database field, or a
column/field number for another file. Then, set the corresponding mv_range_min and mv_range_max
variables with a selectable field.

Interchange Documentation (Full)

48.6. Range Searching 271



   <INPUT TYPE="hidden" NAME="mv_range_look" VALUE="price">
       Search on Price
   Min <SELECT NAME="mv_range_min">
            <OPTION value=0 SELECTED> Free
            <OPTION value=1000000> $1,000,000
            <OPTION value=10000000> $10,000,000
            <OPTION value=20000000> $20,000,000
            <OPTION value=40000000> $40,000,000
       </SELECT><BR>
   Max <SELECT NAME="mv_range_max">
           <OPTION value=0 SELECTED> no object
           <OPTION value=1000000> $1,000,000
           <OPTION value=10000000> $10,000,000
           <OPTION value=20000000> $20,000,000
           <OPTION value=40000000> $40,000,000
       </SELECT>

The value of 0 for mv_range_max is equivalent to infinity if doing a numeric search. This makes it
impossible to search for a ceiling of 0 with a negative mv_range_min.

The fields are stackable, so more than one range to check can be set. The order is significant, in the sense that
the array of field names and minimum/maximum values must be kept in order to achieve correspondence.

The optional mv_range_alpha specification allows alphanumeric range matching for the corresponding
field. If it is set, and the fields are stacked, they must all be set. The mv_case field does apply if it is set.
Otherwise, the comparison is without regard to case.

If ONLY a range search is required, all lines with mv_return_all=yes must be selected in order to make
the search operate. Range−only searches will be quite slow for large databases since every line must be
scanned. It should be quite usable for catalogs of less than 10,000 items in size on a fast machine. Using it in
combination with another search technique (in the same query) will yield faster search returns.

48.7. One−Click Searches

Interchange allows a search to be passed in a URL, as shown above. Just specify the search with the special
page parameter search or special page scan. Here is an example:

    [page search="
               se=Impressionists
               sf=category
           "]
       Impressionist Paintings
    [/page]

This is the same:

    [page scan se=Impressionists/sf=category]
       Impressionist Paintings
    [/page]

Here is the same thing from a home page (assuming /cgi−bin/vlink is the CGI path for Interchange's vlink):

    <A HREF="/cgi−bin/vlink/scan/se=Impressionists/sf=category">
       Impressionist Paintings
    </A>

Interchange Documentation (Full)

48.7. One−Click Searches 272



The two−letter abbreviations are mapped with these letters:

 ac  mv_all_chars
 bd  mv_base_directory
 bs  mv_begin_string
 ck  mv_cache_key
 co  mv_coordinate
 cs  mv_case
 cv  mv_verbatim_columns
 de  mv_dict_end
 df  mv_dict_fold
 di  mv_dict_limit
 dl  mv_dict_look
 DL  mv_raw_dict_look
 do  mv_dict_order
 dr  mv_record_delim
 em  mv_exact_match
 er  mv_spelling_errors
 ff  mv_field_file
 fi  mv_search_file
 fm  mv_first_match
 fn  mv_field_names
 hs  mv_head_skip
 ix  mv_index_delim
 lb  mv_search_label
 lf  mv_like_field
 lo  mv_list_only
 lr  mv_search_line_return
 ls  mv_like_spec
 ma  mv_more_alpha
 mc  mv_more_alpha_chars
 md  mv_more_decade
 ml  mv_matchlimit
 mm  mv_max_matches
 MM  mv_more_matches
 mp  mv_profile
 ms  mv_min_string
 ne  mv_negate
 ng  mv_negate
 np  mv_nextpage
 nu  mv_numeric
 op  mv_column_op
 os  mv_orsearch
 pf  prefix
 ra  mv_return_all
 rd  mv_return_delim
 rf  mv_return_fields
 rg  mv_range_alpha
 rl  mv_range_look
 rm  mv_range_min
 rn  mv_return_file_name
 rr  mv_return_reference
 rs  mv_return_spec
 rx  mv_range_max
 se  mv_searchspec
 sf  mv_search_field
 sg  mv_search_group
 si  mv_search_immediate
 sm  mv_start_match
 sp  mv_search_page
 sq  mv_sql_query
 sr  mv_search_relate

Interchange Documentation (Full)

48.7. One−Click Searches 273



 st  mv_searchtype
 su  mv_substring_match
 tf  mv_sort_field
 to  mv_sort_option
 un  mv_unique
 va  mv_value

These can be treated just the same as form variables on the page, except that they can't contain a new line. If
using the multi−line method of specification, the characters will automatically be escaped for a URL.

IMPORTANT NOTE: An incompatibility in earlier Interchange catalogs is specifying [page
scan/se=searchstring]. This is interpreted by the parser as [page
scan/se="searchstring"] and will cause a bad URL. Change this to [page scan
se=searchstring], or perhaps better yet:

   [page search="
                   se=searchstring
           "]

A one−click search may be specified in three different ways.

Original

To do an OR search on the fields category and artist for the strings "Surreal" and "Gogh," while matching
substrings, do:

         [page scan se=Surreal/se=Gogh/os=yes/su=yes/sf=artist/sf=category]
            Van Gogh −− compare to surrealists
         [/page]

In this method of specification, to replace a / (slash) in a file name (for the sp, bd, or fi parameter), the
shorthand of :: must be used, i.e., sp=results::standard. (This may not work for some browsers, so put the page
in the main pages directory or define the page in a search profile.)

Multi−Line

Specify parameters one to a line, as well.

            [page scan
                se="Van Gogh"
                sp=lists/surreal
                os=yes
                su=yes
                sf=artist
                sf=category
            ] Van Gogh −− compare to surrealists [/page]

Any "unsafe" characters will be escaped. To search for trailing spaces (unlikely), quote.

Ampersand

Substitute & for / in the specification and be able to use / and quotes and spaces in the specification.

         [page href=scan se="Van Gogh"&sp=lists/surreal&os=yes&su=yes&sf=artist&sf=category]
            Van Gogh −− compare to surrealists

Interchange Documentation (Full)

48.7. One−Click Searches 274



         [/page]

Any "unsafe" characters will be escaped.

48.8. Setting Display Options with mv_value

A value can be specified that will be set in the link with the mv_value parameter. It takes an argument of
var=value, just as setting a normal variable in an Interchange profile. Actually mv_value is a misnomer,
it will almost never be used in a form where variable values can be set. Always specify it in a one−click
search with va=var=value. Example:

   [page href=scan
         arg="se=Renaissance
              se=Impressionists
              va=category_name=Renaissance and Impressionist Paintings
              os=yes"]Renaissance and Impressionist Paintings[/page]

Display the appropriate category on the search results page with [value category_name].

48.9. In−Page Searches

To specify a search inside a page with the [search−region parameters*] tag. The parameters are
the same as the one−click search, and the output is always a newline−separated list of the return objects, by
default, a series of item codes.

The [loop ...] tag directly accepts a search parameter. To search for all products in the categories
"Americana" and "Contemporary," do:

   [loop search="
       se=Americana
       se=Contemporary
       os=yes
       sf=category9
       "]
   Artist: [loop−field artist]<BR>
   Title: [loop−field title]<P>
   [/loop]

The advantage of the in−page search is that searches can be embedded within searches, and there can be
straight unchanging links from static HTML pages.

To place an in−page search with the full range of display in a normal results page, use the
[search−region] tag the same as above, except that [search−list], [more−list], and [more]
tags can be placed within it. Use them to display and format the results, including paging. For example:

   [search−region  more=1
                   search="
                        se=Americana
                        sf=category
                        ml=2
                   "]
   [more−list][more][/more−list]
   [search−list]
   [page [item−code]]

Interchange Documentation (Full)

48.8. Setting Display Options with mv_value 275



       [item−field title]<A>, by [item−field artist]
   [/search−list]
   [no−match]
       Sorry, no matches for [value mv_searchspec].
   [/no−match]
   [/search−region]

Note: The [item−code] above does not need to be quoted because it is replaced before the [page ...] tag is
interpolated. If building large lists, this is worth doing because unquoted tags are twice as fast to parse.

To use the same page for search paging, make sure to set the sp=page parameter.

48.10. Search Profiles

An unlimited number of search profiles can be predefined that reside in a file or files. To use this, make up a
series of lines like:

mv_search_field=artist
mv_search_field=category
mv_orsearch=yes

These correspond to the Interchange search variables that can be set on a form. Set it right on the page that
contains the search.

[set artist_profile]
mv_search_field=artist
mv_search_field=category
mv_orsearch=yes
[/set]

This is the same:

[set artist_profile]
sf=artist
sf=category
os=yes
[/set]

Then, in the search form, set a variable with the name of the profile:

   <INPUT TYPE=hidden NAME=mv_profile VALUE=artist_profile>

In a one−click search, use the mp modifier:

[page scan se=Leonardo/mp=artist_profile]A left−handed artist[/page]

They can also be placed in a file. Define the file name in the SearchProfile directive. The catalog must
be reconfigured for Interchange to read it. The profile is named by placing a name following a __NAME__
pragma:

 __NAME__ title_search

The __NAME__ must begin the line, and be followed by whitespace and the name.

Interchange Documentation (Full)

48.10. Search Profiles 276



The special variable mv_last stops interpretation of search variables. The following variables are always
interpreted:

   mv_dict_look
   mv_searchspec
   mv_range_look
   mv_range_min
   mv_range_max

Other than that, if mv_last is set in a search profile, and there are other variables on the search form, they
will not be interpreted.

To place multiple search profiles in the same file, separate them with __END__, which must be on a line by
itself.

48.11. Search Reference

The supplied simple/srchform.html and simple/results.html pages show example search
forms. Modify them to present the search in any way desired. Be careful to use the proper variable names for
passing to Interchange. It is also necessary to copy the hidden variables as−is. They are required to interpret
the request as a search.

Note: The following definitions frequently refer to field name and column and column number. All are the
references to the columns of a searched text file as separated by delimiter characters.

The field names can be specified in several ways.

ProductFiles

If the file to be searched is left empty in the search form or definition (it is set with mv_search_file
(fi)), the text files associated with the products databases will be searched, and field names are already
available as named in the first line of the file(s). This is defined to be products.txt in the Interchange
demo catalogs.
Be careful if using SQL! If the database is changed and not exported with [tag export
products][/tag], searches will not be successful.

Other database files

If the file or files to be searched are ASCII delimited files, and have field names specified on the first line of
the file, Interchange will read the first line (of the first file) and determine the field names.

Other files

If the file or files to be searched are ASCII delimited files, but don't have field names specified on the first
line of the file, set the variable mv_field_names to a comma−separated list of field names as they will be
referenced.

Fields can also always be specified by an integer column number, with 0 as the first column.

mv_all_chars

Interchange Documentation (Full)

48.11. Search Reference 277



Scan abbreviation: ac=[1|0]. Set this if searching is anticipated for lots of punctuation characters that might be
special characters for Perl. The characters ()[]\$^ are included.

mv_base_directory

Scan abbreviation: bd=/directory/name. In the text search, set to the directory from which to base file
searches. File names without leading / characters will be based from there. In the Glimpse search, passed to
Glimpse with the −H option, and Glimpse will look for its indices there. Default is ProductDir.
If an absolute path directory is used, for security enable it in the users session with:

            [set /directory/name]1[/set]

This prevents users from setting an arbitrary value and viewing arbitrary files.

mv_begin_string

If this is set, the string will only match if it is at the beginning of a field. The handling is a bit different for the
default AND search compared to the OR search. With OR searches all words are searched for from the
beginning of the field, with AND searches all are.
This is a multiple parameter. If mv_coordinate is in force, it should be set as many times as necessary to
match the field/searchstring combination. If set only once, it applies to all fields. If set more than once but not
as many times as the fields, it will default to off.

mv_case

If this item is set to No, the search will return items without regard to upper or lower case. This is the default.
Set to Yes if case should be matched. Implement with a checkbox <INPUT TYPE=CHECKBOX> field.
If stacked to match the mv_search_field and mv_searchspec variables, and mv_coordinate is
set, it will operate only for the corresponding field.

mv_coordinate

If this item is set to Yes, and the number of search fields equals the number of search specs, the
search will return only items that match field to spec. (The search specifications are set by stacked
mv_searchspec and mv_search_field variables.)
Case sensitivity, substring matching, and negation all work on a field−by field basis according to the
following:

If only one instance of the option is set, it will affect all fields.
If the number of instances of the option is greater than or equal to the number of search specs, all will be used
independently. Trailing instances will be ignored.
If more than one instance of the options are set, but fewer than the number of search specifications, the default
setting will be used for the trailing unset options.
If a search specification is blank, it will be removed and all case−sensitivity/negation/substring options will be
adjusted accordingly.

mv_dict_end

If the string at the beginning of a line lexically exceeds this value, matching will stop. Ignored without
mv_dict_look.

Interchange Documentation (Full)

48.11. Search Reference 278



mv_dict_fold

Make dictionary matching case−insensitive. Ignored without mv_dict_look.

Note: This is the reverse sense from mv_case.

mv_dict_limit

Automatically set the limiting string (mv_dict_end) to be one character greater than the mv_dict_look
variable, at the character position specified. A value of 1, for instance, will set the limiting string to "fprsythe"
if the value of mv_dict_look is "forsythe". A useful value is −1, which will increment the last character
(setting the mv_dict_end to "forsythf" in our example). This prevents having to scan the whole file once a
unique match is found.

Note: The order of this and the mv_dict_end variable is significant. Each will overwrite the other.

If this is set to a non−numeric value, an automatic mode is entered which looks for a dictionary−indexed file
that corresponds to the file name plus .field, where field is whatever mv_dict_limit is set to. The
actual value of mv_dict_limit is set to −1. If the file does not exist, the original file is silently used. Also, the
value of mv_return_fields is set to 1 to correspond to the location of the key in the auto−indexed file.
To illustrate:

            <INPUT TYPE=hidden NAME=mv_dict_limit  VALUE=category>
            <INPUT TYPE=hidden NAME=mv_search_file VALUE="products.txt">

is equal to:

            <INPUT TYPE=hidden NAME=mv_dict_limit    VALUE="−1">
            <INPUT TYPE=hidden NAME=mv_search_file   VALUE="products.txt.category">
            <INPUT TYPE=hidden NAME=mv_return_fields VALUE="1">

The real utility would be in a form construct like

            Search for
            <SELECT NAME=mv_dict_limit>
            <OPTION> author
            <OPTION> title
            </SELECT> beginning with <INPUT NAME=mv_dictlook>

which would allow automatic binary search file selection.
Combined with the INDEX attribute to the Database directive, this allows fast binary search qualification
combined with regular mv_searchspec text searches.

mv_dict_look

The string at which to begin matching at in a dictionary−based search. If not set, the mv_dict_end,
mv_dict_fold, and mv_dict_case variables will be ignored. May be set in a search profile based on
other form variables.

mv_dict_order

Interchange Documentation (Full)

48.11. Search Reference 279



Make dictionary matching follow dictionary order, where only word characters and whitespace matter.
Ignored without mv_dict_look.

mv_doit

This must be set to search to make this a search page.

mv_exact_match

Normally Interchange searches match words, as opposed to sentences. This behavior can be overridden with
mv_exact_match, which when set will place quotes around any value in mv_searchspec or
mv_dict_look.

mv_field_names

Deprecated in favor of in−list sorting. Defines the field names for the file being searched. This guarantees that
they will be available, and prevents a disk access if using named fields on a search file (that is not the product
database ASCII source, where field names are already known). This must be exactly correct, or it will result in
anomalous search operation. Usually passed in a hidden field or search profile as a comma−separated list.

Note: Use this on the product database only if planning on both pre−sorting with mv_sort_field and then
post−sorting with [sort]field:opt[/sort].

mv_first_match

Normally Interchange will return the first page of a search. If this variable is set, it will start the search return
at the match specified, even if there is only one page. If set to a value greater than the number of matches, it
will act as if no matches were found.

mv_head_skip

Normally Interchange searches all lines of an index/product file but the first. Set this to the number of lines to
skip at the beginning of the index. Default is 1 for the text search, which skips the header line in the product
file. Default is 0 for a Glimpse search.

mv_index_delim

Sets the delimiter for counting fields in a search index. The default is TAB.

mv_matchlimit

The page size for matches that are returned. If more matches than mv_matchlimit are found, the search paging
mechanism will be employed if the proper [more−list] is present. Can be implemented as a scrolling list
(INPUT TYPE=SELECT) or radiobox (INPUT TYPE=RADIO) field.

mv_max_matches

The maximum number of records that will be returned in a search. Default is 2000. This only applies to
Glimpse. Use mv_matchlimit to set the search page size.

Interchange Documentation (Full)

48.11. Search Reference 280



mv_min_string

Sets the minimum size of a search string for a search operation. Default is 4 for the Glimpse search, and 1 for
the text search.

mv_negate

Specifies that records NOT matching the search criteria will be returned. Default is no. It is not operative for
the Glimpse search.
If stacked to match the mv_search_field and mv_searchspec variables, and mv_coordinate is
set, it will operate only for the corresponding field.

mv_orsearch

If this item is set to Yes, the search will return items matching any of the words in searchspec. The
default is No.

mv_profile

Selects one of the pre−defined search specifications set by the SearchProfile directive. If the special
variable within that file, mv_last, is defined, it will prevent the scanning of the form input for further search
modifications. The values of mv_searchspec and mv_dict_look are always scanned, so specify this to
do the equivalent of setting multiple checkboxes or radioboxes with one click, while still reading the search
input text.

mv_range_alpha

Sets the type of match, numeric or alphanumeric, for the range search in its corresponding range field. The
search will return true, assuming it is greater than the mv_range_min specification, if the field searched is
less than or equal to mv_range_max, in an alphanumeric sense.

mv_range_look

This sets a field to scan for a range of numbers. It must be accompanied with corresponding mv_range_min
and mv_range_max variables. It can be specified with either a field name or a column number.

mv_range_max

Sets the high bound for the range search in its corresponding range field. The search will return true, assuming
it is greater than the mv_range_min specification, if the field searched is less than or equal to
mv_range_max. To set the bound at infinity, or whatever your integer limit is, set mv_range_min to 0.

mv_range_min

Sets the low bound for the range search in its corresponding range field. The search will return true, assuming
it is less than the mv_range_max specification, if the field searched is less than or equal to
mv_range_min.

mv_record_delim

Interchange Documentation (Full)

48.11. Search Reference 281



Sets the delimiter for counting records in a search index. The default is newline, which works for the products
and most line−based index files.

mv_return_fields

The field(s) that should be returned by the match, specified either by field name or by column number,
separated by commas. Do not list the same field more than once per search. Specify 0 as the first field to be
returned if searching the products database, since that is the key for accessing database fields.

As with SQL queries, you can use the '*' shortcut to return all fields. For example:

    [loop search="fi=nation/ra=yes/rf=*"]

when used with a hypothetical 'nation' table would be equivalent to:

    [loop search="
          fi=nation
          ra=yes
          rf=code,sorder,region,name,tax
    "]

as well as:

    [loop search="fi=nation/ra=yes/rf=0,1,2,3,4"]

and:

    [query sql="select * from nation"][/query]

However, you probably rarely need to use every single field in a row. For maximum maintainability and
execution speed the best practice is to list by name only the fields you want returned.

mv_return_spec

Returns the string specified as the search (i.e., the value of mv_searchspec) as the one and only match.
Typically used in a SKU/part number search.

mv_search_field

The field(s) to be searched, specified either by column name or by column number.
If the number of instances matches the number of fields specified in the mv_searchspec variable and
mv_coordinate is set to true, each search field (in order specified on the form) will be matched with each
search spec (again in that order).

mv_search_file

In the text search, set this variable to the file(s) to be scanned for a match. The default, if not set, is to scan the
default ProductFiles (i.e., products.txt). If set multiple times in a form (for a text search), will cause a search
all the files. One file name per instance.
In the Glimpse search, follows the Glimpse wildcard−based file name matching scheme. Use with caution and
a liberal dose of the Glimpse man page.

Interchange Documentation (Full)

48.11. Search Reference 282



mv_search_match_count

Set by the search to indicate the total number of matches found.

mv_search_page

The Interchange−style name of the page that should display the search results. This overrides the default value
of search.

mv_searchspec

The actual search string that is typed in by the customer. It is a text INPUT TYPE=TEXT field, or can be put
in a select (drop−down) list to enable category searches. If multiple instances are found, they will be
concatenated just as if multiple words had been placed in a text field.
The user can place quotes around words to specify that they match as a string. To enable this by default, use
the mv_exact_match variable.
If mv_dict_look has a value, and mv_searchspec does not, then mv_searchspec will be set to the
value of mv_dict_look.
If the number of instances matches the number of fields specified in the mv_search_field variable and
mv_coordinate is set to true, each search field (in order specified on the form) will be matched with each
search spec (again in that order).

mv_searchtype

If set to Glimpse, selects the Glimpse search (if Glimpse is defined).
If set to db, iterates over every row of the database (not the associated text source file).
If set to sql, same as db.
If set to text, selects the text−based search.
When using st=db, returned keys may be affected by TableRestrict. See CATALOG.CFG.
Defaults to text if Glimpse is not defined; defaults to Glimpse if it is defined. This can allow use of both
search types if that is desirable. For instance, searching for very common strings is better done by the
text−based search. An example might be searching for categories of items instead of individual items.

mv_sort_field

The file field(s) the search is to be sorted on, specified in one of two ways. If the file(s) to be searched have a
header line (the first line) that contains delimiter−separated field names, it can be specified by field name. It
can also be specified by column number (the code or key is specified with a value of 0, for both types). These
can be stacked if coming from a form or placed in a single specification separated by commas.

Note: If specifying a sort for the product database, mv_field_names must be specified if doing a
fieldname−addressed post−sort.

mv_sort_option

The way that each field should be sorted. The flags are r, n, and f, reverse, numeric, and case−insensitive
respectively. These can be stacked if coming from a form or placed in a single specification separated by
commas. The stacked options will be applied to the sort fields as they are defined, presuming those are
stacked.

Interchange Documentation (Full)

48.11. Search Reference 283



mv_spelling_errors

The number of spelling errors that will be tolerated. Ignored unless using Glimpse. For a large table, limit this
to two.

mv_substring_match

If mv_substring_match is set to Yes, matches on substrings as well as whole words. Typically set this
for dictionary−based searches.
If stacked to match the mv_search_field and mv_searchspec variables and mv_coordinate is set,
it will operate only for the corresponding field.

mv_unique

If set to a true value, causes the sort to return only unique results. This operates on whatever the search return
is, as defined by mv_return_fields.

mv_value

This is normally only used in the one−click search (va=var=value). It allows setting of a session variable
based on the clicked link, which makes for easy definition of headers and other display choices. (If had
trouble using mv_searchspec for this before, this is what is needed.)

48.12. The Results Page

Once a search has been completed, there needs to be a way of presenting the output. By default, the
SpecialPage search is used. It is set to results in the distribution demo, but any number of search
pages can be specified by passing the value in the search form specified in the variable mv_search_page.

On the search page, some special Interchange tags are used to format the otherwise standard HTML. Each of
the iterative tags is applied to every code returned from the search. This is normally the product code, but
could be a key to any of the arbitrary databases. The value placed by the [item−code] tag is set to the first
field returned from the search.

The basic structure looks like this:

[search−region]
[search−list]
    your iterating code, once for each match
[/search−list]
[no−match]
    Text / tags to be output if no matches found (optional but recommended)
[/no−match]
[more−list]
    More / paging area (optional)
[/more−list]
[/search−region]

Tip for catalogs upgraded from Minivend 3: A [search−list][/search−list] must always be
surrounded by a [search−region][/search−region] pair. This is a change from Minivend 3.

[search−list]

Interchange Documentation (Full)

48.12. The Results Page 284



Starts the representation of a search list. Interchange tags can be embedded in the search list, yielding a table
or formatted list of items with part number, description, price, and hyperlinks to order or go to its catalog
page.
The example tags shown have an item− prefix, which is the default. Set any prefix desired with the prefix
parameter to [search−region]:

            [search−region prefix=my]
            [search−list]
                SKU:   [my−code]
                Title: [my−data products title]
            [/search−list]
            [/search−region]

The standard set of Interchange iterative ITL tags are available. They are interpolated in this order:

                [item−alternate N] true [else] false [/else] [/item−alternate]
                [if−item−param named_field] true [else] false [/else] [/if−item−param]
                [item−param named_field]
                [if−item−pos N] true [else] false [/else] [/if−item−pos]
                [item−pos N]
                [if−item−field products_field] true [else] false [/else] [/if−item−field]
                [item−field products_column]
                [item−increment]
                [item−accessories]
                [item−code]
                [item−description]
                [if−item−data table column] true [else] false [/else] [/if−item−data]
                [item−data table column]
                [item−price N* noformat=1*]
                [item−calc] [/item−calc]
                [item−change marker]
                    [condition]variable text[/condition]
                    true
                    [else] false [/else]
                [/item−change marker]
                [item−last] condition [/item−last]
                [item−next] condition [/item−next]

Note: those that reference the shopping cart do not apply, i.e., [item−quantity], [item−modifier ...] and friends.

[/search−list]

Ends the search list.

[no−match]

Starts the region of the search results page that should be returned if there is no match (and no error) for the
search. If this is not on the page, the special page nomatch will be displayed instead.

[/no−match]

Ends the no match region.

[sort database:field:option* database:field:option*]

Interchange Documentation (Full)

48.12. The Results Page 285



Sorts the search list return based on database fields. If no options are supplied, sorts according to the return
code. See SORTING.
This is slow, and it is far better to pre−sort the return in the search specification.

[item−change marker]

Active only within [search−list][/search−list].
Along with the companion [/item−change marker], surrounds a region which should only be output
when a field (or other repeating value) changes its value. This allows indented lists similar to database reports
to be easily formatted. The repeating value must be a tag interpolated in the search process, such as
[item−field field] or [item−data database field].
Of course, this will only work as expected when the search results are properly sorted.
The marker field is mandatory, and is also arbitrary, meaning that any marker can be selected as long as it
matches the marker associated with [/item−change marker]. The value to be tested is contained within
a [condition]value[/condition] tag pair. The [item−change marker] tag also processes an
[else] [/else] pair for output when the value does not change. The tags may be nested as long as the
markers are different.
The following is a simple example for a search list that has a field category and subcategory
associated with each item:

         <TABLE>
         <TR><TH>Category</TH><TH>Subcategory</TH><TH>Product</TH></TR>
         [search−list]
         <TR>
            <TD>
                 [item−change cat]

                 [condition][item−field category][/condition]

                         [item−field category]
                 [else]
                         &nbsp;
                 [/else]
                 [/item−change cat]
            </TD>
            <TD>
                 [item−change subcat]

                 [condition][item−field subcategory][/condition]

                         [item−field subcategory]
                 [else]
                         &nbsp;
                 [/else]
                 [/item−change subcat]
            </TD>
            <TD> [item−field name] </TD>
         [/search−list]
         </TABLE>

The above should output a table that only shows the category and subcategory once, while showing the name
for every product. (The &nbsp; will prevent blanked table cells if using a border.)

[/item−change marker]

Companion to [item−change marker].

Interchange Documentation (Full)

48.12. The Results Page 286



[matches]

Replaced with the range of match numbers displayed by the search page. Looks something like "1−50". Make
sure to insert this item between a [more−list] and [/more−list] element pair.

[match−count]

Replaced with the total number of matches. This tag works even on [query] searches where [value
mv_search_match_count] isn't set unless the query is applied to a non−SQL database. Make sure to
insert this item between a [more−list] and [/more−list] element pair.

[more−list next_img* prev_img* page_img* border* border_current*]

Starts the section of the search page which is only displayed if there are more matches than specified in
mv_matchlimit. If there are less matches than the number in mv_matchlimit, all text/html between the
[more_list] and [/more_list] elements is stripped.
Use in conjunction with the [more] element to place pointers to additional pages of matches.
If the optional arguments next_img, prev_img, and/or page_img are present, they represent image files
that will be inserted instead of the standard 'Next,' 'Previous,' and page number. If prev_img is none, then
no previous link will be output. If page_img is none, then no links to pages of matches will be output.
These are URLs, are substituted for with ImageDir and friends, and will be encased in IMG tags. Lastly,
border is the border number to put.
In addition, if page_img is used, it will be passed an argument of the digit that is to be represented. This
would allow an image generator program to be used, generating page numbers on the fly. The border and
border_selected values are integers indicating the border that should be put around images in the
page_img selection. The <border_selected> is used for the current page if set.
\Examples:
[more−list next.gif prev.gif page_num.cgi 3] causes anchors of:

             Previous   <IMG SRC="prev.gif" Border=3>
             Page 1     <IMG SRC="/cgi−bin/page_num.cgi?1">
             Page 2     <IMG SRC="/cgi−bin/page_num.cgi?2">
             Next       <IMG SRC="next.gif" Border=3>

[more−list next.gif prev.gif page_num.cgi] causes anchors of:

             Previous   <IMG SRC="prev.gif">
             Page 1     <IMG SRC="/cgi−bin/page_num.cgi?1">
             Page 2     <IMG SRC="/cgi−bin/page_num.cgi?2">
             Next       <IMG SRC="next.gif">

[more−list next.gif prev.gif 0 0] causes anchors of:

             Previous   <IMG SRC="prev.gif" Border=0>
             Page 1     <IMG SRC="/cgi−bin/page_num.cgi?1">
             Page 2     <IMG SRC="/cgi−bin/page_num.cgi?2">
             Next       <IMG SRC="next.gif" Border=0>

To set custom text for the "Previous" and "Next" usually used, define the next_img, prev_img, and
page_img with [next−anchor][/next−anchor], [prev−anchor][/prev−anchor] and
[page−anchor][/page−anchor]. The string $PAGE$ will be replaced with the page number in the
latter. The same example:

Interchange Documentation (Full)

48.12. The Results Page 287



            [more−list 0 0 0]
            [next−anchor] Forward [/next−anchor]
            [prev−anchor] Back [/prev−anchor]
            [page−anchor] Page $PAGE$ [/page−anchor]
            [more]
            [/more−list]

will display Forward Page 1 Page 2 Back for 2 pages.
As shown, pass a 0 for the arguments of each to tell Interchange to look for the assignments.
If have many pages of matches and don't wish to have all displayed at once, set
[decade−next][/decade−next] and [decade−prev][/decade−prev]. If set them empty, a
search with 31 pages will display pages 21−30 like:

          Previous 1 2 3 4 5 6 7 8 9 10 [more>>] Next

and pages 11−20 like:

          Previous [<<more] 11 12 13 14 15 16 17 18 19 20 [more>>] Next

If set to [decade−next](higher)[/decade−next] and
[decade−prev](lower)[/decade−prev], the following will be displayed:

          Previous (lower) 11 12 13 14 15 16 17 18 19 20 (higher) Next

Of course, image−based anchors can be used as well.

[/more−list]

Companion to [more−list].

[more]

Inserts a series of hyperlinks that will call up the next matches in a series. They look like this:

            Previous 1 2 3 4 5 6 Next

The current page will not be a hyperlink. Every time the new link is pressed, the list is re−built to correspond
to the current page. If there is no Next or Previous page, that link will not be shown.
See the search.html file for examples. Make sure to insert this item between a [more−list] and
[/more−list] element pair.

[process−search]

Outputs the complete URL for a search, including Interchange session tags. Used as the ACTION value for
the search form. This is exactly the same as [area search].

Interchange Documentation (Full)

48.12. The Results Page 288



49. Sorting
Interchange has standard sorting options for sorting the search lists, loop lists, and item lists based on the
contents of database fields. In addition, it adds list slices for limiting the displayed entries based on a start
value and chunk size (or start and end value, from which a chunk size is determined). All accept a standard
format sort tag which must be directly after the list call:

   [loop 4 3 2 1]
   [sort −2 +2]
       [loop−code]
   [/loop]

   [search−list]
   [sort products:category:f]
       [item−price] [item−description]<BR>
   [/search−list]

   [item−list]
   [sort products:price:rn]
       [item−price] [item−code]<BR>
   [/item−list]

   [loop search="ra=yes"]
   [sort products:category products:title]
   [loop−field category] [loop−field title] <BR>
   [/loop]

All sort situations, [search list], [loop list], [tag each table], and [item−list], take
options of the form:

 [sort database:field:option* −n +n =n−n ... ]

database

The Interchange database identifier. This must be supplied and should normally be 'products' if using the
default name for the database.

field

The field (column) of the database to be sorted on.

option

None, any, or combinations of the options:

          f   case−insensitive sort (folded) (mutually exclusive of n)
          n   numeric order (mutually exclusive of f)
          r   reverse sort

−n

The starting point of the list to be displayed, beginning at 1 for the first entry.

+n

49. Sorting 289



The number of entries to display in this list segment.

=n−n

The starting and ending point of the list display. This is an alternative to −n and +n. They should be specified
in only one form. If both are specified, the last one will take effect.

...

Don't really put ... in. This means that many sort levels are specified. Lots of sort levels with large
databases will be quite slow.

Multiple levels of sort are supported, and database boundaries on different sort levels can be crossed.
Cross−database sorts on the same level are not supported. If using multiple product databases, they must be
sorted with embedded Perl. This is actually a feature in some cases, all items in a used database can be
displayed before or after new ones in products.

Examples, all based on the simple demo:

Loop list

            [loop 00−0011 19−202 34−101 99−102]
            [sort products:title]
                [loop−code] [loop−field title]<BR>
            [/loop]

Will display:

            34−101 Family Portrait
            00−0011 Mona Lisa
            19−202 Radioactive Cats
            99−102 The Art Store T−Shirt

\Alternatively:

            [loop 00−0011 19−202 34−101 99−102]
            [sort products:title −3 +2]
                [loop−code] [loop−field title]<BR>
            [/loop]

\Displays:

            19−202 Radioactive Cats
            99−102 The Art Store T−Shirt

The tag [sort products:title =3−4] is equivalent to the above.

Search list

A search of all products (i.e., http://yoursystem.com/cgi−bin/simple/scan/ra=yes):

            [search−list]
            [sort products:artist products:title:rf]
                [item−field artist] [item−field title]<BR>

Interchange Documentation (Full)

49. Sorting 290



            [/search−list]

will display:

            Gilded Frame
            Grant Wood American Gothic
            Jean Langan Family Portrait
            Leonardo Da Vinci Mona Lisa
            Salvador Dali Persistence of Memory
            Sandy Skoglund Radioactive Cats
            The Art Store The Art Store T−Shirt
            Vincent Van Gogh The Starry Night
            Vincent Van Gogh Sunflowers

Note the reversed order of the title for Van Gogh and the presence of the accessory item Gilded Frame at the
front of the list. It has no artist field and, as such, sorts first).
Adding a slice option:

            [search−list]
            [sort products:artist products:title:rf =6−10]
                [item−field artist] [item−field title]<BR>
            [/search−list]

will display:

            Sandy Skoglund Radioactive Cats
            The Art Store The Art Store T−Shirt
            Vincent Van Gogh The Starry Night
            Vincent Van Gogh Sunflowers

If the end value/chunk size exceeds the size of the list, only the elements that exist will be displayed, starting
from the start value.

Shopping cart

            [item−list]
            [sort products:price:rn]
                [item−price] [item−code]<BR>
            [/item−list]

will display the items in the shopping cart sorted on their price, with the most expensive shown first. NOTE:
This is based on the database field and doesn't take quantity price breaks or discounts into effect. Modifier
values or quantities cannot be sorted.

Complete database contents

            [tag each products]
            [sort products:category products:title]
            [loop−field category] [loop−field title] <BR>
            [/tag]

A two level sort that will sort products based first on their category, then on their title within the category.

Note that large lists may take some time to sort. If a product database contains many thousands of items, using
the [tag each products] sort is not recommended unless planning on caching or statically building

Interchange Documentation (Full)

49. Sorting 291



pages.

Interchange Documentation (Full)

49. Sorting 292



50. Shipping
Interchange has a powerful custom shipping facility that performs UPS and other shipper lookups, as well as a
flexible rule−based facility for figuring cost by other methods.

50.1. Shipping Cost Database

The shipping cost database (located in ProductDir/shipping.asc) is a tab−separated ASCII file with six fields:
code, text description, criteria (quantity or weight, for example), minimum number, maximum number, and
cost. None of the fields are case−sensitive.

To define the shipping database in a catalog configuration file, set the Variable MV_SHIPPING to what
would be its contents.

To set the file to be something other than shipping.asc in the products directory, set the Special
directive:

   Special  shipping.asc  /home/user/somewhere/shipping_defs

There are two styles of setting which can be mixed in the same file. The first is line−based and expects six or
more TAB−separated fields. They would look like:

default No shipping weight  0   99999999    0

upsg    UPS Ground  weight  0   0   e Nothing to ship!
upsg    UPS Ground  weight  0   150 u Ground [default zip 98366] 3.00
upsg    UPS Ground  weight  150 999999  e @@TOTAL@@ lbs too heavy for UPS

The second is a freeform method with a mode: Description text introducing the mode line. The
special encoding is called out by indented parameters. The below is identical to the above:

   upsg: UPS Ground
       criteria    weight
       min         0
       max         0
       cost        e Nothing to ship!

       min         0
       max         150
       cost        u
       table       2ndDayAir
       geo         zip
       default_geo 98366
       adder       3

       min         150
       max         999999
       cost        e @@TOTAL@@ lbs too heavy for UPS

The second format has several advantages. Multiple lines can be spanned with the <<HERE document format,
like so:

   upsg: UPS Ground
       criteria    <<EOF

50. Shipping 293



   [perl]
       return 'weight' if $Values−>{country} eq 'US';
       return 'weight' if ! $Values−>{country};
       # Return blank, don't want UPS
       return '';
   [/perl]
   EOF

The definable fields are, in order, for the tab−separated format:

MODE

The unique identifier for that shipping method. It may be repeated as many times as needed.

DESCRIPTION

Text to describe the method (can be accessed on a page with the [shipping−description] element).

CRITERIA

Whether shipping is based on weight, quantity, price, etc. Valid Interchange tags can be placed in the field to
do a dynamic lookup. If a number is returned, that is used as the accumulated criteria. That is, the total of
weight, quantity, or price as applied to all items in the shopping cart.
See Criteria Determination below.

MINIMUM

The low bound of quantity/weight/criteria this entry applies to.

MAXIMUM

The high bound of quantity/weight/criteria this entry applies to. The first found entry is used in case of ties.

COST

The method of developing cost. It can be a number which will be used directly as the shipping cost, or a
function, determined by a single character at the beginning of the field:

           f       Formula (ITL tags OK, evaluated as Perl)
           x       Multiplied by a number
           [uA−Z]  UPS−style lookup
           m       Interchange chained cost lookup (all items summed together)
           i       Interchange chained cost lookup (items summed individually)

NEXT

The next field supplies an alternative shipping mode to substitute if the cost of the current one is zero.

ZONE

The UPS zone that is being defined.

QUERY

Interchange Documentation (Full)

50. Shipping 294



Interchange tags which will return a SQL query to select lines matching this specification. The current mode
is replaced with this selection. If there is a query parameter of ?, it will be replaced with the mode name.

QUAL

The geographic qualification (if any) for this mode.

PERL

Perl code that is read and determines the criterion, not the cost. Use the cost option with "f" as the prelim to
supply Perl code to determine cost.

TOTAL

Set to the accumulated criterion before passing to Perl.

OPT

Used to maintain UPS and freeform options. Normally these are set by separate lines in the shipping
definition.

50.2. Criteria Determination

The criteria field varies according to whether it is the first field in the shipping file exactly matching the mode
identifier. In that case, it is called the main criterion. If it is in subsidiary shipping lines matching the mode
(with optional appended digits), it is called a qualifying criterion. The difference is that the main criterion
returns the basis for the calculation (i.e., weight or quantity), while the qualifying criterion determines
whether the individual line may match the conditions.

The return must be one of:

quantity

The literal value quantity as the main criterion will simply count the number of items in the shopping cart and
return it as the accumulated criteria. If using a database table field named quantity, use the
table::field notation.

o <field name> or <table>::<field name>

A valid database field (column) name as main criterion will cause the number of items in the shopping cart to
be multiplied by the value of the field for each item to obtain the accumulated criteria. If the table is not
supplied, defaults to the first ProductFiles table.

o n.nn

Where n.nn is any number, it will be directly used as the accumulated criteria. This can be effectively
returned from a Perl subroutine or Interchange [calc][item−list] ... [/item−list][/calc]
to create custom shipping routines.

Interchange Documentation (Full)

50.2. Criteria Determination 295



IMPORTANT NOTE: The above only applies to the first field that matches the shipping mode exactly.
Following criteria fields contain qualifier matching strings.

50.3. Shipping Calculation Modes

There are eight ways that shipping cost may be calculated. The method used depends on the first character of
the cost field in the shipping database.

N.NN (digits)

If the first character is a digit, a number is assumed and read directly as the shipping cost.

e

If the first character is an e, a cost of zero is returned and an error message is placed in the session value
ship_message (i.e., [data session ship_message] or $Session−>{ship_message}).

f

If the character f is the first, Interchange will first interpret the text for any Interchange tags and then interpret
the result as a formula. It is read as Perl code; the entire set of Interchange objects may be referenced with the
code.

i

Specifies a chained shipping lookup which will be applied to each item in the shopping cart.

m

Specifies a chained shipping lookup which will be applied to the entire shopping cart.

u

Calls the UPS−style lookup. Can pre−define as many as desired. Though if want to do the hundreds available,
it is best done on−the−fly.

x

If an x is first, a number is expected and is applied as a fixed multiplier for the accumulated criterion
(@@TOTAL@@).

A−Z

If the first character is a capital letter, calls one of the 26 secondary UPS−style lookup zones. (Deprecated
now that zones can be named directly).

50.4. How Shipping is Calculated

The base code is selected by reading the value of mv_shipmode in the user session. If it has not1. 

Interchange Documentation (Full)

50.3. Shipping Calculation Modes 296



been explicitly set, either by means of the DefaultShipping directive or by setting the variable on a
form (or in an order profile), it will be default.
The mv_shipmode must be in the character class [A−Za−z0−9_]. If there are spaces, commas, or nulls
in the value, they will be read as multiple shipping modes.
The modes are selected from the d
The criterion field is found. If it is quantity, it is the total quantity of items on the order form. If it is
any other name, the criterion is calculated by multiplying the return value from the product database
field for each item in the shopping cart, multiplied by its quantity. If the lookup fails due to the
column or row not existing, a zero cost will be returned and an error is sent to the catalog error log. If
a number is returned from an Interchange tag, that number is used directly.
Entries in the shipping database that begin with the same string as the shipping mode are examined. If
none is found, a zero cost is returned and an error is sent to the catalog error log.

2. 

Note: The same mode name may be used for all lines in the same group, but the first one will contain the main
criteria.

The value of the accumulated criteria is examined. If it falls within the minimum and maximum, the
cost is applied.

1. 

If the cost is fixed, it is simply added.2. 
If the cost field begins with an x, the cost is multiplied by the accumulated criterion, i.e., price,
weight, etc.

3. 

If the cost field begins with f, the formula following is applied. Use @@TOTAL@@ as the value of
the accumulated criterion.

4. 

If the cost field begins with u or a single letter from A−Z, a UPS−style lookup is done.5. 
If the cost field begins with s, a Perl subroutine call is made.6. 
If the cost field begins with e, zero cost is returned and an error placed in the session ship_message
field, available as [data session ship_message].

7. 

Here is an example shipping file using all of the methods of determining shipping cost.

Note: The columns are lined up for reading convenience. The actual entries should have one tab between
fields.

global Option   n/a               0   0      g PriceDivide

rpsg   RPS      quantity          0   0      R RPS products/rps.csv
rpsg   RPS      quantity          0   5      7.00
rpsg   RPS      quantity          6   10     10.00
rpsg   RPS      quantity          11  150    x .95

usps   US Post  price             0   0      0
usps   US Post  price             0   50     f 7 + (1 * @@TOTAL@@ / 10)
usps   US Post  price             50  100    f 12 + (.90 * @@TOTAL@@ / 10)
usps   US Post  price             100 99999  f @@TOTAL@@ * .05

upsg   UPS      weight [value state]  0   0    e Nothing to ship.
upsg   UPS      AK HI             0   150    u upsg [default zip 980] 12.00 round
upsg   UPS                        0   150    u Ground [default zip 980] 2.00 round
upsg   UPS                        150 9999   e @@TOTAL@@ lb too heavy for UPS

upsca  UPS/CA   weight            0   0      c C UPS_Canada products/can.csv
upsca  UPS/CA   weight            −1   −1    o PriceDivide=0
upsca  UPS/CA   weight            0   150    C upsca [default zip A7G] 5.00

Interchange Documentation (Full)

50.3. Shipping Calculation Modes 297



upsca  UPS/CA   weight            150 99999  e @@TOTAL@@ lb too heavy for UPS

global

This is a global option setting, called out by the g at the beginning. PriceDivide tells the shipping routines to
multiply all shipping settings by the PriceDivide factor, except those explicitly set differently with the o
individual modifier. This allows currency conversion. (Currently the only option is PriceDivide.)

rpsg

If the user selected RPS, (code rpsg) and the quantity on the order was 3, the cost of 7.00 from the second rpsg
line would be applied. If the quantity were 7, the next entry from the third rpsg line would be selected for a
cost of 10.00. If the quantity were 15, the last rpsg would be selected and the quantity of 15 multiplied by
0.95, for a total cost of 14.25.

usps

The next mode, usps, is a more complicated formula using price as the criteria. If the total price of all items
in the shopping cart (same as [subtotal] without quantity price breaks in place) is from 1 to 50, the cost
will be 7.00 plus 10 percent of the order. If the total is from 50.01 to 100, the cost will be 12.00 plus 9 percent
of the order total. If the cost is 100.01 or greater, 5 percent of the order total will be used as the shipping cost.

upsg

The next, upsg, is a special case. It specifies a UPS lookup based on the store's UPS zone and two required
values (and two optional arguments):

            1. Weight
            2. The zip/postal code of the recipient of which only
               the first three digits are used.
            3. A fixed amount to add to the cost found in the UPS
               tables (use 0 as a placeholder if specifying roundup)
            4. If set to 'round,' will round the cost up to the next
               integer monetary unit.

If the cost returned is zero, the reason will be placed as an error message in the session variable ship_message
(available as [data session ship_message]).
UPS weights are always rounded up if any fraction is present.
The routines use standard UPS lookup tables. First, the UPS Zone file must be present. That is a standard UPS
document specific to the retailer's area that must be obtained from UPS. It is entered into and made available
to Interchange in TAB−delimited format. (As of March 1997, use the standard .csv file distributed by UPS on
their Web site at www.ups.com.) Specify it with the UpsZoneFile directive. It is usually named something
like NNN.csv, where NNN is the first three digits of the originating zip code. If placed in the products
directory, the directive would look like:

            UPSZoneFile  products/450.csv

Second, obtain the cost tables from UPS (again, get them from www.ups.com) and place them into an
Interchange database. That database, its identifier specified with the first argument (Ground in the example) of
the cost specification, is consulted to determine the UPS cost for that weight and rate schedule.
In the example below, use a database specification like:

            Database  Ground  Ground.csv  CSV

Interchange Documentation (Full)

50.3. Shipping Calculation Modes 298



A simple shipping cost qualification can be appended to a UPS lookup. If any additional parameters are
present after the five usual ones used for UPS lookup, they will be interpreted as a Perl subroutine call. The
syntax is the same as if it was encased in the tag [perl sub] [/perl], but the following substitutions
are made prior to the call:

            @@COST@@  is replaced with whatever the UPS lookup returned
            @@GEO@@   is replaced with the zip (or other geo code)
            @@ADDER@@ is replaced with the defined adder
            @@TYPE@@  is replaced with the UPS shipping type
            @@TOTAL@@ is replaced with the total weight

The example above also illustrates geographic qualification. If the value of the form variable state on the
checkout form is AK or HI, the U.S. states Alaska and Hawaii, a $10.00 additional charge (over and above the
normal $2.00 handling charge) is made. This can also be used to select on country, product type, or any other
qualification that can be encoded in the file.

upsca

The next entry is just like the UPS definition except it defines a different lookup zone file
(products/can.csv) and uses a different database, upsca. It also disables the global PriceDivide option
for itself only, not allowing currency conversion. Otherwise, the process is the same.
Up to 27 different lookup zones can be defined in the same fashion. If one of the cost lines (the last field) in
the shipping.asc file begins with a c, it configures another lookup zone which must be lettered from A
to Z. It takes the format:

            c X name file* length* multiplier*

where X is the letter from A−Z. The name is used internally as an identifier and must be present. The optional
file is relative to the catalog root (like UpsZoneFile is). If it is not present, the file equal to name in the
products directory (ProductDir) will be used as the zone file. If the optional digit length is present, that
determines the number of significant digits in the passed postal/geo code.
When the optional multiplier is present, the weight is multiplied by it before doing the table lookup. This
allows shipping weights in pounds or kilograms to be adapted to a table using the opposite as the key.
Remember, the match on weight must be exact, and Interchange rounds the weight up to the next even unit.
To define the exact equivalent of the UPS lookup zone, do the following:

            c U UPS products/450.csv 3 1

The only difference is that the beginning code to call the lookup is upper−case U instead of lower−case u.

50.5. More On UPS−Style Lookup

The UPS−style lookup uses two files for its purposes, both of which need to be in a format like UPS
distributes for US shippers.

The zone file is a file that is usually specific to the originating location. For US shippers shipping to US
locations, it is named for the first three digits of the originating zip code with a CSV extension. For example,
450.csv.

It has a format similar to:

   low − high, zone,zone,zone,zone

Interchange Documentation (Full)

50.5. More On UPS−Style Lookup 299



The low entry is the low bound of the geographic location; high is the high bound. (By geographic location,
the zip code is meant.) If the first digits of the zip code, compared alphanumerically, fall between the low and
high values, that zone is used as the column name for a lookup in the rate database. The weight is used as the
row key.

The first operative row of the zone file (one without leading quotes) is used to determine the zone column
name. In the US, it looks something like:

Dest. ZIP,Ground,3 Day Select,2nd Day Air,2nd Day Air A.M.,Next Day Air Saver,Next Day Air

Interchange strips all non−alpha characters and comes up with:

DestZIP,Ground,3DaySelect,2ndDayAir,2ndDayAirAM,NextDayAirSaver,NextDayAir

Therefore, the zone column (shipping type) that would be used for UPS ground would be "Ground," and that
is what the database should be named. To support the above, use a shipping.asc line that reads:

   upsg  UPS Ground  weight  0  150  u Ground [default zip 983]

and a catalog.cfg database callout of:

   Database  Ground  Ground.csv  CSV

These column names can be changed as long as they correspond to the identifier of the rate database.

The rate database is a standard Interchange database. For U.S. shippers, UPS distributes their rates in a fairly
standard comma−separated value format, with weight being the first (or key) column and the remainder of the
columns corresponding to the zone which was obtained from the lookup in the zone file.

To adapt other shipper zone files to Interchange's lookup, they will need to fit the UPS US format. (Most of
the UPS international files don't follow the U.S. format). For example, the 1998 Ohio−US to Canada file
begins:

   Canada Standard Zone Charts from Ohio
   Locate the zone by cross−referencing the first three
   characters of the destination Postal Code in the Postal
   Range column.

   Postal Range  Zone
   A0A  A9Z      54
   B0A  B9Z      54
   C0A  C9Z      54
   E0A  E9Z      54
   G0A  G0A      51
   G0B  G0L      54
   G0M  G0S      51
   G0T  G0W      54

It will need to be changed to:

   Destination,canstnd
   A0A−A9Z, 54
   B0A−B9Z, 54
   C0A−C9Z, 54
   E0A−E9Z, 54

Interchange Documentation (Full)

50.5. More On UPS−Style Lookup 300



   G0A−G0A, 51
   G0B−G0L, 54
   G0M−G0S, 51
   G0T−G0W, 54

Match it with a canstnd CSV database that looks like this:

   Weight,51,52,53,54,55,56
   1,7.00,7.05,7.10,11.40,11.45,11.50
   2,7.55,7.65,7.75,11.95,12.05,12.10
   3,8.10,8.15,8.40,12.60,12.70,12.85
   4,8.65,8.70,9.00,13.20,13.30,13.55
   5,9.20,9.25,9.75,13.85,13.85,14.20
   6,9.70,9.85,10.35,14.45,14.50,14.90
   7,10.25,10.40,11.10,15.15,15.15,15.70
   8,10.80,10.95,11.70,15.70,15.75,16.35
   9,11.35,11.55,12.30,16.40,16.45,17.20

It is called out in catalog.cfg with:

   Database canstnd canstnd.csv CSV

With the above, a 4−pound shipment to postal code E5C 4TL would yield a cost of 13.20.

50.6. Geographic Qualification

If the return value in the main criterion includes whitespace, the remaining information in the field is used as a
qualifier for the subsidiary shipping modes. This can be used to create geographic qualifications for shipping,
as in:

upsg   UPS Ground   weight [value state]   0     0     e No items selected
upsg   UPS Ground   AK HI                  0     150   u Ground [value zip] 12.00
upsg   UPS Ground                          0     150   u Ground [value zip] 3.00

If upsg is the mode selected, the value of the user session variable state is examined to see if it matches
the geographic qualification on a whole−word boundary. If it is AK or HI, UPS Ground with an adder of 12
will be selected. If it "falls through," UPS Ground with an adder of 3 will be selected.

50.7. Handling Charges

Additional handling charges can be defined in the shipping file by setting the form variable mv_handling
to a space, comma, or null−separated set of valid shipping modes. The lookup and charges are created in the
same fashion, and the additional charges are added to the order. (The user is responsible for displaying the
charge on the order report or receipt with a [shipping handling] tag, or the like.) All of the shipping
modes found in mv_handling will be applied. If multiple instances are found on a form, the accordingly
null−separated values will all be applied. NOTE: This should not be done in an item−list unless the multiple
setting of the variables is accounted for.

To only process a handling charge once, do the following:

   [item−list]
   [if−item−field very_heavy]
   [perl values]
       return '' if $Values−>{mv_handling} =~ /very_heavy/;

Interchange Documentation (Full)

50.6. Geographic Qualification 301



       return "<INPUT TYPE=hidden NAME=mv_handling VALUE=very_heavy>";
   [/perl]
   [/if−item−field]
   [/item−list]

A non−blank/non−zero value in the database field will trigger Perl code which will only set mv_handling
once.

50.8. Default Shipping Mode

If a default shipping mode other than default is desired, enter it into the DefaultShipping directive:

   DefaultShipping     upsg

This will make the entry on the order form checked by default when the user starts the order process, if it is
put in the form:

 <INPUT TYPE=RADIO NAME=mv_shipmode VALUE=upsg [checked mv_shipmode upsg]>

To force a choice by the user, make mv_shipmode a required form variable (with RequiredFields or in an
order profile) and set DefaultShipping to zero.

Interchange Documentation (Full)

50.8. Default Shipping Mode 302



51. User Database
Interchange has a user database function which allows customers to save any pertinent values from their
session. It also allows the setting of database or file access control lists for use in controlling access to pages
and databases on a user−by−user basis.

The database field names in the user database correspond with the form variable names in the user session. If
there is a column named address, when the user logs in the contents of that field will be placed in the form
variable address, and will be available for display with [value address]. Similarly, the database
value is available with [data table=userdb column=address key=username].

The ASCII file for the database will not reflect changes unless the file is exported with [tag export
userdb][/tag]. It is not advisable to edit the ASCII file, as it will overwrite the real data that is in the
DBM table. User logins and changes would be lost. Note: This would not happen with SQL, but editing the
ASCII file would have no effect. It is recommended that the NoImport configuration directive be set
accordingly.

The field names to be used are not set in concrete. They may be changed with options. Fields may be added or
subtracted at any time. Most users will choose to keep the default demo fields for simplicity sake, as they
cover most common needs. As distributed in the demo, the fields are:

   code
   accounts
   acl
   address
   address_book
   b_address
   b_city
   b_country
   b_name
   b_nickname
   b_phone
   b_state
   b_zip
   carts
   city
   country
   db_acl
   email
   email_copy
   fax
   fax_order
   file_acl
   mv_credit_card_exp_month
   mv_credit_card_exp_year
   mv_credit_card_info
   mv_credit_card_type
   mv_shipmode
   name
   order_numbers
   p_nickname
   password
   phone_day
   phone_night
   preferences
   s_nickname
   state

51. User Database 303



   time
   zip

A few of those fields are special in naming, though all can be changed via an option. A couple of the fields are
reserved for Interchange's use.

Note: If not running with PGP or other encryption for credit card numbers, which is never recommended, it is
important that the mv_credit_card_info field be removed from the database.

The special database fields are:

   accounts         Storage for billing accounts book
   address_book     Storage for shipping address book
   b_nickname       Nickname of current billing account
   carts            Storage for shopping carts
   p_nickname       Nickname for current preferences
   preferences      Storage for preferences
   s_nickname       Nickname for current shipping address
   db_acl           Storage for database access control lists
   file_acl         Storage for file access control lists
   acl              Storage for simple integrated access control

If not defined, the corresponding capability is not available.

Note: The fields accounts, address_book, carts, and preferences should be defined as a BLOB
type, if using SQL. This is also suggested for the acl fields if those lists could be large.

Reserved fields include:

   code        The username (key for the database)
   password    Password storage
   time        Last time of login

51.1. The [userdb ...] Tag

Interchange provides a [userdb ...] tag to access the UserDB functions.

[userdb
       function=function_name
       username="username"*
       assign_username=1
       username_mask=REGEX*
       password="password"*
       verify="password"*
       oldpass="old password"*
       crypt="1|0"*
       shipping="fields for shipping save"
       billing="fields for billing save"
       preferences="fields for preferences save"
       ignore_case="1|0"*
       force_lower=1
       param1=value*
       param2=value*
       ...
       ]

Interchange Documentation (Full)

51.1. The [userdb ...] Tag 304



* Optional

It is normally called in an mv_click or mv_check setting, as in:

   [set Login]
   mv_todo=return
   mv_nextpage=welcome
   [userdb function=login]
   [/set]

   <FORM ACTION="[process]" METHOD=POST>
   <INPUT TYPE=hidden NAME=mv_click VALUE=Login>
   Username <INPUT NAME=mv_username SIZE=10>
   Password <INPUT NAME=mv_password SIZE=10>
   </FORM>

There are several global parameters that apply to any use of the userdb functions. Most importantly, by
default, the database table is set to be userdb. If another table name must be used, include a
database=table parameter with any call to userdb. The global parameters (default in parentheses):

 database          Sets user database table (userdb)
 show              Show the return value of certain functions
                   or the error message, if any (0)
 force_lower       Force possibly upper−case database fields
                   to lower case session variable names (0)
 billing           Set the billing fields (see Accounts)
 shipping          Set the shipping fields (see Address Book)
 preferences       Set the preferences fields (see Preferences)
 bill_field        Set field name for accounts (accounts)
 addr_field        Set field name for address book (address_book)
 pref_field        Set field name for preferences (preferences)
 cart_field        Set field name for cart storage (carts)
 pass_field        Set field name for password (password)
 time_field        Set field for storing last login time (time)
 outboard          Set fields that live in another table
 outboard_key_col  Set field providing key for outboard tables
 expire_field      Set field for expiration date (expire_date)
 acl               Set field for simple access control storage (acl)
 file_acl          Set field for file access control storage (file_acl)
 db_acl            Set field for database access control storage (db_acl)

By default the system crypt() call will be used to compare the password. This is best for security, but the
passwords in the user database will not be human readable.

If no critical information is kept and Interchange administration is not done via the UserDB capability, use
the UserDB directive (described below) to set encryption off by default:

   UserDB   default   crypt   0

Encryption can still be set on by passing crypt=1 with any call to a new_account, change_pass, or
login call.

51.2. Setting Defaults with the UserDB Directive

The UserDB directive provides a way to set defaults for the user database. For example, to save and recall the
scratch variable tickets in the user database instead of the form variable tickets, set:

Interchange Documentation (Full)

51.2. Setting Defaults with the UserDB Directive 305



   UserDB   default   scratch  tickets

That makes every call to [userdb function=login] equivalent to [userdb function=login
scratch=tickets].

To override that default for one call only, use [userdb function=login scratch="passes"].

To log failed access authorizations, set the UserDB profile parameter log_failed true:

   UserDB  default  log_failed 1

To disable logging of failed access authorizations (the default), set the UserDB profile parameter
log_failed to 0:

   UserDB  default  log_failed 0

The UserDB directive uses the same key−value pair settings as the Locale and Route directives. If there
are more than one set of defaults, set them in a hash structure:

   UserDB  crypt_case  <<EOF
   {
       'scratch'        => 'tickets',
       'crypt'          => '1',
       'ignore_case'    => '0',
   }
   EOF

   UserDB  default  <<EOF
   {
       'scratch'        => 'tickets',
       'crypt'          => '1',
       'ignore_case'    => '1',
   }
   EOF

Note: The usual here−document caveats apply. The "EOF" must be on a line by itself with no leading/trailing
whitespace.

The last one to be set becomes the default.

The option profile selects the set to use. For usernames and passwords to be case sensitive with no
encryption, pass this call:

   [userdb function=new_account profile=case_crypt]

The username and password will be stored as typed in, and the password will be encrypted in the database.

51.3. User Database Functions

The user database features are implemented as a series of functions attached to the userdb tag. The
functions are:

login

Interchange Documentation (Full)

51.3. User Database Functions 306



Active parameters: username, password, crypt, pass_field, ignore_case
Log in to Interchange. By default, the username is contained in the form variable mv_username and the
password in mv_password. If the login is successful, the session value username ([data session
username]) will be set to the user name.
This will recall the values of all non−special fields in the user database and place them in their corresponding
user form variables.
The CookieLogin directive (catalog.cfg) allows users to save their username/password in a cookie.
Expiration time is set by SaveExpire, renewed every time they log in. To cause the cookie to be generated
originally, the form variable mv_cookie_password or mv_cookie_username must be set in the login
form. The former causes both username and password to be saved, the latter just the username.

logout

Log out of Interchange. No additional parameters are needed.

new_account

Active parameters: username, password, verify, assign_username, username_mask, ignore_case
Create a new account. It requires the username, password, and verify parameters, which are by default
contained in the form variables mv_username, mv_password, mv_verify respectively.
If the assign_username parameter is set, UserDB will assign a sequential username. The counter
parameter can be used to set the filename (must be absolute), or the default of
CATALOG_DIR/etc/username.counter can be accepted. The first username will be "U0001" if the counter
doesn't exist already.
The ignore_case parameter forces the username and password to lower case in the database, in effect
rendering the username and password case−insensitive.
If username_mask is set to a valid Perl regular expression (without the surrounding / /), then any username
containing a matching string will not be allowed for use. For example, to screen out order numbers from being
used by a random user:

            [userdb function=new_account
                    username_mask="^[A−Z]*[0−9]"
                    ]

The CookieLogin directive (catalog.cfg) allows users to save their username/password in a cookie.
Expiration time is set by SaveExpire, renewed every time they log in. To cause the cookie to be generated
originally, the form variable mv_cookie_password or mv_cookie_username must be set in the login
form. The former causes both username and password to be saved, the latter just the username.
To automatically create an account for every order, set the following in the OrderReport file:

            [userdb function=new_account
                    username="[value mv_order_number]"
                    password="[value zip]"
                    verify="[value zip]"
                    database="orders"
                    ]

This would be coupled with a login form that asks for order number and zip code, thereupon allowing the
display of the contents of a transaction database with (presumably updated) order status information or a
shipping company tracking number.

change_pass

Interchange Documentation (Full)

51.3. User Database Functions 307



Active parameters: username, password, verify, oldpass
Change the password on the currently logged−in account. It requires the username, password, verify,
and oldpass parameters, which are by default contained in the form variables mv_username,
mv_password, mv_verify, mv_password_old respectively.

set_shipping

Active parameters: nickname, shipping, ship_field
Place an entry in the shipping Address book. For example:

            [userdb function=set_shipping nickname=Dad]

See Address Book below.

get_shipping

Active parameters: nickname, shipping, ship_field
Recall an entry from the shipping Address book. For example:

            [userdb function=get_shipping nickname=Dad]

See Address Book below.

get_shipping_names

Active parameters: ship_field
Gets the names of shipping address book entries and places them in the variable address_book. By
default, it does not return the values. To have the values returned, set the parameter show to 1, as in:

            [set name=shipping_nicknames
                 interpolate=1]
              [userdb function=get_shipping_names show=1]
            [/set]

set_billing

Active parameters: nickname, billing, bill_field
Place an entry in the billing accounts book. For example:

            [userdb function=set_billing nickname=discover]

See Accounts Book below.

get_billing

Active parameters: nickname, billing, bill_field
Recall an entry from the billing accounts book. For example:

            [userdb function=get_billing nickname=visa]

See Accounts Book below.

Interchange Documentation (Full)

51.3. User Database Functions 308



save

Saves all non−special form values that have columns in the user database. If a field is defined as scratch, it
retrieves the field from the Scratch storage area; otherwise from Values. If the field is one of the outboard
fields, it will save it in the outboard table with the value of outboard_key_col as the key.

set_cart

Save the contents of a shopping cart.

            [userdb function=set_cart nickname=christmas]

See Carts below.

get_cart

Active parameters: nickname, carts_field, target
Recall a saved shopping cart.

            [userdb function=get_cart nickname=mom_birthday]

Setting target saves to a different shopping cart than the default main cart. The carts_field controls
the database field used for storage.

set_acl

Active parameters: location, acl_field, delete
Set a simple acl. For example:

            [userdb function=set_acl location=cartcfg/editcart]

This allows the current user to access the page "cartcfg/editcart" if it is access−protected.
To delete access, do:

            [userdb function=set_acl location=cartcfg/editcart delete=1]

To display the setting at the same time as setting, use the show attribute:

            [userdb function=set_acl location=cartcf/editcart show=1]

check_acl

Active parameters: location, acl_field
Checks the simple access control listing for a location, returning 1 if allowed and the empty string if not
allowed.

            [if type=explicit
                compare="[userdb
                            function=check_acl
                            location=cartcfg/editcart]"
            ]
            [page cartcfg/editcart]Edit your cart configuration[/page]
            [/if]

Interchange Documentation (Full)

51.3. User Database Functions 309



set_file_acl, set_db_acl

Active parameters: location, mode, db_acl_field, file_acl_field, delete
Sets a complex access control value. Takes the form:

            [userdb function=set_file_acl
                    mode=rw
                    location=products/inventory.txt]

where mode is any value to be checked with check_file_acl. As with the simple ACL, use delete=1 to
delete the location entirely.

check_file_acl, check_db_acl

Active parameters: location, mode, db_acl_field, file_acl_field
Checks a complex access control value and returns a true/false (1/0) value. Takes the form:

            [userdb function=check_db_acl
                    mode=w
                    location=inventory]

where mode is any value to be checked with check_file_acl. It will return true, if the mode string is
contained within the entry for that location. For example:

            [if type=explicit
                compare="[userdb
                            function=check_db_acl
                            mode=w
                            location=inventory]"
            ]
            [userdb function=set_acl location=cartcfg/edit_inventory]
            [page cartcfg/edit_inventory]You may edit the inventory database[/page]
            [else]
            [userdb function=set_acl location=cartcfg/edit_inventory delete=1]
            Sorry, you can't edit inventory.
            [/if]

51.4. Address Book

Address_book is a shipping address book. The shipping address book saves information relevant to shipping
the order. In its simplest form, this can be the only address book needed. By default these form values are
included:

  s_nickname
  name
  fname
  lname
  address
  address1
  address2
  address3
  city
  state
  zip
  country
  phone_day

Interchange Documentation (Full)

51.4. Address Book 310



  mv_shipmode

The first field is always the name of the form variable that contains the key for the entry. The values are saved
with the [userdb function=set_shipping] tag call, and are recalled with [userdb
function=get_shipping]. A list of the keys available is kept in the form value address_book,
suitable for iteration in an HTML select box or in a set of links.

To get the names of the addresses, use the get_shipping_names function:

   [userdb function=get_shipping_names]

By default, they are placed in the variable address_book. Here is a little snippet that builds a select box:

   <FORM ACTION="[process]" METHOD=POST>
   [userdb function=get_shipping_names]
   [if value address_book]
   <SELECT NAME="s_nickname">
   [loop arg="[value address_book]"] <OPTION> [loop−code] [/loop]
   </SELECT>
   <INPUT TYPE=submit NAME=mv_check VALUE="Recall Shipping">
   </FORM>

The same principle works with accounts, carts, and preferences.

To restore a cart based on the above, put in an mv_check routine:

   [set Recall Shipping]
   mv_todo=return
   mv_nextpage=ord/basket
   [userdb function=get_shipping nickname="[value s_nickname]"]
   [/set]

When the mv_check variable is encountered, the contents of the scratch variable Recall Shipping are
processed and the shipping address information inserted into the user form values. This is destructive of any
current values of those user session variables, of course.

To change the fields that are recalled or saved, use the shipping parameter:

   [userdb function=get_shipping
           nickname=city_and_state
           shipping="city state"]

Only the values of the city and state variables will be replaced.

51.5. Accounts Book

The accounts book saves information relevant to billing the order. By default these form values are included:

  b_nickname
  b_name
  b_fname
  b_lname
  b_address
  b_address1
  b_address2

Interchange Documentation (Full)

51.5. Accounts Book 311



  b_address3
  b_city
  b_state
  b_zip
  b_country
  b_phone
  purchase_order
  mv_credit_card_type
  mv_credit_card_exp_month
  mv_credit_card_exp_year
  mv_credit_card_info

The values are saved with the [userdb function=set_billing] tag call, and are recalled with
[userdb function=get_billing]. A list of the keys available is kept in the form value accounts,
suitable for iteration in an HTML select box or in a set of links.

51.6. Preferences

Preferences are miscellaneous session information. They include, by default, the following fields:

   email
   fax
   phone_night
   fax_order
   email_copy

The field p_nickname acts as a key to select the preference set. To change the values that are included with
the preferences parameter:

   [userdb function=set_preferences
           preferences="email_copy email fax_order fax"]

or in catalog.cfg:

   UserDB default preferences "mail_list email fax_order music_genre"

51.7. Carts

The contents of shopping carts may be saved or recalled in much the same fashion. See the Simple demo
application ord/basket.html page for an example.

51.8. Controlling Page Access With UserDB

Interchange can implement a simple access control scheme with the user database. Controlled pages must
reside in a directory which has a file named .access that is zero bytes in length. (If it is more than 0 bytes,
only the RemoteUser or MasterHost may access files in that directory.)

Set the following variables in catalog.cfg:

   Variable   MV_USERDB_ACL_TABLE  userdb
   Variable   MV_USERDB_ACL_COLUMN acl

Interchange Documentation (Full)

51.6. Preferences 312



The MV_USERDB_ACL_TABLE is the table which controls access, and likewise the
MV_USERDB_ACL_TABLE names the column in that database which will be checked for authorization.

The database entry should contain the complete Interchange−style page name of the page to be allowed. It
will not match substrings.

For example, if the user flycat followed this link:

   <A HREF="[area cartcfg/master_edit]">Edit</A>

Access would be allowed if the contents of the userdb were:

   code    acl
   flycat  cartcfg/master_edit

and disallowed if it were:

   code    acl
   flycat  cartcfg/master_editor

Access can be enabled with:

   [userdb function=set_acl location="cartcfg/master_edit"]

Access can be disallowed with:

   [userdb function=set_acl
           delete=1
           location="cartcfg/master_edit"]

Of course, a pre−existing database with the ACL values will work as well. It need not be in the UserDB setup.

51.9. Using more than one table

You can save/retrieve userdb information from more than one table with the outboard specifier. It is a
key−value comma−separated series of field specifications. For instance, if the billing address is to be stored in
a separate table named "billing", you would do:

        UserDB  outboard  <<EOF
            b_fname=billing::first_name,
            b_lname=billing::last_name,
            b_address1=billing::address1,
            b_address2=billing::address2,
                b_etc=billing::etc
        EOF

When the user logs in, Interchange will access the first_name field in table billing to get the value of
b_fname. When the values are saved, it will be saved there as well. If you wish to make the fields read−only,
just set UserDB default scratch "b_fname b_lname ..." and the values will be
retrieved/saved from there. To initialize the values for a form, you could do a function after the user logs in:

 [calc]
        my @s_fields = grep /\S/, split /[\s,\0]+/, $Config−>{UserDB}{scratch};
        for(@s_fields) {

Interchange Documentation (Full)

51.9. Using more than one table 313



                $Values−>{$_} = $Scratch−>{$_};
        }
        return;
 [/calc]

If the fields in the outboard table use another key besides username, you can specify the column in the
userdb that contains the key value:

        UserDB  default  outboard_key_col   account_id

Interchange Documentation (Full)

51.9. Using more than one table 314



52. Tracking and Back−End Order Entry
Interchange allows the entry of orders into a system through one of several methods. Orders can be written to
an ASCII file or formatted precisely for email−based systems. Or they can go directly into an SQL or DBM
database. Finally, embedded Perl allows completely flexible order entry, including real−time credit card
verification and settlement.

52.1. ASCII Backup Order Tracking

If AsciiTrack is set to a legal file name (based in VendRoot unless it has a leading "/"), a copy of the order
is saved and sent in an email.

If the file name string begins with a pipe "|", a program will be run and the output "piped" to that program.
This allows easy back−end entry of orders with an external program.

52.2. Database Tracking

Once the order report is processed, the order is complete. Therefore, it is the ideal place to put Interchange
tags that make order entries in database tables.

A good model is to place a single record in a database summarizing the order and a series of lines that
correspond to each line item in the order. This can be in the same database table. If the order number itself is
the key for the summary, a line number can be appended to the order number to show each line of the order.

The following would summarize a sample order number S00001 for part number 00−0011 and 99−102:

   code     order_number part_number  quantity   price    shipping  tax
   S00001   S00001                    3          2010     12.72     100.50
   S00001−1 S00001       00−0011      2          1000     UPS       yes
   S00001−2 S00001       99−102       1          10       UPS       yes

Fields can be added where needed, perhaps with order status, shipping tracking number, address, customer
number, or other information.

The above is accomplished with Interchange's [import ....] tag using the convenient NOTES format:

   [set import_status]
   [import table=orders type=LINE continue=NOTES]

   code: [value mv_order_number]
   order_number: [value mv_order_number]
   quantity: [nitems]
   price: [subtotal noformat=1]
   shipping: [shipping noformat=1]
   tax: [salestax noformat=1]

   [/import]

   [item−list]
   [import table=orders type=LINE continue=NOTES]

   code: [value mv_order_number]−[item−increment]
   order_number: [value mv_order_number]

52. Tracking and Back−End Order Entry 315



   quantity: [item−quantity]
   price: [item−price noformat=1]
   shipping: [shipping−description]
   tax: [if−item−field nontaxable]No[else]Yes[/else][/if]

   [/import][/item−list]

52.3. Order Routing

Interchange can send order emails and perform custom credit card charges and/or logging for each item. The
Route directive is used to control this behavior, along with the mv_order_route item attribute.

If no Route is in the catalog, Interchange uses a default "mail out the order and show a receipt" model.

Routes are established with the Route directive, which is similar to the Locale directive. Each route is like
a locale, so that key−value pairs can be set. Here is an example setting:

   Route  mail  pgp_key         0x67798115
   Route  mail  email           orders@akopia.com
   Route  mail  reply           service@akopia.com
   Route  mail  encrypt         1
   Route  mail  encrypt_program "/usr/bin/pgpe −fat −q −r %s"
   Route  mail  report          etc/report_mail

Note: Values with whitespace in them must be quoted.

You can also set the route in a valid Perl hash reference string:

   Route  mail <<EOR
   {
        pgp_key         => '0x67798115',
        email           => 'orders@akopia.com',
        reply           => 'service@akopia.com',
        encrypt         => 1,
        encrypt_program => q{/usr/bin/gpg −e −a −r '%s' −−batch},
        report          => 'etc/report_mail',
  }
  EOR

This route would be used whenever the mail route was called by one of the three possible methods:

route called from master route

Called via the cascade parameter from the master route. This is the way that most routes are called in
Interchange's the Foundation manpage demo. These routes treat the order as a whole.

route set in item

An item in the shopping cart has mail as the value in the attribute mv_order_route. This method is
item−specific to this item (or group of items in route mail).

route set in the form variable mv_order_route

Interchange Documentation (Full)

52.3. Order Routing 316



By setting a value in the mv_order_route form variable, you can specify one or more routes to run. This
is the deprecated method used in earlier Interchange 4.6.x and Minivend 4 routes. It will still work fine.

The last route that is defined is the master route, by convention named main. Besides setting the global
behavior of the routing, it provides some defaults for other routes. For example, if encrypt_program is
set there, then the same value will be the default for all routes. Most settings do not fall through.

The attributes that can be set are:

attach

Determines whether the order report should be attached to the main order report e−mail. This is useful if
certain items must be printed separately from others, perhaps for FAX to a fulfillment house.
cascade
A list of routes which should be pushed on the stack of routes to run, after all currently scheduled routes are
done. NOTE: cascades can cause endless loops, so only one setting is recommended, that being the main
route.

commit

Perl code which should be performed on a route commit.

commit_tables

Tables that are to be pre−opened before running the Perl commit code.

counter

The location of a counter file which should be used instead of OrderCounter for this route. It will generate
a different value for mv_order_number for the route. This is normally used to obtain unique order
references for multi−vendor routing.

credit_card

Determines whether credit card encryption should be done for this order. Either this or encrypt should
always be set.

dynamic_routes

If set in the the master manpage route, will cause the the RouteDatabase manpage to be checked for a route. If
it exists, it will be read in and the database copy used instead of the static copy build at catalog configuration
time. If set in a subsidiary route, that route will be ignored during catalog.cfg, and dynamic_routes must
be active for it to be seen.

email

The email address(es) where the order should be sent. Set just like the MailOrderTo directive, which is
also the default.

encrypt

Interchange Documentation (Full)

52.3. Order Routing 317



Whether the entire order should be encrypted with the encrypt_program. If credit_card is set, the credit
card will first be encrypted, then the entire order encrypted.

encrypt_program

The encryption program incantation which should be used. Set identically to the EncryptProgram
directive, except that %s will be replaced with the pgp_key. Default is empty.

errors_to

Sets the Errors−To: e−mail header so that bounced orders will go to the proper address. Default is the
same as MailOrderTo.

expandable

If set in the the master manpage route, route settings will be expanded for ITL tags. No effect if the route is
not the master.

extended

Extended route settings that take the form of an Interchange option list; normally a Perl hash reference that
will be read. These settings always overwrite any that currently exist, regardless of the order in which they are
specified. For example:

        Route  main   extended    { email => 'milton@akopia.com' }
        Route  main   email       papabear@minivend.com

The ultimate setting of email will be milton@akopia.com.

increment

Whether the order number should be incremented as a result of this result. Default is not to increment, as the
order number should usually be the same for different routes within the same customer order.

individual_track

A directory where individual order tracking files will be placed. The file name will correspond to the value of
mv_order_number. This can be useful for batching orders via download.

individual_track_ext

The extension that will be added to the file name for individual_track. Must contain a period (.), if
that is desired.

   individual_track_ext     .pgp

individual_track_mode

A number representing the final permission mode for the individual_track file. Usually expressed in
octal:

   individual_track_mode    0444

Interchange Documentation (Full)

52.3. Order Routing 318



master

If set, this route becomes the master route for supplant, dynamic_routes, errors_to, and
expandable, and supplies the setting for receipt and the attach report. Switching master in
midstream is unlikely to be successful −− it should certainly be the first route in a cascade.

payment_mode

If this is set, enables a payment mode for the route. (Payment modes are also set in the Route directive.)

pgp_cc_key

The PGP/GPG key selector that is used to determine which public key is used for encryption of credit cards
only. With PGP 5 and 6, see appropriate values by using the command pgpk −l. For GPG, use gpg
−−list−keys. Defaults to the value of the pgp_key manpage.

pgp_key

The PGP key selector that is used to determine which public key is used for encryption. If pgp_cc_key is
set, that key will be used for credit card encryption instead of pgp_key. With PGP 5 and 6, see appropriate
values by using the command pgpk −l. For GPG, use gpg −−list−keys. Defaults to the value of the
pgp_key manpage.

profile

The custom order profile which should be performed to check the order prior to actually running the route. If
it fails, the route will not be performed. See OrderProfile and mv_order_profile.

receipt

The receipt page that should be used for this routing. This only applies if supplant is set for the route, and that
normally would only be in the default route.

report

The report page that should be used for this routing. If attach is defined, the contents of the report will be
placed in a MIME attachment in the main order report.

reply

The Reply−To header that should be set. Default is the same as email.
If there are only word characters (A−Za−z0−9 and underscore), it describes an Interchange variable name
where the address can be found.

rollback

Perl code which should be performed on a route rollback.

rollback_tables

Tables that are to be pre−opened before running the Perl rollback code.

Interchange Documentation (Full)

52.3. Order Routing 319



supplant

Whether the master route should supplant the main order report. If set, the AsciiTrack operation will use
this route and the normal Interchange order e−mail sequence will not be performed. This is normally set in the
master route.

track

The name of a file which should be used for tracking. If the supplant attribute is set, the normal order
tracking will be used as well.

track_mode

A number representing the final permission mode for the track file. Usually expressed in octal:

   track_mode    0444

transactions

A list of tables to put in transactions mode at the beginning of the route. Used to ensure that orders get rolled
back if another route fails.
The first route to open a table must have this parameter, otherwise transactions will not work. If any route
fails (except ones marked error_ok) then a rollback will be done on these tables. If all routes succeed, a
commit will be performed at the end of all order routes.

Individual item routing causes all items labeled with that route to be placed in a special sub−cart that will be
used for the order report. This means that the [item−list] LIST [/item−list] will only contain
those items, allowing operations to be performed on subsets of the complete order. The [subtotal],
[salestax], [shipping], [handling], and [total−cost] tags are also affected.

Here is an example of an order routing:

   Route  HARD      pgp_key          0x67798115
   Route  HARD      email            hardgoods@akopia.com
   Route  HARD      reply            service@akopia.com
   Route  HARD      encrypt          1
   Route  HARD      report           etc/report_mail

   Route  SOFT      email            ""
   Route  SOFT      profile          create_download_link
   Route  SOFT      empty            1

   Route  mail      pgp_key          0x67798115
   Route  mail      email            orders@akopia.com
   Route  mail      reply            service@akopia.com
   Route  mail      encrypt          1
   Route  mail      report           etc/report_all

   Route  user      error_ok         1
   Route  user      email            email
   Route  user      reply            service@akopia.com
   Route  user      report           etc/user_copy

   Route  log       empty            1
   Route  log       report           etc/log_transaction

Interchange Documentation (Full)

52.3. Order Routing 320



   Route  log       transactions     "transactions orderline inventory"
   Route  log       track            logs/log

   Route  main      supplant         1
   Route  main      receipt          etc/receipt.html
   Route  main      master           log mail user
   Route  main      cascade          log mail user
   Route  main      encrypt_program  "/usr/bin/gpg −e −a r '%s' −−batch"

This will have the following behavior:

Order

The master order route is main, the last one defined. It cascades the routes log, mail, and user, which means
they will run in that order at the completion of the main route. The individual item routes HARD and SOFT, if
applicable, will run before those.

Transactions

The route log specifies the tables that will be put in transaction mode, in this case transactions
orderline, and inventory.

Failure

All order routes must succeed except user, which has error_ok set to 1.

Encryption The mail order route and the HARD order route will be sent by email, and encrypted against
different GPG key IDs. They will get their encrypt_program setting from the main route.

To set the order routing for individual items, some method of determining their status must be made and the
mv_order_route attribute must be set. This could be set at the time of the item being placed in the basket,
or have a database field called goods_type set to the appropriate value. The following example uses a Perl
routine on the final order form:

  [perl table=products]
my %route;
my $item;
foreach $item (@{$Items}) {

my $code = $item−>{code};
my $keycode = $Tag−>data('products', 'goods_type', $code);

         $item−>{mv_order_route} = $keycode;
     }

return;
  [/perl]

Now the individual items are labeled with a mv_order_route value which causes their inclusion in the
appropriate order routing.

Upon submission of the order form, any item labeled HARD will be accumulated and sent to the e−mail
address hardgoods@akopia.com, where the item will be pulled from inventory and shipped.

Any item labeled SOFT will be passed to the order profile create_download_link, which will place it
in a staging area for customer download. (This would be supported by a link on the receipt, possibly by

Interchange Documentation (Full)

52.3. Order Routing 321



reading a value set in the profile).

Interchange Documentation (Full)

52.3. Order Routing 322



53. SSL Support
Interchange has several features that enable secure ordering via SSL (Secure Sockets Layer). Despite their
mystique, SSL servers are actually quite easy to operate. The difference between the standard HTTP server
and the SSL HTTPS server, from the standpoint of the user, is only in the encryption and the specification of
the URL; https: is used for the URL protocol specification instead of the usual http: designation.

IMPORTANT NOTE: Interchange attempts to perform operations securely, but no guarantees or warranties
of any kind are made! Since Interchange comes with source code, it is fairly easy to modify the program to
create security problems. One way to minimize this possibility is to record digital signatures, using MD5 or
PGP or GnuPG, of interchange, interchange.cfg, and all modules included in Interchange. Check
them on a regular basis to ensure they have not been changed.

Interchange uses the SecureURL directive to set the base URL for secure transactions, and the VendURL
directive for normal non−secure transactions. Secure URLs can be enabled for forms through a form action of
[process secure=1]. An individual page can be displayed via SSL with [page
href=mvstyle_pagename secure=1]. A certain page can be set to be always secure with the
AlwaysSecure catalog.cfg directive.

Interchange incorporates additional security for credit card numbers. The field mv_credit_card_number
will not ever be written to disk.

To enable automated encryption of the credit card information, the directive CreditCardAuto needs to be
defined as Yes. EncryptProgram also needs to be defined with some value, one which will, hopefully,
encrypt the number. PGP is now recommended above all other encryption program. The entries should look
something like:

 CreditCardAuto   Yes
 EncryptProgram   /usr/bin/pgpe −fat −r sales@company.com

See CreditCardAuto for more information on how to set the form variables.

53. SSL Support 323



54. Frequently Asked Questions

54.1. I can't get SQL to work: Undefined subroutine
&Vend::Table::DBI::create ...

This probably means one of the following:

No SQL database.

Interchange doesn't include a SQL database. You must select one and install it.

No DBI.

You must install Perl's DBI module before using Interchange with SQL. You can see where to get it at
http://www.cpan.org, or try:

            perl −MCPAN −e 'install DBI'

No DBD.

You must install the specific Perl DBD module for your database before using Interchange with SQL. You
can see where to get it at http://www.cpan.org, or try:

            perl −MCPAN −e 'install DBD::XXXXX'

where XXXXX is the name of your module. Some of them are:

            Adabas
            DB2
            Informix
            Ingres
            ODBC
            Oracle
            Pg
            Solid
            Sybase
            Unify
            XBase
            mSQL
            mysql

If you can't make this script run without error:

            use DBI;
            use DBD::XXXXX;

Then you don't have one of the above, and Interchange can't use an SQL database until you get one installed.

I don't like the column types that Interchange defines!

They can be changed. See the foundation/dbconf/mysql directory for some examples under MySQL.

54. Frequently Asked Questions 324



I change the ASCII file, but the table is not updated. Why?

Interchange writes an empty file TABLE.sql (where TABLE is the name of the table). When this is present,
Interchange will never update the table from disk.
Also, if you have changed the field names in the file, you must restart the catalog (Apply Changes) before
they will be picked up.

Why do I even need an ASCII file?

Interchange wants some source for column names initially. If you don't want to have one, just create a
TABLENAME.sql file in the products directory. For example, if you have this:

            Database products products.txt dbi:mysql:test_minivend

Then create a file products/products.sql.
\For:

            Database pricing pricing.txt dbi:mysql:test_minivend

Create a file products/pricing.sql. .

Interchange overwrites my predefined table!

Yes, it will if you don't create a file called TABLENAME.sql, where TABLENAME is the name of the
Interchange table. If you want this to happen by default, then set NoImport TABLENAME.

54.2. How can I use Interchange with Microsoft Access?

Though Interchange has ODBC capability, the Microsoft Access ODBC driver is not a network driver. You
cannot access it on a PC from your ISP or UNIX system.

However, you can turn it around. Once you have created a MySQL or other SQL database on the UNIX
machine, you may then obtain the Windows ODBC driver for the database (MySQL has a package called
myODBC) and use the UNIX database as a data source for your PC−based database program.

Here is a quick procedure that might get you started:

Get MySQL from:• 

            http://www.mysql.com/

Install it on your UNIX box. On LINUX, it is as easy as getting the RPM distribution:

            http://www.mysql.com/rpm/

You install it by typing, as root, rpm −i mysql−3.XX.XX.rpm. If you are not root, you will
have to build the source distribution.
To avoid permissions problems for your testing, stop the MySQL daemon and allow global
read−write access with:

• 

            mysqladmin shutdown

Interchange Documentation (Full)

54.2. How can I use Interchange with Microsoft Access? 325



            safe_mysqld −−skip−grant−tables &

Obviously, you will want to study MySQL permissions and set up some security pretty quickly. It has
excellent capability in that area, and the FAQ will help you get over the hurdles.
Set up a database for testing on the UNIX machine:• 

            mysqladmin create test_odbc
            mysql test_odbc

Make an SQL query to set up a table, for example:

            mysql> create table test_me ( code char(20), testdata char(20) );
            Query OK, 0 rows affected (0.29 sec)

            mysql> insert into test_me VALUES ('key1', 'data1');
            Query OK, 1 rows affected (0.00 sec)

            mysql> insert into test_me VALUES ('key2', 'data2');
            Query OK, 1 rows affected (0.00 sec)

            mysql>

Get and install myODBC, also from the MySQL site:• 

            http://www.mysql.com/

You install this package on your Windows 95 or NT box. It is a simple setup.exe process which leads
you to the control panel for setting up an ODBC data source. Set up a data source named
test_odbc that points to the database test_odbc on the UNIX box. You will need to know the
host name and the port (usually 3306).
With Microsoft Access, you can then open a blank database and select: File/Get External Data/Link
Tables. Select File Type of 'ODBC databases' and the proper data source, and you should have access
to the database residing on the UNIX side.

• 

Copyright 2001−2002 Red Hat, Inc. Freely redistributable under terms of the GNU General Public License.
line:

Interchange Documentation (Full)

54.2. How can I use Interchange with Microsoft Access? 326



Interchange Ecommerce Functions

Interchange Ecommerce Functions 327



55. THE ORDER PROCESS
Interchange has a completely flexible order basket and checkout scheme. The foundation demo presents a
common use of this process, in the directory pages/ord −− the files are:

    basket.html      The order basket displayed by default
    checkout.html    The form where the customer enters their billing
                     and shipping info

and in the directory etc:

    receipt.html     The receipt displayed to the customer
    report           The order report mailed to you
    mail_receipt     The customer's email copy (if requested)

It is not strictly necessary to display an order basket when an item is ordered. If you specify a different page to
be displayed that is fine, but most customers will be confused if you don't give them an indication that the
order operation has succeeded.

Any order basket is an HTML FORM. It will have a number of variables on it. At the minimum it must have an
[item−list] to loop through the items, and the quantity of each item must be set in some place on that
form. Any valid Interchange tags may be used on the page, and you may use multiple item lists if necessary.

55.1. How to order an item

Interchange can either use a form−based order or a link−based order to place an item in the shopping cart. The
link−based order uses the special [order item−code] tag:

[order code]

named attributes:

            [order code="sku" quantity="n"* href="page"* cart="cartname"* base="table"*]
            * = optional parameters

Expands into a hypertext link which will include the specified code in the list of products to order and display
the order page. code should be a product SKU listed in one of the "products" tables, and is the only required
parameter. quantity may be specified if more than one (the default) of the item should be placed in the cart.
href allows some page other than the default order page to be displayed once the item has been added to the
cart. cart selects the shopping cart the item will be placed in. The optional argument base constrains the order
to a particular products file −− if not specified, all tables defined as products files will be searched in sequence
for the item.

Example:

      Order a [order TK112]Toaster[/order] today.

Note that this is the same as:

      Order a [page order TK112]Toaster</A> today.

55. THE ORDER PROCESS 328



You can change frames for the order with:

      Order a <A HREF="[area order TK112]" TARGET=newframe>Toaster</A> today.

[/order]

Expands into </a>. Used with the order element, such as: Buy a [order TK112]Toaster<[/order]> today.

To order with a form, you set the form variable mv_order_item to the item−code/SKU and use the
refresh action:

  <FORM ACTION="[process−target]" METHOD=POST>
  <INPUT TYPE=hidden  NAME="mv_todo"        VALUE="refresh">
  <INPUT TYPE=hidden  NAME="mv_order_item"  VALUE="TK112">

  Order <INPUT NAME="mv_order_quantity" SIZE=3 VALUE=1> toaster

  <INPUT TYPE=submit VALUE="Order!">
  </FORM>

You may batch select whole groups of items:

  <FORM ACTION="[process−target]" METHOD=POST>
  <INPUT TYPE=hidden  NAME="mv_todo"        VALUE="refresh">

  <INPUT TYPE=hidden  NAME="mv_order_item"  VALUE="TK112">
  <INPUT NAME="mv_order_quantity" SIZE=3> Standard Toaster

  <INPUT TYPE=hidden  NAME="mv_order_item"  VALUE="TK200">
  <INPUT NAME="mv_order_quantity" SIZE=3> Super Toaster

  <INPUT TYPE=submit VALUE="Order!">
  </FORM>

Items that have a quantity of zero (or blank) will be skipped, and only items with a positive quantity will be
placed in the basket.

You may also specify attributes like size or color at time of order (see How to set up an order button).

55.2. How to set up an order link

On a product display page, use:

    [order 00−0011]Order the Mona Lisa[/order]

If coming from a search results or on−the−fly page, you may use the generated [item−code] thusly:

    [order [item−code]]Order [item−field name][/order]

Bear in mind that if you have not reached the page via a search or on−the−fly operation, [item−code]
means nothing and will cause an error.

Interchange Documentation (Full)

55.2. How to set up an order link 329



55.3. How to set up an order button

Interchange can order via form submission as well. This allows you to order a product (or group of products)
via a form button. In its simplest form, it is:

    <FORM ACTION="[process−target]" METHOD=POST>
    <INPUT TYPE=hidden NAME=mv_todo VALUE=refresh>
    <INPUT TYPE=hidden NAME=mv_order_item VALUE="00−0011">
    <INPUT TYPE=submit VALUE="Order the Mona Lisa">
    </FORM>

The default quantity is one. An initial quantity may be set by the user by adding an mv_order_quantity
variable:

     Number to order:<INPUT TYPE=text NAME=mv_order_quantity VALUE="1">

You can order multiple items by stacking the variables:

    <FORM ACTION="[process−target]" METHOD=POST>
    <INPUT TYPE=hidden NAME=mv_todo VALUE=refresh>
    <INPUT TYPE=hidden NAME=mv_order_item VALUE="00−0011">
    <INPUT TYPE=hidden NAME=mv_order_item VALUE="00−0011a">
    <INPUT TYPE=submit VALUE="Order the Mona Lisa with frame">
    </FORM>

Initial size or color may be set as well, provided UseModifier is set up properly:

    <INPUT TYPE=hidden NAME=mv_order_size VALUE="L">

If the order is coming from a generated flypage, loop list, or search results page, you can get a canned select
box from the [item−accessories size] or [item−accessories size] tag. See Item Attributes.

55.4. How to set up an on−the−fly item

If you enable the catalog directive OnFly, setting it to the name of a subroutine (or possibly a UserTag) that
can handle its calls, then Interchange will add items to the basket that are not in the product database.
Interchange supplies an internal onfly subroutine, which will work according to the examples given below.

In catalog.cfg:

    OnFly  onfly

If your item code is not to be named mv_order_item then you must perform a rename in the Autoload
routine.

A basic link can be generated like:

    <a href="[area form="
            mv_todo=refresh
            mv_order_item=000101
            mv_order_fly=description=An on−the−fly item|price=100.01
    "]">Order item 000101</a>

Interchange Documentation (Full)

55.3. How to set up an order button 330



The form parameter value mv_order_fly can contain any number of fields which will set corresponding
parameters in the item attributes. The fields are separated by the pipe (|) character and contain
value−parameter pairs separated by an = sign. (These are URL−encoded by the [area ...] or [page
...] tag, of course.) You can set a size, color, or any other parameter.

The special attribute mv_price can be used in conjunction with the CommonAdjust atom $ to set the
price for checkout and display.

The [item−list] sub−tag [item−description], when used with an item−list, will use the item
attribute description to display in the basket. Note that [item−field description] or
[item−data products description] will NOT work, as both of these tags reference an actual field
value for a record in the products table − not applicable for on−the−fly items. Similarly, an attempt to
generate a flypage for an on−the−fly item ([page 000101], for example) will fail, resulting in the display
of the SpecialPage missing.

If you wish to set up a UserTag to process on−the−fly items, it should accept a call of

    usertag(mv_item_code, mv_item_quantity, mv_order_fly)

The mv_item_code and mv_order_fly parameters are required to trigger Interchange's add_item
routine (along with mv_todo=refresh to set the action).

The item will always act as if SeparateItems or mv_separate_items is set.

Multiple items can be ordered at once by stacking the variables. If there is only one mv_order_item
instance, however, you can stack the mv_order_fly variable so that all are concatenated together as with
the | symbol. So the above example could be done as:

    [area form="
            mv_todo=refresh
            mv_order_item=000101
            mv_order_fly=description=An on−the−fly item
            mv_order_fly=price=100.00
    "]

Multiple items would need multiple instances of mv_order_item with a corresponding mv_order_fly
for each mv_order_item. You can order both 000101 and 000101 as follows:

    [area form="
        mv_todo=refresh

        mv_order_item=000101
        mv_order_fly=description=An on−the−fly item|price=100.00

        mv_order_item=000102
        mv_order_fly=description=Another on−the−fly item|price=200.00
    "]

The following two forms correspond to the above two examples, in order, with the slight refinement of adding
a quantity:

  <FORM ACTION="[area process]" METHOD=POST>
        <INPUT TYPE=hidden NAME=mv_todo VALUE="refresh">
        <INPUT TYPE=hidden NAME=mv_order_item VALUE="000101">

Interchange Documentation (Full)

55.3. How to set up an order button 331



        Qty: <INPUT SIZE=2 NAME=mv_order_quantity VALUE="1">
        <INPUT TYPE=hidden NAME=mv_order_fly
                VALUE="description=An on−the−fly item|price=100.00">
        <INPUT TYPE=submit VALUE="Order button">
    </FORM>

   <FORM ACTION="[area process]" METHOD=POST>
        <INPUT TYPE=hidden NAME=mv_todo VALUE="refresh">
        <INPUT TYPE=hidden NAME=mv_order_item VALUE="000101">
        Qty: <INPUT SIZE=2 NAME=mv_order_quantity VALUE="1"><BR>
        <INPUT TYPE=hidden NAME=mv_order_fly
            VALUE="description=An on−the−fly item|price=100.00">
        <INPUT TYPE=hidden NAME=mv_order_item VALUE="000102">
        Qty: <INPUT SIZE=2 NAME=mv_order_quantity VALUE="1"><BR>
        <INPUT TYPE=hidden NAME=mv_order_fly
            VALUE="description=Another on−the−fly item|price=200.00">
        <INPUT TYPE=submit VALUE="Order two different with a button">
    </FORM>

55.5. Order Groups

Interchange allows you to group items together, making a master item and sub−items. This can be used to
delete accessories or options when the master item is deleted. In its simplest form, you order just one master
item and all subsequent items are sub−items.

    <FORM ACTION="[process−target]" METHOD=POST>
    <INPUT TYPE=hidden NAME=mv_todo VALUE=refresh>
    <INPUT TYPE=hidden NAME=mv_order_group VALUE="1">
    <INPUT TYPE=hidden NAME=mv_order_item VALUE="00−0011">
    <INPUT TYPE=hidden NAME=mv_order_item VALUE="00−0011a">
    <INPUT TYPE=submit VALUE="Order the Mona Lisa with frame">
    </FORM>

If you wish to stack more than one master item, then you must define mv_order_group for all items, with
either a 1 value (master) or 0 value (sub−item). A master owns all subsequent sub−items until the next master
is defined.

    <FORM ACTION="[process−target]" METHOD=POST>
    <INPUT TYPE=hidden NAME=mv_todo VALUE=refresh>
    <INPUT TYPE=hidden NAME=mv_order_group VALUE="1">
    <INPUT TYPE=hidden NAME=mv_order_item VALUE="00−0011">
    <INPUT TYPE=hidden NAME=mv_order_group VALUE="0">
    <INPUT TYPE=hidden NAME=mv_order_item VALUE="00−0011a">
    <INPUT TYPE=hidden NAME=mv_order_group VALUE="1">
    <INPUT TYPE=hidden NAME=mv_order_item VALUE="19−202">
    <INPUT TYPE=hidden NAME=mv_order_group VALUE="0">
    <INPUT TYPE=hidden NAME=mv_order_item VALUE="99−102">
    <INPUT TYPE=submit VALUE="Order items">
    </FORM>

When the master item 00−0011 is deleted from the basket, 00−0011a will be deleted as well. And when
19−202 is deleted, then 99−102 will be deleted from the basket.

NOTE: Use of checkboxes for this type of thing can be hazardous, as they do not pass a value when
unchecked. It is preferable to use radio groups or select/drop−down widgets. If you must use checkboxes, be
sure to explicitly clear mv_order_group and mv_order_item somewhere on the page which contains
the form:

Interchange Documentation (Full)

55.5. Order Groups 332



    [value name=mv_order_group set='']
    [value name=mv_order_item set='']

The attributes mv_mi and mv_si are set to the group and sub−item status of each item. The group, contained
in the attribute mv_mi, is a meaningless yet unique integer. All items in a group will have the same value of
mv_mi. The attribute mv_si is set to 0 if the item is a master item, and 1 if it is a sub−item.

55.6. Basket display

The basket page(s) are where the items are tracked and adjusted by the customer. It is possible to have an
unlimited number of basket pages. It is also possible to have multiple shopping carts, as in buy or sell. This
allows a basket/checkout type of ordering scheme, with custom order pages for items which have many
accessories.

The name of the page to display can be configured in several ways:

Set the SpecialPage order to the page to display when an item is ordered.1. 
Use the [order code=item page=page_name] Order it! [/order] form of order tag
to specify an arbitrary order page for an item.

2. 

If already on an order page, set the mv_orderpage, mv_nextpage, mv_successpage, or mv_failpage
variables.

3. 

The following variables can be used to control cart selection and page display:

mv_cartname

The shopping cart (default is main) to be used for this order operation.

mv_failpage

Page to be displayed on a failed order check (see Advanced Multi−level Order Pages)

mv_nextpage

Page to display on a return operation.

mv_orderpage

Page to be displayed on a refresh.

mv_successpage

Page to be displayed on a successful order check (see Advanced Multi−level Order Pages).

mv_order_profile

Order profile to be used if the form action is submit (see Advanced Multi−level Order Pages).

Interchange Documentation (Full)

55.6. Basket display 333



55.7. Multiple Shopping Carts

Interchange allows you to define and maintain multiple shopping carts. One shopping cart −− main, by name
−− is defined when the user session starts. If the user orders item M1212 with the following tag:

    [order code=M1212 cart=layaway] Order this item! [/order]

the order will be placed in the cart named layaway. However, by default you won't see the just−ordered item
on the basket page. That is because the default shopping basket displays the contents of the 'main' cart only.
So copy the default basket page (pages/ord/basket.html in the demo) to a new file, insert a [cart
layaway] tag, and specify it as the target page in your [order] tag:

    [order code=M1212 cart=layaway page=ord/lay_basket] Order this item! [/order]

Now the contents of the layaway cart will be displayed. Most of the ITL tags that are fundamental to cart
display accept a 'cartname' option, allowing you to specify which cart to be used:

[cart cartname]

A 'sticky' setting of the default cart name to use for all subsequent cart−related tags. Convenient, but you must
remember to use [cart main] to get back to the primary cart! As an alternative, you can specify the
desired cart as a parameter of the other tags. These are not sticky, referencing the specified cart only for the
instance in which they are called:

[item−list cartname]...[/item−list]

Iterates over the items in the specified cart − tags like [item−quantity] and [item−price] will be
evaluated accordingly;

[nitems cartname]

Returns the total number of items in the specified cart;

[subtotal cartname]

Returns the monetary subtotal for the contents of specified cart;

[shipping cartname], [handling cartname], [salestax cartname], [total−cost cartname]

You get the idea. It is worth noting that tags which summarize cart contents do not need to be in used concert,
or in conjunction with an [item−list]. For instance, you can display just the grand total for a cart on the
sidebar or bottom of each page, using [total−cost] by itself, if you wish.

You can also order items from a form, using the mv_order_item, mv_cartname, and optional
mv_order_quantity variables.

 <FORM METHOD=POST ACTION="[process]">
 <input type=checkbox name="mv_order_item" value="M3243"> Item M3243
 <input name="mv_order_quantity" value="1"> Quantity
 <input type=hidden name="mv_cartname" value="layaway">
 <input type=hidden name="mv_doit" value="refresh">
 <input type=submit name="mv_junk" value="Place on Layaway Now!">

Interchange Documentation (Full)

55.7. Multiple Shopping Carts 334



 </FORM>

If you need to utilize an alternative item price in conjunction with the use of a custom cart, see the section on
PRODUCT PRICING for pricing methods and strategies.

Interchange Documentation (Full)

55.7. Multiple Shopping Carts 335



56. PRODUCT PRICING
Interchange maintains a price in its database for every product. The price field is the one required field in the
product database −− it is necessary to build the price routines.

For speed, Interchange builds the code that is used to determine a product's price at catalog configuration
time. If you choose to change a directive that affects product pricing you must reconfigure the catalog.

56.1. Simple pricing

The simplest method is flat pricing based on a fixed value in the products database. If you put that price in
a field named price, you don't need to do more. If you want to change pricing based on quantity, size, color
or other factors read on.

56.2. Price Maintenance with CommonAdjust

A flexible chained pricing scheme is available when the CommonAdjust directive is set.

NOTE: For compatibility with older carts, if both PriceAdjustment and CommonAdjust are set, and
CommonAdjust contains a valid database identifier, the CommonAdjust value is used to set pricing
adjustments based on item attributes. This is not discussed further in this section; all items below assume
PriceAdjustment is not in use.

We talk below about a CommonAdjust string; it will be defined in due time.

A few rules about CommonAdjust, all assuming the PriceField directive is set to price:

1

If CommonAdjust is set to any value, a valid CommonAdjust string or not, extended price adjustments are
enabled. It may also hold the default pricing scheme.

2

The price field may also hold a CommonAdjust string. It takes precedence over the default.

3

If the value of the CommonAdjust directive is set to a CommonAdjust string, and the price field is empty
or specifically 0, then it will be used to set the price of the items.

4

If PriceBreaks is in use, its price will take precedence over the value of CommonAdjust, though it may also
contain a CommonAdjust string.

5

If no CommonAdjust strings are found, then the price will be 0, subject to any later application of discounts.

56. PRODUCT PRICING 336



6

If another CommonAdjust string is found as the result of an operation, it will be re−parsed and the result
applied. Chaining is retained; a fallback may be passed and will take effect.

Prices may be adjusted in several ways, and the individual actions are referred to below as atoms. Price atoms
they may be final, chained, or fallback. A final price atom is always applied if it does not evaluate to zero. A
chained price atom is subject to further adjustment. A fallback price atom is skipped if a previous chained
price was not zero.

Atoms are separated by whitespace, and may be quoted (although there should not normally be whitespace in
a setting). A chained item ends with a comma. A fallback item has a leading semi−colon. Final atoms have no
comma appended or semi−colon prepended.

A settor is the means by which the price is set. There are There are eight different types of price settors. All
settors can then yield another CommonAdjust string.

It is quite possible to create endless loops, so the maximum number of initial CommonAdjust strings is set to
16, and there may be only 20 iterations before the price will return zero on an error.

NOTE: Common needs are easily shown but not so easily explained; skip to the examples if the reference
below if your vision starts to blur when reading the next section. 8−)

USAGE: Optional items below have asterisks appended. The asterisk should not be used in the actual string.
Optional base or table always defaults to the active products database table. The optional key defaults to
the item code except in a special case for the attribute−based lookup. The field name is not optional except in
the case of an attribute lookup.

N.NN or −N.NN

where N is a digit. A number which is applied directly; for instance 10 will yield a price of 10. May be a
positive or negative number.

N.NN%

where N is a digit. A number which is applied as a percentage of the current price value. May be a positive or
negative number. For example, if the price is 10 and −8% is applied, the next price value will be 9.20.

table*:column:key*

Causes a straight lookup in a database table. The optional table defaults to the main products database table
for the item (subject of course to multiple product files). The column must always be present. The optional
key defaults to the item code except in a special case for the attribute−based lookup. The return value is then
re−parsed as another price settor.

table*:col1..col5,col10:key*

Causes a quantity lookup in database table table (which defaults to the products database), with a set of
comma−separated fields, looked up by the optional key. (Key defaults to the item code, of course). If ranges
are specified with .., each column in the sequence will be used; Therefore

Interchange Documentation (Full)

56. PRODUCT PRICING 337



        pricing:p1,p2,p3,p4,p5,p10:

is the same as

        pricing:p1..p5,p10:

Leading non−digits are stripped, and the item quantity is compared with the numerical portion of the column
name. The price is set to the value of the database column (numeric portion) that is at least equal to it but
doesn't yet reach the next break.
WARNING: If the field at the appropriate quantity level is blank, a zero cost will be returned from the atom.
It is important to have all columns populated.

==attribute:table*:column*:key*

Does an attribute−based adjustment. The attribute is looked up in the database table, with the optional
column defaulting to the same name as the value of the attribute. If the column is not left blank, the key is set
to the value of the attribute if blank.

& CODE

The leading & sign is stripped and the code is passed to the equivalent of a [calc] tag. No Interchange tags
can be used, but the &tag_data routine is available, the current value of the price and quantity are available as
$s, and the current item (code, quantity, price, and any attributes) are available as $item, all forced to the
package Vend::Interpolate. That means that in a UserTag:

      $Vend::Interpolate::item          is the current item
      $Vend::Interpolate::item−>{code}  gives key for current item
      $Vend::Interpolate::item−>{size}  gives size for current item (if there)
      $Vend::Interpolate::item−>{mv_ib} gives database ordered from

[valid Interchange tags]

If the settor begins with a square bracket ([) or underscore, it is parsed for Interchange tags with variable
substitution (but no Locale substitution). You may define a price in a Variable in this fashion. The string is
re−submitted as an atom, so it may yield yet another settor.

$

Tells Interchange to look in the mv_price attribute of the shopping cart, and apply that price as the final
price, if it exists. The attribute must be a numerical value.

>>word

Tells the routine to return word directly as the result. This is not useful in pricing, as it will evaluate to zero.
But when CommonAdjust is used for shipping, it is a way of re−directing shipping modes.

word

The value of word, which must not match any of the other settors, is available as a key for the next lookup
(only). If the next settor is a database lookup, and it contains a dollar sign ($) the word will be substituted;
i.e. table:column:$ becomes table:column:word.

Interchange Documentation (Full)

56. PRODUCT PRICING 338



( settor )

The value returned by settor will be used as a key for the next lookup, as above.

56.3. CommonAdjust Examples

Most examples below use an outboard database table named pricing, but any valid table including the
products table can be used. We will refer to this pricing table:

  code    common  q1     q5     q10    XL    S      red
  99−102          10     9      8      1     −0.50  0.75
  00−343                               2
  red      0.75

The simplest case is a straight lookup on an attribute; size in this case.

  10.00, ==size:pricing

With this value in the price field, a base price of 10.00 will be adjusted with the value of the size attribute.
If size for the item 99−102 is set to XL then 1.00 will be added for a total price of 11.00; if it is S then .50 will
be subtracted for a total price of 9.50; for any other value of size no further adjustment would be made.
00−343 would be adjusted up 2.00 only for XL.

  10.00, ==size:pricing, ==color:pricing

This is the same as above, except both size and color are adjusted for. A color value of red for item code
99−102 would add 0.75 to the price. For 00−343 it would have no effect.

  10.00, ==size:pricing, ==color:pricing:common

Here price is set based on a common column, keyed by the value of the color attribute. Any item with a color
value of red would have 0.75 added to the base price.

  pricing:q1,q5,q10:, ;10.00, ==size:pricing, ==color:pricing:common

Here is a quantity price lookup, with a fallback price setting. If there is a valid price found at the quantity of 1,
5, or 10, depending on item quantity, then it will be used. The fallback of 10.00 only applies if no
non−zero/non−blank price was found at the quantity lookup. In either case, size/color adjustment is applied.

  pricing:q1,q5,q10:, ;10.00 ==size:pricing, ==color:pricing:common

Removing the comma from the end of the fallback string stops color/size lookup if it reaches that point. If a
quantity price was found, then size and color are chained.

  pricing:q1,q5,q10:, ;products:list_price, ==size:pricing, ==color:pricing

The value of the database column list_price is used as a fallback instead of the fixed 10.00 value. The
above value might be a nice one to use as the default for a typical retail catalog that has items with colors and
sizes.

Interchange Documentation (Full)

56.3. CommonAdjust Examples 339



56.4. PriceBreaks, discounts, and PriceAdjustment

There are several ways that Interchange can modify the price of a product during normal catalog operation.
Several of them require that the pricing.asc file be present, and that you define a pricing database. You do that
by placing the following directive in catalog.cfg:

  Database  pricing pricing.asc 1

NOTE: PriceAdjustment is slightly deprecated by CommonAdjust, but will remain in use at least through the
end of Version 3 of Interchange.

Configurable directives and tags with regard to pricing:

Quantity price breaks are configured by means of the PriceBreaks and MixMatch directives. They
require a field named specifically price in the pricing database. The price field contains a
space−separated list of prices that correspond to the quantity levels defined in the PriceBreaks
directive. If quantity is to be applied to all items in the shopping cart (as opposed to quantity of just
that item) then the MixMatch directive should be set to Yes.

• 

Individual line−item prices can be adjusted according to the value of their attributes. See
PriceAdjustment and CommonAdjust. The pricing database must be defined unless you define the
CommonAdjust behavior.

• 

Product discounts for individual products, specific product codes, all products, or the entire order can
be configured with the [discount ...] tag. Discounts are applied on a per−user basis −− you
can gate the discount based on membership in a club or other arbitrary means. See Product Discounts.

• 

For example, if you decided to adjust the price of T−shirt part number 99−102 up 1.00 when the size is extra
large and down 1.00 when the size is small, you would have the following directives defined in <catalog.cfg>:

  Database          pricing pricing.asc 1
  UseModifier       size
  PriceAdjustment   size

To enable automatic modifier handling, you define a size field in products.txt:

  code    description   price    size
  99−102  T−Shirt       10.00    S=Small, M=Medium, L=Large*, XL=Extra Large

You would place the proper tag within your [item−list] on the shopping−basket or order page:

    [item−accessories size]

In the pricing.asc database source, you would need:

  code      S       XL
  99−102    −1.00   1.00

If you want to assign a price based on the option, precede the number with an equals sign:

  code    S       M       L       XL
  99−102  =9.00   =10     =10     =11

Interchange Documentation (Full)

56.4. PriceBreaks, discounts, and PriceAdjustment 340



IMPORTANT NOTE: Price adjustments occur AFTER quantity price breaks, so the above would negate
anything set with the PriceBreaks directive/option.

Numbers that begin with an equals sign (=) are used as absolute prices and are interpolated for Interchange
tags first, so you can use subroutines to set the price. To facilitate coordination with the subroutine, the
session variables item_code and item_quantity are set to the code and quantity of the item being
evaluated. They would be accessed in a global subroutine with $Vend::Session−>{item_code} and
$Vend::Session−>{item_quantity}.

The pricing information must always come from a database because of security.

56.5. Item Attributes

Interchange allows item attributes to be set for each ordered item. This allows a size, color, or other modifier
to be attached to a common part number. If multiple attributes are set, then they should be separated by
commas. Previous attribute values can be saved by means of a hidden field on a form, and multiple attributes
for each item can be stacked on top of each other.

The configuration file directive UseModifier is used to set the name of the modifier or modifiers. For example

    UseModifier        size,color

will attach both a size and color attribute to each item code that is ordered.

IMPORTANT NOTE: You may not use the following names for attributes:

    item  group  quantity  code  mv_ib  mv_mi  mv_si

You can also set it in scratch with the mv_UseModifier scratch variable −− [set
mv_UseModifier]size color[/set] has the same effect as above. This allows multiple options to
be set for products. Whichever one is in effect at order time will be used. Be careful, you cannot set it more
than once on the same page. Setting the mv_separate_items or global directive SeparateItems places
each ordered item on a separate line, simplifying attribute handling. The scratch setting for
mv_separate_items has the same effect.

The modifier value is accessed in the [item−list] loop with the [item−modifier attribute] tag,
and form input fields are placed with the [modifier−name attribute] tag. This is similar to the way
that quantity is handled, except that attributes can be "stacked" by setting multiple values in an input form.

You cannot define a modifier name of code or quantity, as they are already used. You must be sure that no
fields in your forms have digits appended to their names if the variable is the same name as the attribute name
you select, as the [modifier−name size] variables will be placed in the user session as the form
variables size0, size1, size2, etc.

You can use the [loop arg="item item item"] list to reference multiple display or selection fields
for modifiers, or you can use the built−in [PREFIX−accessories ...] tags available in most
Interchange list operations. The modifier value can then be used to select data from an arbitrary database for
attribute selection and display.

Below is a fragment from a shopping basket display form which shows a selectable size with "sticky" setting.
Note that this would always be contained within the [item_list] [/item−list] pair.

Interchange Documentation (Full)

56.5. Item Attributes 341



    <SELECT NAME="[modifier−name size]">
    <OPTION  [selected [modifier−name size] S]> S
    <OPTION  [selected [modifier−name size] M]> M
    <OPTION  [selected [modifier−name size] L]> L
    <OPTION [selected [modifier−name size] XL]> XL
    </SELECT>

It could just as easily be done with a radio button group combined with the [checked ...] tag.

Interchange will automatically generate the above select box when the [accessories <code size]> or
[item−accessories size] tags are called. They have the syntax:

   [item_accessories attribute*, type*, field*, database*, name*, outboard*]

   [accessories code attribute*, type*, field*, database*, name*, outboard*]

code

Not needed for item−accessories, this is the product code of the item to reference.

attribute

The item attribute as specified in the UseModifier configuration directive. Typical are size or color.

type

The action to be taken. One of:

      select          Builds a dropdown <SELECT> menu for the attribute.
                      NOTE: This is the default.

      multiple        Builds a multiple dropdown <SELECT> menu for the
                      attribute.  The size is equal to the number of
                      option choices.

      display         Shows the label text for *only the selected option*.

      show            Shows the option choices (no labels) for the option.

      radio           Builds a radio box group for the item, with spaces
                      separating the elements.

      radio nbsp      Builds a radio box group for the item, with &nbsp;
                      separating the elements.

      radio left n    Builds a radio box group for the item, inside a
                      table, with the checkbox on the left side. If "n"
                      is present and is a digit from 2 to 9, it will align
                      the options in that many columns.

      radio right n   Builds a radio box group for the item, inside a
                      table, with the checkbox on the right side. If "n"
                      is present and is a digit from 2 to 9, it will align
                      the options in that many columns.

      check           Builds a checkbox group for the item, with spaces
                      separating the elements.

Interchange Documentation (Full)

56.5. Item Attributes 342



      check nbsp      Builds a checkbox group for the item, with &nbsp;
                      separating the elements.

      check left n    Builds a checkbox group for the item, inside a
                      table, with the checkbox on the left side. If "n"
                      is present and is a digit from 2 to 9, it will align
                      the options in that many columns.

      check right n   Builds a checkbox group for the item, inside a
                      table, with the checkbox on the right side. If "n"
                      is present and is a digit from 2 to 9, it will align
                      the options in that many columns.

The default is 'select', which builds an HTML select form entry for the attribute. Also recognized is 'multiple',
which generates a multiple−selection drop down list, 'show', which shows the list of possible attributes, and
'display', which shows the label text for the selected option only.

field

The database field name to be used to build the entry (usually a field in the products database). Defaults to a
field named the same as the attribute.

database

The database to find field in, defaults to the first products file where the item code is found.

name

Name of the form variable to use if a form is being built. Defaults to mv_order_attribute −− i.e. if the
attribute is size, the form variable will be named mv_order_size.

outboard

If calling the item−accessories tag, and you wish to select from an outboard database, you can pass the key to
use to find the accessory data.

When called with an attribute, the database is consulted and looks for a comma−separated list of attribute
options. They take the form:

    name=Label Text, name=Label Text*

The label text is optional −− if none is given, the name will be used.

If an asterisk is the last character of the label text, the item is the default selection. If no default is specified,
the first will be the default. An example:

    [item_accessories color]

This will search the product database for a field named "color". If an entry "beige=Almond, gold=Harvest
Gold, White*, green=Avocado" is found, a select box like this will be built:

    <SELECT NAME="mv_order_color">
    <OPTION VALUE="beige">Almond
    <OPTION VALUE="gold">Harvest Gold

Interchange Documentation (Full)

56.5. Item Attributes 343



    <OPTION SELECTED>White
    <OPTION VALUE="green">Avocado
    </SELECT>

In combination with the mv_order_item and mv_order_quantity variables this can be used to allow
entry of an attribute at time of order.

If used in an item list, and the user has changed the value, the generated select box will automatically retain
the current value the user has selected.

The value can then be displayed with [item−modifier size] on the order report, order receipt, or any
other page containing an [item−list].

56.6. Product Discounts

Product discounts can be set upon display of any page. The discounts apply only to the customer receiving
them, and are of one of three types:

    1. A discount for one particular item code (key is the item−code)
    2. A discount applying to all item codes (key is ALL_ITEMS)
    3. A discount for an individual line item (set the mv_discount attribute
       with embedded Perl)
    4. A discount applied after all items are totaled
       (key is ENTIRE_ORDER)

The discounts are specified via a formula. The formula is scanned for the variables $q and $s, which are
substituted for with the item quantity and subtotal respectively. The variable $s is saved between iterations, so
the discounts are cumulative. In the case of the item and all items discount, the formula must evaluate to a
new subtotal for all items of that code that are ordered. The discount for the entire order is applied to the entire
order, and would normally be a monetary amount to subtract or a flat percentage discount.

Discounts are applied to the effective price of the product, including any quantity discounts or price
adjustments.

To apply a straight 20% discount to all items:

    [discount ALL_ITEMS] $s * .8 [/discount]

or with named attributes:

    [discount code=ALL_ITEMS] $s * .8 [/discount]

To take 25% off of only item 00−342:

    [discount 00−342] $s * .75 [/discount]

To subtract $5.00 from the customer's order:

    [discount ENTIRE_ORDER] $s − 5 [/discount]

To reset a discount, set it to the empty string:

    [discount ALL_ITEMS][/discount]

Interchange Documentation (Full)

56.6. Product Discounts 344



Perl code can be used to apply the discounts, and variables are saved between items and are shared with the
[calc] tag. This example gives 10% off if two items are ordered, with 5% more for each additional up to a
maximum of 30% discount:

    [calc]
        [item−list]
            $totalq{"[item−code]"} += [item−quantity];
        [/item−list]
            return '';
    [/calc]

    [item−list]
        [discount code="[item−code]"]
            return ($s)       if $totalq{"[item−code]"} == 1;
            return ($s * .70) if $totalq{"[item−code]"} > 6;
            return ($s * ( 1 − 0.05 * $totalq{"[item−code]"} ));
        [/discount]
    [/item−list]

Here is an example of a special discount for item code 00−343 which prices the second one ordered at 1 cent:

    [discount 00−343]
    return $s if $q == 1;
    my $p = $s/$q;
    my $t = ($q − 1) * $p;
    $t .= 0.01;
    return $t;
    [/discount]

If you want to display the discount amount, use the [item−discount] tag.

    [item−list]
    Discount for [item−code]: [item−discount]
    [/item−list]

Finally, if you want to display the discounted subtotal, you need to use the [calc] capability:

    [item−list]
    Discounted subtotal for [item−code]: [currency][calc]
                                            [item−price] * [item−quantity]
                                            [/calc][/currency]
    [/item−list]

56.7. Sales Tax

Interchange allows calculation of sales tax on a straight percentage basis, with certain items allowed to be
tax−exempt. To enable this feature, the directive SalesTax is initialized with the name of a field (or fields) on
the order form. Commonly, this is zipcode and/or state:

    SalesTax    zip,state

This being done, Interchange assumes the presence of a file salestax.asc, which contains a database with
the percentages. Each line of salestax.asc should be a code (again, usually a five−digit zip or a two letter
state) followed by a tab, then a percentage. Example:

    45056   .0525

Interchange Documentation (Full)

56.7. Sales Tax 345



    61821   .0725
    61801   .075
    IL      .0625
    OH      .0525
    VAT     .15
    WA      .08

Based on the user's entry of information in the order form, Interchange will look up (for our example SalesTax
directive) first the zip, then the state, and apply the percentage to the SUBTOTAL of the order. The subtotal
will include any taxable items, and will also include the shipping cost if the state/zip is included in the
TaxShipping directive. It will add the percentage, then make that available with the [salestax] tag for
display on the order form. If no match is found, the entry 'default' is applied −− that is normally 0, but can be
anything.

If business is being done on a national basis, it is now common to have to collect sales tax for multiple states.
If you are doing so, it is possible to subscribe to a service which issues regular updates of the sales tax
percentages −− usually by quarterly or monthly subscription. Such a database should be easily converted to
Interchange format −− but some systems are rather convoluted, and it will be well to check and see if the
program can export to a flat ASCII file format based on zip code.

If some items are not taxable, then you must set up a field in your database which indicates that. You then
place the name of that field in the NonTaxableField directive. If the field for that item evaluates true on a
yes−no basis (i.e. is set to yes, y, 1, or the like), sales tax will not be applied to the item. If it evaluates false,
it will be taxed.

If your state taxes shipping, use the TaxShipping directive. Utah and Nevada are known to tax shipping −−
there may be others.

If you want to set a fixed tax for all orders, as might occur for VAT in some countries, just set the SalesTax
directive to a value like tax_code, and define a variable in the user session to reflect the proper entry in the
salestax.asc file. To set it to 15% with the above salestax.asc file, you would put in a form:

    <INPUT TYPE=hidden NAME=tax_code VALUE="VAT">

or to do it without submitting a form:

    [perl] $Values−>{tax_code} = 'VAT'; return; [/perl]

Interchange Documentation (Full)

56.7. Sales Tax 346



57. THE CHECKOUT PROCESS

57.1. Advanced Multi−level Order Pages

An unlimited number of order checking profiles can be defined with the OrderProfile directive, or by defining
order profiles in scratch variables. This allows a multi−level ordering process, with checking for format and
validity at every stage.

To custom−configure the error message, place it after the format check requirement.

Specifications take the form of an order page variable (like name or address), followed by an equals sign and
one of five check types:

required

A non−blank value is required

mandatory

Must be non−blank, and must have been specified on this form, not a saved value from a previous form

phone

The field must look like a phone number, by a very loose specification allowing numbers from all countries

phone_us

Must have US phone number formatting, with area code

state

Must be a US state, including DC and Puerto Rico.

province

Must be a Canadian province or pre−1997 territory.

state_province

Must be a US state or Canadian province.

zip

Must have US postal code formatting, with optional ZIP+4. Also called by the alias us_postcode.

ca_postcode

Must have Canadian postal code formatting. Checks for a valid first letter.

57. THE CHECKOUT PROCESS 347



postcode

Must have Canadian or US postal code formatting.

true

Field begins with y, 1, or t (Yes, 1, or True) − not case sensitive

false

Field begins with n, 0, or f (No, 0, or False) − not case sensitive

email

Rudimentary email address check, must have an '@' sign, a name, and a minimal domain

regex

A regular expression to check against. To check that all submissions of the "foo" variable have "bar" at the
beginning, do:

            foo=regex ^bar

You can add an error message by putting it in quotes at the end:

       foo=regex ^bar "You must have bar at the beginning of this"

If you want to use a backslash to introduce a Perl literal like \w, you must double the backslash, i.e.

            foo=regex ^bar\\w+$ "You must have 'bar' followed by only word characters"

length

A range of lengths you want the input to be:

       foo=length 4−10

That will require foo be from 4 to 10 characters long.

unique

Tests to see that the value would be a unique key in a table:

       foo=unique userdb Sorry, that username is already taken

filter

Runs the value through an Interchange filter and checks that the returned value is equal to the original value.

       foo=filter entities Sorry, no HTML allowed

To check for all lower−case characters:

Interchange Documentation (Full)

57. THE CHECKOUT PROCESS 348



            foo=filter lower Sorry, no uppercase characters

Also, there are pragmas that can be used to change behavior:

&charge

Perform a real−time charge operation. If set to any value but "custom", it will use Interchange's CyberCash
routines. To set to something else, use the value "custom ROUTINE". The ROUTINE should be a GlobalSub
which will cause the charge operation to occur −− if it returns non−blank, non−zero the profile will have
succeeded. If it returns 0 or undef or blank, the profile will return failure.

&credit_card

Checks the mv_credit_card_* variables for validity. If set to "standard", it will use Interchange's
encrypt_standard_cc routines. This destroys the CGI value of mv_credit_card_number −− if you don't
want that to happen (perhaps to save it for sending to CyberCash) then add the word keep on the end.
Example:

        # Checks credit card number and destroys number after encryption
        # The charge operation can never work

        &credit_card=standard
        &charge=custom authorizenet

        # Checks credit card number and keeps number after encryption
        # The charge operation can now work

        &credit_card=standard keep
        &charge=custom authorizenet

You can supply your own check routine with a GlobalSub:

        &credit_card=check_cc

The GlobalSub check_cc will be used to check and encrypt the credit card number, and its return value will
be used to determine profile success.

&fail

Sets the mv_failpage value.

        &fail=page4

If the submit process succeeds, the user will be sent to the page page4.

&fatal

Set to '&fatal=yes' if an error should generate the error page.

&final

Set to '&final=yes' if a successful check should cause the order to be placed.

Interchange Documentation (Full)

57. THE CHECKOUT PROCESS 349



&return

Causes profile processing to terminate with either a success or failure depending on what follows. If it is
non−blank and non−zero, the profile succeeds.

        # Success :)
        &return 1

        # Failure :\
        &return 0

Will ignore the &fatal pragma, but &final is still in effect if set.

&set

Set a user session variable to a value, i.e. &set=mv_email [value email]. This will not cause failure
if blank or zero.

&setcheck

Set a user session variable to a value, i.e. &set=mv_email [value email]. This will cause failure if
set to a blank or zero. It is usually placed at the end after a &fatal pragma would have caused the process to
stop if there was an error −− can also be used to determine pass/fail based on a derived value, as it will cause
failure if it evaluates to zero or a blank value.

&success

Sets the mv_successpage value. Example:

        &success=page5

If the submit process succeeds, the user will be sent to the page page5.

As an added measure of control, the specification is evaluated for the special Interchange tags to provide
conditional setting of order parameters. With the [perl][/perl] capability, quite complex checks can be
done. Also, the name of the page to be displayed on an error can be set in the mv_failpage variable.

The following file specifies a simple check of formatted parameters:

 name=required You must give us your name.
 address=required Oops! No address.
 city=required
 state=required
 zip=required
 email=required
 phone_day=phone_us XXX−XXX−XXXX phone−number for US or Canada
 &fatal=yes
 email=email Email address missing the domain?
 &set=mv_email [value email]
 &set=mv_successpage ord/shipping

The profile above only performs the &set directives if all of the previous checks have passed −− the
&fatal=yes will stop processing after the check of the email address if any of the previous checks failed.

Interchange Documentation (Full)

57. THE CHECKOUT PROCESS 350



If you want to place multiple order profiles in the same file, separate them with __END__, which must be on a
line by itself.

User−defined check routines can be defined in a GlobalSub:

    GlobalSub <<EOF
    sub set_up_extra_check {
        BEGIN {
            package Vend::Order;
            sub _pt_postcode {
                # $ref is to Vend::Session−>{'values'} hash
                # $var is the passed name of the variable
                # $val is current value of checked variable
                my($ref, $var, $val) = @_;

                if ($ref−>{country} =~ /^(PT|portugal)$/i) {
                    return $val =~ /^\d\d\d\d$/ ?
                        (1, $var, '') : (undef, $var, "not a Portugese postal code");
                }
                else {
                    return (1, $var, '');
                }
            }
        }
    }
    EOF

Now you can specify in an order profile:

  postcode=pt_postcode

Very elaborate checks are possible. There must be an underscore preceding the routine name. The return value
of the subroutine should be a three−element array, consisting of:

the pass/fail ('1' or 'undef') status of the check;1. 
the name of the variable which was checked;2. 
a standard error message for the failure, in case a custom one has not been specified in the order
profile.

3. 

The latter two elements are used by the [error] tag for on−screen display of form errors. The checkout
page of the Foundation demo includes examples of this.

57.2. Simple Order Report File

The simple order report file, "report", defines the layout of the order report which gets mailed on the
completion of the order. For example,

              Order Date: $date

                    Name: $name
           Email address: $email

        Shipping address: $addr
        Town, State, Zip: $town, $state $zip
                 Country: $country

Interchange Documentation (Full)

57.2. Simple Order Report File 351



Any input field from the order page can be included using the dollar sign notation.

Interchange defines some values for use in the search form −− they begin with mv_ and are automatically
ignored.

57.3. Fully−configurable Order Reports

You can specify a fully−configurable order report by setting the hidden field "mv_order_report" to a legal
Interchange page. This page will be interpolated with all Interchange tags before sending by email. The order
number as set by backend ordering is in the variable mv_order_number, and available for your use.

You could if you wish include HTML in the file, which will be interpreted by many mailers, but you can
choose to use standard ASCII format. An example report is provided in the demo file
<pages/ord/report.html>.

57.4. Order Receipts

The file can of course be configured with all Interchange tags, and will be interpolated for the ordered items
before they are deleted from the user session. You can set the default receipt with the receipt key in
SpecialPage. If using order Routes, as in the foundation demo, you set it with the receipt key to
Route.

57.5. The Order Counter

An order counter can be enabled if the OrderCounter directive is set to a file name. An incrementing count of
all orders will be kept and assigned as orders are placed. By default, the number starts at 0, but you can edit
the file and change the default starting number at any time.

This capability is made possible by the File::CounterFile module, available (as a part of the fine libwww
modules) at the same place you got Interchange. It is included with the distribution.

57.6. Customer Input Fields

On the order (or shopping basket) page, by default order.html, you will have a number of input fields allowing
the customer to enter information such as their name and address. You can add more fields simply by putting
more input elements on the order.html page, and the information will automatically be included in the order
report. Input elements should be written in this way:

    <input type="text" name="town" value="[value town]" size=30>

Choose a name for this input field such as "email" for an email address. Set the name attribute to the name
you have chosen.

The value attribute specifies the default value to give the field when the page is displayed. Because the
customer may enter information on the order page, return to browsing, and come back to the order page, you
want the default value to be what was entered the first time. This is done with the [value var] element,
which returns the last value of an input field. Thus,

    value="[value name]"

Interchange Documentation (Full)

57.3. Fully−configurable Order Reports 352



will evaluate to the name entered on the previous order screen, such as:

       value="Jane Smith"

which will be displayed by the browser.

The size attributes specifies how many characters wide the input field should be on the browser. You do not
need to set this to fit the longest possible value since the browser will scroll the field, but you should set it
large enough to be comfortable for the customer.

Copyright 2001−2002 Red Hat, Inc. Freely redistributable under terms of the GNU General Public License.

line:

Interchange Documentation (Full)

57.3. Fully−configurable Order Reports 353



Interchange Tags Reference

Interchange Tags Reference 354



58. Interchange Tag Reference
Interchange functions are accessed via the Interchange Tag Language (ITL). The pages in a catalog may be
mostly HTML, but they will use ITL tags to provide access to Interchange's functions. ITL is a superset of
MML, or Minivend Markup Language. Minivend was the predecessor to Interchange.

These tags perform various display and modification operations for the user session. There nearly 100
standard predefined tags, and the UserTag facility allows you to create tags that perform your own functions
and can be just as powerful as the built−in tags.

This document covers Interchange versions 4.7−4.8.

58. Interchange Tag Reference 355



59. Tag Syntax
ITL tags are similar to HTML in syntax, in that they accept parameters or attributes and that there are both
standalone and container tags.

We will call an attribute a parameter if it may be called positionally or if it must be included (see the
parameter and attribute sections below).

A standalone tag has no ending element, e.g.:

    [value name]

This tag will insert the user's name, providing they have given it to you in a form. A container tag has both a
beginning and an ending element, as in:

    [if value name]
    You have a name. It is [value name].
    [/if]

59.1. Standard Syntax

The most common syntax is to enclose the tag with its parameters and attributes in [square brackets].
If the tag has an end tag, the tag and its end tag will delimit contained body text:

  [tagname parameters attributes]Contained Body Text[/tagname]

Caveat −− macros: Some macros look like tags or end tags. For example, [/page] is a macro for </A>. This
allows you to conveniently write [pagehref]Target[/page], but 'Target' is not treated as contained body
text.

When using the [tagname ...] syntax, there must be no whitespace between the left bracket ('[') and the
tagname.

If a tag name includes an underscore or dash, as in item_list, a dash is just as appropriate (i.e. item−list).
The two forms are interchangeable, except that an ending tag must match the tag (i.e., don't use
[item−list] list [/item_list]).

59.2. HTML−Comment

ITL also allows you to use '<!−−[' and ']−−>' as interchangeable alternatives to plain square brackets:
[tagname] and <!−−[tagname]−−> are equivalent.

This allows you make your raw tags appear as comments to HTML browsers or editors. You might want to do
this if your editor has trouble with ITL tags when editing Interchange page templates, or alternatively, if you
want to use one .html file both as an Interchange template and as a static page delivered directly by your web
server, without Interchange processing.

To properly HTML−comment contained body text, place your comment−style brackets appropriately, for
example:

59. Tag Syntax 356



 <!−−[tagname] Contained Body Text [/tagname]−−>

Note that you must include whitespace between the HTML comment delimiters and the square brackets if you
wish to actually comment out tag output in the browser. For example, if [value name] expands to 'Bill':

 '<!−−[value name]−−>'  becomes  'Bill'
 '<!−− [value name] −−>'  becomes  '<!−− Bill −−>'

59.2.1. Technical notes

While '<!−−[' and '[' are completely interchangeable, the Interchange parser does not replace ']−−>' with ']'
unless it also sees '<!−−[' at least once somewhere on the page. (This is a small parsing speed optimization.)

See the Template Parsing Order appendix if you are modifying the special administrative interface pages and
intend to use this syntax.

59.3. Named vs. Positional Parameters

There are two styles of supplying parameters to a tag: named and positional.

In the named style you supply a parameter name=value pair just as most HTML tags use:

    [value name="foo"]

The positional−style tag that accomplishes the same thing looks like this:

    [value foo]

The parameter name is the first positional parameter for the [value] tag. Some people find positional usage
simpler for common tags, and Interchange interprets them somewhat faster. If you wish to avoid ambiguity
you can always use named calling.

In most cases, tag parameters specified in the positional fashion work the same as named parameters.
However, there are a few situations where you need to use named parameters:

If you want to specify a parameter that comes positionally after a parameter that you want to omit,
e.g. omit the first parameter but specify the second. The parser would have no way of knowing which
is which, so you just specify the second by name. This is rare, though, because the first positional
parameters are usually required for a given tag anyway.

1. 

When there is some ambiguity as to which parameter is which, usually due to whitespace.2. 
When you need to use the output of a tag as the parameter or attribute for another tag.3. 

59.3.1. Interpolating parameters

If you wish to use the value of a tag within a parameter of another tag, you cannot use a positional call. You
must also double−quote the argument containing the tag you wish to have expanded. For example, this will
not work:

    [page scan se=[scratch somevar]]

Interchange Documentation (Full)

59.2.1. Technical notes 357



To get the output of the [scratch somevar] interpreted, you must place it within a named and quoted
attribute:

    [page href=scan arg="se=[scratch somevar]"]

Note that the argument to href ('scan') did not need to be quoted; only the argument to arg, which contained a
tag, needed the quotes.

59.4. Universal Attributes

Universal attributes apply to all tags, though each tag specifies its own default for the attribute. The code
implementing universal attributes is external to the core routines that implement specific tags.

59.4.1. interpolate

This attribute behaves differently depending on whether the tag is a container or standalone tag. A container
tag is one which has an end tag, i.e. [tag] stuff [/tag]. A standalone tag has no end tag, as in
[area href=somepage]. (Note that [page ...] and [order ..] are not container tags.)

For container tags (interpolated)

If true ("interpolate=1"), the Interchange server will first process any tags within the body text before
passing it to the enclosing tag.

• 

If false ("interpolate=0"), the enclosing tag will receive the raw body text.• 

For standalone tags (reparsed)

If true, the server will process the output of the tag. This is identical to the behavior of the reparse
attribute (see below for explanation and examples).

• 

(Note: The mixing of 'interpolate' and 'reparse' logic occurred because 'interpolate' already worked this way
when 'reparse' was added to Interchange. This may be fixed in a later release...)

Most standalone tags are not reparsed by default (i.e., interpolate=0 by default). There are some exceptions,
such as the [include] tag.

Interpolation example:

Assuming that name is 'Kilroy',

   [log interpolate=1][value name] was here[/log]
   [log interpolate=0][value name] was here[/log]

the first line logs 'Kilroy was here' to catalog_root/etc/log, while the second logs '[value name] was here'.

Reparsing example:

Suppose we set a scratch variable called 'now' as follows:

   [set name=now interpolate=0][time]%A, %B %d, %Y[/time][/set]

Interchange Documentation (Full)

 59.4. Universal Attributes 358



If today is Monday, January 1, 2001,

   [scratch name=now interpolate=0]
   [scratch name=now interpolate=1]

the first line yields

   [time]%A, %B %d, %Y[/time]

while the second yields

   Monday, January 1, 2001

59.4.2. reparse

If true ("reparse=1"), the server will process any tags in the text output by the reparsed tag.

Reparse applies only to container tags (those with an end tag). The interpolate attribute controls
reparsing of the output of standalone tags (see above).

Most container tags will have their output re−parsed for more Interchange tags by default. If you wish to
inhibit this behavior, you must explicitly set the attribute reparse to 0. Note that you will almost always want
the default action. The only container ITL tag that doesn't have reparse set by default is [mvasp].

Example:

Assuming that name is 'Kilroy',

  1.   [perl reparse=0]
          my $tagname = 'value';
          return "[$tagname name] was here\n"
       [/perl]

  2.   [perl reparse=1]
          my $tagname = 'value';
          return "[$tagname name] was here\n"
       [/perl]

expands to

  1.   [value name] was here

  2.   Kilroy was here

59.4.3. send

Deprecated

59.5. Tag−specific Attributes

Each tag may accept additional named attributes which vary from tag to tag. Please see the entry for the tag in
question for details about tag−specific attributes.

Interchange Documentation (Full)

 59.4.2. reparse 359



59.6. Attribute Arrays and Hashes

Some tags allow you to pass an array or hash as the value of an attribute. For an ordinary tag, the syntax is as
follows:

    attribute.n=value

    attribute.hashkey=value

where n is an integer array index. Note that you cannot use both an array and a hash with the same
attribute −− if you use attribute.n, you cannot also use attribute.key for the same attribute.

Here is an example of an attribute array:

    search.0="se=hammer
              fi=products
              sf=description"
    search.1="se=plutonium
              fi=products
              sf=comment"

The [page] tag, for example, treats a search specification array as a joined search, automatically adding the
other relevant search fields, including the 'co=yes' to indicate a combined search (joined searches are
described in the Interchange database documentation).

Note that it is up to the tag to handle an array or hash value properly. See the documentation for the specific
tag before passing it an attribute array or hash value.

59.6.1. Perl calls

Before passing attributes to a tag, the Interchange parser would convert the above example to an anonymous
array reference. It would use the resulting arrayref as the value for the 'search' attribute in this example.

If you were passing the above example directly to a tag routine within a [perl] block or a usertag, you
must actually pass an anonymous array as the value of the attribute as follows:

    my $arrayref = [ "se=hammer/fi=products/sf=description",
                     "se=plutonium/fi=products/sf=description", ];

    $Tag−>routine( { search => $arrayref, } );

Similarly to use a hash reference for the 'entry' attribute:

    my $hashref = { name   => "required",
                    date   => 'default="%B %d, %Y"', };

    $Tag−>routine( { entry => $hashref } );

Interchange Documentation (Full)

 59.6. Attribute Arrays and Hashes 360



60. Looping tags and Sub−tags
Certain tags are not standalone; these are the ones that are interpreted as part of a surrounding looping tag like
[loop], [item−list], [query], or [region].

[prefix−accessories]
[prefix−alternate]
[prefix−calc]
[prefix−change]
[prefix−code]
[prefix−data]
[prefix−description] (Note safe−data and ed( ) escape)
[prefix−discount]
[prefix−discount_subtotal]
[prefix−exec]
[prefix−field] (Optimization note−− one query per field if you use this; we optimize around this if only one
products table)
[prefix−filter] (like filter tag but doesn't interpolate)
[prefix−increment]
[prefix−last]
[prefix−line] (tab−delimited list of parameters returned)
[prefix−match]
[prefix−modifier]
[prefix−next]
[prefix−options]
[prefix−param]
[prefix−pos]
[prefix−price]
[prefix−quantity]
[prefix−sub]
[prefix−subtotal]
[if−prefix−data]
[if−prefix−field]
[if−prefix−modifier] (hash list only)
[if−prefix−param]
[if−prefix−pos]
[modifier−name]
[quantity−name]

PREFIX represents the prefix that is used in that looping tag. They are only interpreted within their container
and only accept positional parameters. The default prefixes:

Tag Prefix Examples

[loop] loop [loop−code], [loop−field price], [loop−increment]

[item−list] item [item−code], [item−field price], [item−increment]

[search−list] item [item−code], [item−field price], [item−increment]

[query] sql [sql−code], [sql−field price], [sql−increment]
Sub−tag behavior is consistent among the looping tags. Subtags are parsed during evaluation of the enclosing
loop, before any regular tags within the loop.

60. Looping tags and Sub−tags 361



There are two types of looping lists: ARRAY and HASH.

An array list is the normal output of a [query], a search, or a [loop] tag. It returns from 1 to N return
fields, defined in the mv_return_fields or rf variable or implicitly by means of a SQL field list. The
two queries below are essentially identical:

    [query sql="select foo, bar from products"]
    [/query]

    [loop search="
                    ra=yes
                    fi=products
                    rf=foo,bar
    "]

Both will return an array of arrays consisting of the foo column and the bar column. The Perl data structure
would look like:

    [
        ['foo0', 'bar0'],
        ['foo1', 'bar1'],
        ['foo2', 'bar2'],
        ['fooN', 'barN'],
    ]

A hash list is the normal output of the [item−list] tag. It returns the value of all return fields in an array of
hashes. A normal [item−list] return might look like:

    [
        {
            code     => '99−102',
            quantity => 1,
            size     => 'XL',
            color    => 'blue',
            mv_ib    => 'products',
        },
        {
            code     => '00−341',
            quantity => 2,
            size     => undef,
            color    => undef,
            mv_ib    => 'products',
        },

    ]

You can also return hash lists in queries:

    [query sql="select foo, bar from products" type=hashref]
    [/query]

Now the data structure will look like:

    [
        { foo => 'foo0', bar => 'bar0' },
        { foo => 'foo1', bar => 'bar1' },
        { foo => 'foo2', bar => 'bar2' },
        { foo => 'fooN', bar => 'barN' },

Interchange Documentation (Full)

60. Looping tags and Sub−tags 362



    ]

60.1. prefix−accessories

   [prefix−accessories arglist]

Except for the usual differences that apply to all subtags (such as parsing order), these are more or less
equivalent for an array−type list:

   [accessories code=current_item_code arg=arglist]
   [item−accessories arglist]

See the accessories tag for more detail. Note that you must use the comma−delimited list to set
attributes −− you cannot set named attributes with the usual 'attribute=value' syntax.

If the list is a hash list, i.e. an [item−list], then the value of the current item hash is passed so that a value
default can be established.

60.2. prefix−alternate

   [prefix−alternate N] DIVISIBLE [else] NOT DIVISIBLE [/else][/PREFIX−alternate]

Set up an alternation sequence. If the item−increment is divisible by `N', the text will be displayed. If an
`[else]NOT DIVISIBLE TEXT[/else]' is present, then the NOT DIVISIBLE TEXT will be displayed.

For example:

    [item−alternate 2]EVEN[else]ODD[/else][/item−alternate]
    [item−alternate 3]BY 3[else]NOT by 3[/else][/item−alternate]

60.3. prefix−calc

   [prefix−calc] 2 + [item−field price] [/PREFIX−calc]

Executes Perl code in the tag body. This is equivalent to the [calc] [/calc] tag pair, except it's calculated at
loop time instead of later when the rest of the page is parsed.

60.4. prefix−change

   [prefix−change][condition] ... [/condition] TEXT [/PREFIX−change]

Sets up a breaking sequence that occurs when the contents of [condition] [/condition] change. The most
common one is a category break to nest or place headers.

The region is only output when a field or other repeating value between [condition] and [/condition] changes
its value. This allows indented lists similar to database reports to be easily formatted. The repeating value

Interchange Documentation (Full)

60.1. prefix−accessories 363



must be a tag interpolated in the search process, such as [prefix−field field] or [prefix−data
database field]. If you need access to ITL tags, you can use [prefix−calc] with a $Tag−>foo() call.

Of course, this will only work as you expect when the search results are properly sorted.

The value to be tested is contained within a [condition]value[/condition] tag pair. The
[prefix−change] tag also processes an [else] [/else] pair for output when the value does not change.

Here is a simple example for a search list that has a field category and subcategory associated with
each item:

 <TABLE>
 <TR><TH>Category</TH><TH>Subcategory</TH><TH>Product</TH></TR>
 [search−list]
 <TR>
    <TD>
         [item−change cat]

         [condition][item−field category][/condition]

                 [item−field category]
         [else]
                 &nbsp;
         [/else]
         [/item−change cat]
    </TD>
    <TD>
         [item−change sub]

         [condition][item−field subcategory][/condition]

                 [item−field subcategory]
         [else]
                 &nbsp;
         [/else]
         [/item−change sub]
    </TD>
    <TD> [item−field name] </TD>
 [/search−list]
 </TABLE>

The above should put out a table that only shows the category and subcategory once, while showing the name
for every product. (The &nbsp; will prevent blanked table cells if you use a border.)

60.5. prefix−code

   [prefix−code]

The key or code of the current loop. In an [item−list] this is always the product code; in a loop list it is the
value of the current argument; in a search it is whatever you have defined as the first mv_return_field (rf).

Interchange Documentation (Full)

60.5. prefix−code 364



60.6. prefix−data

   [prefix−data table field]

Calls the column field in database table table for the current [prefix−code]. This may or may not be
equivalent to [prefix−field field] depending on whether your search table is defined as one of the
ProductFiles.

60.7. prefix−description

   [prefix−description]

The description of the current item, as defined in the catalog.cfg directive DescriptionField. In the
demo, it would be the value of the field description in the table products.

If the list is a hash list, and the lookup of DescriptionField fails, then the attribute description will
be substituted. This is useful to supply shopping cart descriptions for on−the−fly items.

60.8. prefix−discount

   [prefix−discount]

The price of the current item is calculated, and the difference between that price and the list price (quantity
one) price is output. This may have different behavior than you expect if you set the [discount] [/discount] tag
along with quantity pricing.

60.9. prefix−discount_subtotal

   [prefix−discount_subtotal]

Inserts the discounted subtotal of the ordered items.

60.10. prefix−field

   [prefix−field]

Looks up a field value for the current item in one of several places, in this order:

    1. The first ProductFiles entry.
    2. Additional ProductFiles in the order they occur.
    3. The attribute value for the item in a hash list.
    4. Blank

A common user error is to do this:

    [loop search="

Interchange Documentation (Full)

60.6. prefix−data 365



                    fi=foo
                    se=bar
                "]

    [loop−field foo_field]
    [/loop]

In this case, you are searching the table foo for a string of bar. When it is found, you wish to display the
value of foo_field. Unless foo is in ProductFiles and the code is not present in a previous product
file, you will get a blank or some value you don't want. What you really want is [loop−data foo
foo_field], which specifically addresses the table foo. See also
[C[jump="#prefix−param"]prefix−param]> and [C[jump="#prefix−pos"]prefix−pos]>.

60.11. prefix−increment

   [prefix−increment]

The current count on the list, starting from either 1 in a zero−anchored list like [loop] or [item−list], or
from the match count in a search list.

If you skip items with [prefix−last] or [prefix−next], the count is NOT adjusted.

60.12. prefix−last

   [prefix−last] CONDITION [/PREFIX−last]

If CONDITION evaluates true (a non−whitespace value that is not specifically zero) then this will be the last
item displayed.

60.13. prefix−line

   [prefix−line start_column]

Returns all array values from the current looping row in a single string, with each value separated by a tab,
roughly equivalent to this:

  [prefix−pos 0](tab)[prefix−pos 1](tab)[prefix−pos 2](tab)[...]

for however many fields were returned in that row.

This is useful as a quick way to see all your results at a glance and verify your search specification.

If the optional start_column attribute is given, the output starts with that column instead of column 0.

Interchange Documentation (Full)

60.11. prefix−increment 366



60.14. prefix−modifier

   [prefix−modifier attribute]

If the item is a hash list (i.e. [item−list]), this will return the value of the attribute.

60.15. prefix−next

   [prefix−next] CONDITION [/PREFIX−next]

If CONDITION evaluates true (a non−whitespace value that is not specifically zero) then this item is skipped.

60.16. prefix−param

   [prefix−param name]

60.17. prefix−pos

   [prefix−pos N]

Returns the value of the array parameter associated with the looping tag row. Each looping list returns an
array of return fields, set in searches with mv_return_field or rf. The default is only to return
the code of the search result, but by setting those parameters you can return whichever columns you wish.

[prefix−pos N] outputs the data from the Nth field as returned (starting with 0); [prefix−param] lets you access
the data by field name instead of number.

In a [query ...] ITL tag you can select multiple return fields with something like:

    [query prefix=prefix sql="select foo, bar from baz where foo=buz"]
        [prefix−code]  [prefix−param foo]  [prefix−param bar]
    [/query]

In this case, [prefix−code] and [prefix−param foo] are synonyms, for foo is the first returned parameter and
becomes the code for this row. Another synonym is [prefix−pos 0]; and [prefix−pos 1] is the same as
[prefix−param bar].

60.18. prefix−price

   [prefix−price]

The price of the product identified by the current code, formatted for currency. If Interchange's pricing
routines cannot determine the price (i.e. it is not a valid product or on−the−fly item) then zero is returned. If
the list is a hash list, the price will be modified by its quantity or other applicable attributes (like size in
the demo).

Interchange Documentation (Full)

60.14. prefix−modifier 367



60.19. prefix−quantity

   [prefix−quantity]

The value of the quantity attribute in a hash list. Most commonly used to display the quantity of an item in
a shopping cart [item−list].

60.20. prefix−subtotal

   [prefix−subtotal]

The [prefix−quantity] times the [prefix−price]. This does take discounts into effect.

60.21. if−prefix−data

   [if−prefix−data table field] IF text [else] ELSE text [/else] [/if−prefix−data]

Examines the data field, i.e. [prefix−data table field], and if it is non−blank and non−zero then the IF text
will be returned. If it is false, i.e. blank or zero, the ELSE text will be returned to the page.

This is much more efficient than the otherwise equivalent [if type=data
term=table::field::[prefix−code]].

You cannot place a condition; i.e. [if−prefix−data table field eq 'something']. Use [if type=data ...]
for that.

Careful, a space is not a false value!

60.22. if−prefix−field

   [if−prefix−field field] IF text [else] ELSE text [/else] [/if−prefix−field]

Same as [if−prefix−data ...] except uses the same data rules as [prefix−field].

60.23. modifier−name

   [modifier−name attribute]

Outputs a variable name which will set an appropriate variable name for setting the attribute in a form (usually
a shopping cart). Outputs for successive items in the list:

    1. attribute0
    2. attribute1
    3. attribute2

etc.

Interchange Documentation (Full)

60.19. prefix−quantity 368



60.24. quantity−name

   [quantity−name]

Outputs for successive items in the list:

    1. quantity0
    2. quantity1
    3. quantity2

etc. [modifier−name quantity] would be the same as [quantity−name].

Interchange Documentation (Full)

60.24. quantity−name 369



61. Tags
Each ITL tag is show below. Calling information is defined for the main tag, sub−tags are described in
Sub−tags.

61.1. accessories

A Swiss−army−knife widget builder, this provides access to Interchange's product option attributes (e.g., to
choose or access product options such as a shirt's size or color).

Can build selection objects (radio, check, select boxes, etc), forms or hyperlinks, or can simply return a value.

Or more −− see also Looping tags and Sub−tags.

61.1.1. Summary

    [accessories code arg]
    [accessories code=os28044 arg="size, radio, ... " other_named_attributes] deprecated
    [accessories code=os28044 attribute=size type=radio ... other_named_attributes]

Parameters Description Default

code Value of the master key in the product (or specified other) table none

arg Positionally interpreted comma−delimited list of values for the following attributes:

"attribute, type, column, table, name, outboard, passed"

none

Attributes Default

attribute none

type

One of select, value, text, textarea, hidden, password, combo, move_combo,
reverse_combo, show, options, labels, checkbox, radio, links

select

column attribute

table products

name mv_order_attribute

outboard none

passed none

key (alias for code) none

row (alias for code) none

base (alias for table) products

database (alias for table) products

db (alias for table) products

col (alias for column attribute

field (alias for column attribute

delimiter comma (',')

prepend none

61. Tags 370



append none

extra none

js none

rows varies withtype; often
4

cols varies withtype; often
40

width none

default none

price none

price_data none

contains (type=radio or check) none

joiner (type=links) none

href (type=links) none

template (type=links) none

form (type=links) mv_action=return

empty (type=links) none

secure (type=links) none

new none

interpolate (reparse) No

Other_Characteristics

Invalidates cache No

Container tag No

Has Subtags No
Tag expansion example:

    [accessories os28044 size]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    <SELECT NAME="mv_order_size"><OPTION VALUE="10oz">10oz\
    <OPTION VALUE="15oz">15oz<OPTION VALUE="20oz">20oz</SELECT>

ASP−like Perl call:

    $Tag−>accessories(  { code   => '[[EXAMPLE_SKU]]',
                          arg    => 'color, radio'
                          table  => 'special_products', }  );

or similarly with positional parameters,

    $Tag−>accessories($code, $arg, $attribute_hash_reference);

61.1.1.1. See Also

Looping tags and Sub−tags.

Interchange Documentation (Full)

61.1.1.1. See Also 371



61.1.2. Description

This is the swiss−army−knife widget builder for providing access to Interchange's product option attributes
(e.g., to choose or access product options such as a shirt's size or color).

Interchange allows you to choose item attribute values for each ordered item −− you can attach a size, color,
or other modifier to a line item in the shopping cart. You can also resubmit previous attribute values via
hidden fields on a form.

The catalog.cfg file directive UseModifier is used to set the name of the modifier or modifiers. For
example

UseModifier        size color

will attach both a size and color attribute to each item code that is ordered.

Important Note −− You may not use the following names for attributes:

item group quantity code mv_ib mv_mi mv_si

You can also set modifier names with the mv_UseModifier scratch variable −− [set mv_UseModifier]size
color[/set] has the same effect as above. This allows multiple options to be set for products. Whichever one is
in effect at order time will be used. Be careful; you cannot set it more than once on the same page. Setting the
mv_separate_items or global directive SeparateItems places each ordered item on a separate line,
simplifying attribute handling. The scratch setting for mv_separate_items has the same effect.

The modifier value is accessed in the [item−list] loop with the [item−param attribute] tag, and
form input fields are placed with the [modifier−name attribute] tag. This is similar to the way that
quantity is handled.

Note: You must be sure that no fields in your forms have digits appended to their names if the variable is the
same name as the attribute name you select, as the [modifier−name size] variables will be placed in
the user session as the form variables size0, size1, size2, etc.

Interchange will automatically generate the select boxes when the
[accessories code=os28044 attribute=size] or [item−accessories size] tags are called. They
have the syntax:

   [item−accessories attribute, type, column, table, name, outboard, passed]

   [accessories code=sku
                attribute=modifier
                type=select
                column=db_table_column_name
                table=db_table
                name=varname
                outboard=key
                passed="value=label, value2*, value3=label 3" ]

   [accessories js=| onChange="set_description(simple_options, variant)"; |
                type=select
                name="[item−param o_group]"
                passed="=−−choose−−,[item−param o_value]" ]

Interchange Documentation (Full)

61.1.2. Description 372



Notes:

The 'attribute' attribute is required.1. 
See the type attribute for a list of types.2. 
The trailing '*' in value2 will mark it as the default ('SELECTED') value in the select widget (see
below).

3. 

When called with an attribute, the database is consulted and looks for a comma−separated list of item attribute
options. They take the form:

   name_a=Label Text1, default_name=Default Label Text*, name_b, etc.

The label text is optional −− if none is given, the name will be used (as in 'name_b' above).

If an asterisk is the last character of the label text, the item is the default selection. If no default is specified,
the first will be the default. An example:

    [item−accessories color]

This will search the product database for a field named "color". If an entry "beige=Almond, gold=Harvest
Gold, White*, green=Avocado" is found, a select box like this will be built:

    <SELECT NAME="mv_order_color">
    <OPTION VALUE="beige">Almond
    <OPTION VALUE="gold">Harvest Gold
    <OPTION SELECTED>White
    <OPTION VALUE="green">Avocado
    </SELECT>

In combination with the mv_order_item and mv_order_quantity session variables, you can use this
to allow a customer to enter an item attribute during an order.

If used in an item list, and the user has changed the value, the generated select box will automatically retain
the current value the user has selected.

The value can then be displayed with [item−modifier color] on the order report, order receipt, or any
other page containing an [item−list].

61.1.2.1. Emulating with a loop

You can also build widgets directly, without using the accessories tag. You may have to do so if you
need more control of the content than the tag offers. Below is a fragment from a shopping basket display form
which shows a selectable size with "sticky" setting and a price that changes based upon the modifier setting.
(Note that this example would normally be contained within the [item_list][/item−list] pair.)

    <SELECT NAME="[modifier−name size]">
    [loop option="[modifier−name size]" list="S, M, L, XL"]
    <OPTION> [loop−code] −− [price code="[item−code]" size="[loop−code]"]
    [/loop]
    </SELECT>

Interchange Documentation (Full)

61.1.2.1. Emulating with a loop 373



The output of the above would be similar to the output of [item−accessories size, select] if the product
database field size contained the value S, M, L, XL. The difference is that the options in the loop
emulation show the adjusted price in addition to the size within each option value.

61.1.2.2. Hash Lists −− Technical Note

As a technical note, some of the features of this tag work differently depending on whether it was called with
an '$item' hash reference, for example, as [item−accessories] within an [item−list].

In this context, the tag will have access to ancillary data from the item (including, perhaps, a user's chosen
item attribute value). For example, if building a TEXTAREA widget within an [item−list], the widget
will show the chosen item attribute value. On the other hand, within an array list such as a [search−list]
in a [search−region], the widget would be empty.

If you really know what you're doing, you can pass it the item hash reference within a perl tag like this:

   $Tag−>accessories( $code,
undef,              # 'arg' parameter value

                      $named_attribute_hashref,
                      $item_hashref );

See also Looping tags and Sub−tags for information about hash− and array−context in looping tags.

61.1.2.3. code

This is the master key of the specified table (commonly sku in a product table). If no table is specified, the tag
uses the products table by default.

You should not specify a code when looping on [item_accessories] because it internally sets 'code' to the
key for the current item in the loop.

61.1.2.4. arg

Deprecated after Interchange 4.6

This allows you to pass values for some of the more commonly used attributes in the manner of the
[PREFIX−accessories] tag, as a comma−delimited positional list:

arg="attribute, type, column, table, name, outboard, passed"

Whitespace within the list is optional.

If you leave out one or more of the above attributes, be sure to keep the comma(s) if you are setting anything
after it in the list:

arg="attribute, type, , table"

The above examples show the attribute names for clarity; you would actually use the values. Hence, the
previous example might actually be something like the following:

arg="color, radio, , products"

Interchange Documentation (Full)

 61.1.2.2. Hash Lists −− Technical Note 374



Although you must use such a comma−delimited list to pass attributes to the [PREFIX−accessories] tag,
please use named attributes instead for the [accessories] tag. The 'arg' attribute is deprecated.

For detail about a specific attribute, please see its subheading below.

61.1.2.5. attribute

Despite the name, this has nothing to do with tag attributes. You can set attributes for items in a database table
(typically the products table) with the UseModifier configuration directive. Typical are size or color.

This selects the item attribute the tag will work with.

61.1.2.6. type

This determines the action to be taken. One of:

Action Description

select Builds a dropdown <SELECT> menu for the item attribute, with the default item attribute
value SELECTED. The accessories tag builds a select widget by default if type is
not set.

display Shows the label text for *only the selected option* if called in Hash List context (e.g.,
within an [item−list]). Ignored otherwise (i.e., the tag will build the default
<SELECT> menu).

show Returns the list of possible attributes for the item (without labels or any HTML widget).
For example, if sku os28044 is available in several sizes:

[accessories os28044 size,show]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Sm=10oz, Med=15oz*, Lg=20oz

options This shows the attribute options as a newline delimited list:

[accessories os28044 size,options]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Sm
Med
Lg

labels This shows the attribute option labels:

[accessories os28044 size,options]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
10oz
15oz*
20oz

radio Builds a radio box group for the item, with spaces separating the elements.

radio nbsp Builds a radio box group for the item, with &nbsp; separating the elements.

radio break Builds a radio box group for the item, with '<br>' separating the radio button/label pairs
from one another.

radio left n Builds a radio box group for the item, inside a table, with the checkbox on the left side. If
"n" is present and is a digit from 2 to 9, it will align the options in that many columns.

Interchange Documentation (Full)

 61.1.2.5. attribute 375



You can also set FONT SIZE like this:

  type="radio left n fontsizem"

where −9 <= m <= 9

radio right n Builds a radio box group for the item, inside a table, with the checkbox on the right side. If
"n" is present and is a digit from 2 to 9, it will align the options in that many columns.

You can also set FONT SIZE like this:

  type="radio right n fontsizem"

where −9 <= m <= 9

check Builds a checkbox group for the item, with spaces separating the elements.

check nbsp Builds a checkbox group for the item, with '&nbsp;' separating the checkbox/label pairs
from one another.

check break Builds a checkbox group for the item, with '<br>' separating the checkbox/label pairs from
one another.

check left n Builds a checkbox group for the item, inside a table, with the checkbox on the left side. If
"n" is present and is a digit from 2 to 9, it will align the options in that many columns.

You can also set FONT SIZE like this:

  type="check left n fontsizem"

where −9 <= m <= 9

check right n Builds a checkbox group for the item, inside a table, with the checkbox on the right side.
If "n" is present and is a digit from 2 to 9, it will align the options in that many columns.

You can also set FONT SIZE like this:

  type="check right n fontsizem"

where −9 <= m <= 9

textarea_XX_YY A textarea with XX columns and YY rows. The textarea will contain the selected item
attribute value if used in Hash List context (e.g., within an [item−list]).

If you simply use 'type=textarea', the size will default to 4 rows by 40 columns, unless
you have set the rows or cols tag attributes.

text_YY A text box with YY width in characters. The HTML tag's VALUE will be set to the
selected item attribute value if used in Hash List context (e.g., within an
[item−list]).

If you simply use 'type=text', the width will default to 60, unless you have set the cols
tag attribute.

combo Special type, used with nullselect filter, for selecting from a list or inputting a new value

reverse_combo Special type, used with last_non_null filter, for selecting from a list or inputting a new
value −− differs from combo in order of presentation

move_combo

Interchange Documentation (Full)

 61.1.2.5. attribute 376



Special type, used with null_to_space or null_to_comma filter, for selecting multiple
non−ordered values from a list or inputting into a textarea

links Produces a series of links based on the option values. The base form value is passed via
the form parameter, just like in an [area ...] or [page ...] tag, and the value is named with
the passed NAME attribute.

value Returns the selected value if called in Hash List context (e.g., within an
[item−list]), or nothing otherwise.

hidden Creates a hidden form field. The hidden field's VALUE will be set to the selected item
attribute value if used in Hash List context (e.g., within an [item−list]).

password_YY A password box with YY width in characters. The HTML tag's VALUE will be set to the
selected item attribute value if used in Hash List context (e.g., within an
[item−list]).

If you simply use 'type=password', the width will default to 12, unless you have set the
cols tag attribute.

The default is 'select', which builds an HTML select form entry for the attribute.

Some types build widgets that use the ROWS=m, COLS=n, or certain other HTML attributes. For these, you
can define widget rows and columns within the string that sets the type; for example,
type="textarea_6_33_wrap=virtual" specifies a TEXTAREA widget with ROWS=6, COLS=33, and
WRAP=virtual. You should resort to this only when you cannot use the named parameters, for example
within an [item−accessories] tag. Otherwise, use the rows=m and cols=n tag attributes instead.

The result of setting conflicting values in the type string and the rows or cols attributes is undefined.

The following list shows syntax for type strings, where rows is the number of rows and cols is the number of
columns.

text
textarea (default is 4 rows, 40 columns, like 'textarea_4_40')♦ 
textarea_rows_cols♦ 
text_cols♦ 
textarea rows=rows cols=cols wrap=WRAP value♦ 

• 

password
password (default is 12 columns, like 'password_12')♦ 
password_cols♦ 

• 

combo (similarly for reverse_combo and move_combo)
combo (default is 1 row, 16 columns, like 'combo_1_16')♦ 

• 

In any of the option building types, you can append the string ranges and a special option processing will be
done −− any option matching the pattern [A−Za−z0−0]..[A−Za−z0−0] will be expanded into a comma
separated range between the bounds. The same behavior is accomplished by passing the accessories tag option
ranges. For example:

    [accessories name=foo type=select ranges=1 "A..C,1..5,10,20"]
      and
    [accessories name=foo type="select ranges" passed="A..C,1..5,10,20"]

      will both output:

Interchange Documentation (Full)

 61.1.2.5. attribute 377



    <select NAME="foo">
    <option VALUE="A">A
    <option VALUE="B">B
    <option VALUE="C">C
    <option VALUE="1">1
    <option VALUE="2">2
    <option VALUE="3">3
    <option VALUE="4">4
    <option VALUE="5">5
    <option VALUE="10">10
    <option VALUE="15">15
    <option VALUE="20">20
    </select>

The above applies to any of the option building types −− check, combo, combo_move, labels,
multiple, options, radio, reverse_combo, and select. It will refuse to produce more than 5000
options −− that limit can be changed with Limit option_list N in catalog.cfg, where N is an
integer greater than 0.

61.1.2.7. column

The column of the table corresponding to the attribute will traditionally have the same name as the attribute,
though it need not.

This specifies the table column that contains an item's attribute values. The tag will find item attribute names
and values in a comma−delimited list of name=value pairs stored in this field of an item's table entry. If
unspecified, the column name will default to the name given for the 'attribute' attribute.

For example, if an item in the products table has a 'size' attribute, and each item's comma−delimited list of
available sizes is stored in the 'how_big' column, then you would need to specify "column=how_big"
because the tag's default column choice (size) would be missing or used for some other purpose.

61.1.2.8. table

This is the database table containing the item's attribute values. It defaults to the first products file where the
item code is found.

If you have configured your database so that the attributes are kept in a different table from other item data,
'code' should be set to the master key in this table. See 'outboard') if you are using [item−accessories ...]
and cannot specify code=key.

61.1.2.9. name

This sets the name of the form variable to use if appropriate for the widget being built. Defaults to
'mv_order_attribute' −− i.e. if the attribute is size, the form variable will be named mv_order_size.

If the variable is set in the user session, the widget will "remember" its previous setting. In other words,
[value name] will contain the previous setting, which the widget will use as its default setting. See also the
default attribute.

Interchange Documentation (Full)

 61.1.2.7. column 378



61.1.2.10. outboard

If calling the item−accessories tag, and you wish to select from an outboard database table whose master key
is different from the item code, you can pass the key the tag should use to find the accessory data.

61.1.2.11. passed

You can use this to pass your own values to the widget the tag will build. If you have set passed to a list of
widget options, then the tag will simply build a widget of the specified type with your values instead of
fetching an attribute value list from the database.

For example, to generate a select box with a blank option (perhaps forcing a select), the value of blue with a
label of Blue, and the value of green with a label of Sea Green, do:

    [accessories type=select
                 name=color
               passed="=−−select−−*, blue=Blue, green=Sea Green" ]

This will generate:

    <SELECT NAME="color"><OPTION VALUE="" SELECTED>−−select−−\
    <OPTION VALUE="blue">Blue\
    <OPTION VALUE="green">Sea Green</SELECT>

Note: trailing backslashes ('\') in the above example indicate line continuation and are not part of the tag
output.

61.1.2.12. delimiter

The list of attribute values will be a delimited string. This allows you to specify an alternative delimiter if the
list is not comma−delimited (the default).

61.1.2.13. prepend

You can set a string to prepend to the returned output of the tag. Note that this is not a list to prepend to the
fetched attribute value list, which is treated within the tag.

For example,

   [accessories code=os28044
                type=select
           attribute=size
              append="Append Me<br>"
             prepend="Prepend Me"]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
   Prepend Me<SELECT NAME="mv_order_size">\
   <OPTION VALUE="10oz">10oz\
   <OPTION VALUE="15oz">15oz\
   <OPTION VALUE="20oz">20oz</SELECT>Append Me<br>

61.1.2.14. append

You can set a string to append to the returned output of the tag. Note that this is not a list to append to the
fetched attribute value list, which is treated within the tag.

Interchange Documentation (Full)

 61.1.2.10. outboard 379



61.1.2.15. extra

Setting the 'extra' attribute appends its value as the last attribute of the HTML output tag. The following
example illustrates the append, extra and js options:

   [accessories code=os28044
                type=select
           attribute=size
              append="Append Me<br>"
               extra="Last=Extra"
                  js="javascript_here"]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
   <SELECT NAME="mv_order_size" javascript_here Last=Extra>\
   <OPTION VALUE="10oz">10oz\
   <OPTION VALUE="15oz">15oz\
   <OPTION VALUE="20oz">20oz</SELECT>Append Me<br>

61.1.2.16. js

This allows you to place javascript within the start tag of the HTML output. See the example given above for
extra.

js has no default, except when 'type=move_combo', where the default is:

  onChange="addItem(this.form.Xname,this.form.name)"

61.1.2.17. rows

The tag will pass the number you choose through to the HTML 'ROWS=n' attribute in HTML widgets that
accept it.

For some types, you can also define widget rows and columns within the string that sets the type; for
example, type="textarea_6_33_wrap=virtual" specifies a TEXTAREA widget with ROWS=6, COLS=33,
and WRAP=virtual. You should resort to this only when you cannot use the named parameters, for example
within an [item−accessories] tag.

The result of setting conflicting values in the type string and the rows=n attribute is undefined.

61.1.2.18. cols

The tag will pass the number you choose through to the HTML 'COLS=n' attribute in HTML widgets that
accept it.

See also 'rows' above.

61.1.2.19. width

This is a quasi−alias for 'cols' that only works with the 'text' and '<password>' types. Use 'cols' instead.

61.1.2.20. default

Sets the default attribute option in the widget returned by the tag. This will override a default indicated with a
trailing '*' in the database or 'passed' string. This will also override the default of a user's previous selection

Interchange Documentation (Full)

 61.1.2.15. extra 380



when the tag would otherwise have preserved it.

For example the following selects blue by default rather than green as it would otherwise have done,

  [accessories type=select
               name=color
             passed="blue=blue, green=Sea Green*"
            default="blue"]
−−−−−−−−−−−−−−−−−−−−−−−−
  <SELECT NAME="color"><OPTION VALUE="blue" SELECTED>blue\
  <OPTION VALUE="green">Sea Green</SELECT>
−−−−−−−−−−−−−−−−−−−−−−−−

Obscure technical note: the tag ignores the 'default' attribute if it has an item hash reference −− see Hash
Lists above.

61.1.2.21. price

When combined with the price_data tag attribute, this allows you to force prices for item attributes. You
probably do not want to use this; just let the tag pick up prices from your database table(s) when appropriate.

If you are passing attribute values, you can use this to control the displayed price in the widget.

  [accessories type=check
               name=color
              price=1
         price_data="blue=20, green=50"
             passed="blue=Blue, green=Sea Green*" ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  <INPUT TYPE="checkbox" NAME="color" VALUE="blue" >&nbsp;Blue&nbsp;($20.00)
  <INPUT TYPE="checkbox" NAME="color" VALUE="green" CHECKED>&nbsp;Sea Green&nbsp;($50.00)

61.1.2.22. contains

Requires 'type=radio' or 'type=check'.

Used to determine whether a substring match of the value will cause a radio box or check box to be selected.
If true, the match will happen whether the value is on a word boundary or not −− if false, the value must be on
a word boundary. (When we speak of a word boundary, it is in the Perl sense −− a word character
[A−Za−z0−9_] followed or preceded by a non−word character, or beginning or end of the string.)

61.1.2.23. joiner

Requires 'type=links'.

With type=links, the accessories tag returns a link for each option. This allows you to override the default
string ('<BR>') that joins these links. You can use Perl's metacharacter escapes, such as '\n' for newline or '\t'
for tab.

61.1.2.24. href

Requires 'type=links'.

This sets the base HREF for the link in a links type. Default is the current page.

Interchange Documentation (Full)

 61.1.2.21. price 381



61.1.2.25. template

Requires 'type=links'.

Allows you to override the standard Interchange template for a hyperlink. You probably don't need to use
this −− grep the code to grok it if you do (see 'sub build_accessory_links').

61.1.2.26. form

Requires 'type=links'.

This sets the base value for the form in a links type. Default is mv_action=return, which will simply
set the variable value in the link.

For example, to generate a series of links −− one per item attribute value passed −− that set the variable
"color" to the corresponding passed value (blank, blue, or green), do this:

   [accessories type=links
                name=color
              passed="=−−select−−, blue=Blue, green=Sea Green"]

This will generate something like the following:

    <A HREF="VENDURL/MV_PAGE?mv_action=return&color=blue">Blue</A><BR>
    <A HREF="VENDURL/MV_PAGE?mv_action=return&color=green">Sea Green</A>

where VENDURL is your Interchange URL for the catalog MV_PAGE is the current page.

If you want the empty "−−select−−" option to show up, pass an empty=1 parameter.

61.1.2.27. empty

Requires 'type=links'.

Setting 'empty=1' includes a hyperlink for the empty "−−select−−" option. See the example in form above;
if empty=1 had been specified, three links would have been generated.

61.1.2.28. secure

Requires 'type=links'.

Setting secure=1 causes the generated link(s) to point to your secure Interchange URL.

61.1.2.29. new

Requires 'type=combo' or 'reverse_combo'.

You can use this to set a value in place of the 'New' or 'Current' option in a combo box. For example, if item
'os28044' has size attribute values of "Sm=10oz, Med=15oz, Lg=20oz":

  [accessories code=os28044 attribute=size type=combo new="my_new_value"]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Interchange Documentation (Full)

 61.1.2.25. template 382



  <INPUT TYPE=text NAME="mv_order_size" SIZE=16 VALUE="">
  <SELECT NAME="mv_order_size" SIZE="1">
  <OPTION VALUE="my_new_value">my_new_value
  <OPTION VALUE="Sm">10oz
  <OPTION VALUE="Med">15oz
  <OPTION VALUE="Lg">20oz</SELECT>

Or, with the default new value:

  [accessories code=os28044 attribute=size type=combo]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  <INPUT TYPE=text NAME="mv_order_size" SIZE=16 VALUE="">
  <SELECT NAME="mv_order_size" SIZE="1">
  <OPTION VALUE="">&lt;−− New
  <OPTION VALUE="Sm">10oz
  <OPTION VALUE="Med">15oz
  <OPTION VALUE="Lg">20oz</SELECT>

Default is no VALUE with option text set to '&lt;−− New' for a combo box or 'Current −−&gt;' for a
reverse_combo box.

61.2. and

61.2.1. Summary

Parameters: type term op compare

Pass attribute hash as last to subroutine: no

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: no

Note: This tag has special positional parameter handling.

    [and type term op compare]

Parameters Description Default

base Alias for type DEFAULT_VALUE

comp Alias for compare DEFAULT_VALUE

compare DEFAULT_VALUE

op DEFAULT_VALUE

operator Alias for op DEFAULT_VALUE

term DEFAULT_VALUE

type DEFAULT_VALUE

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache no

Interchange Documentation (Full)

61.2. and 383



Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [value name=fname set="Mike" hide=1]
   [value name=lname set="" hide=1]
     ...

   [if value fname]
   [and value lname]
      Both first and last name are present.
   [else]
      Missing one of "fname" and "lname" from $Values.
   [/else]
   [/if]
−−−
   Missing one of "fname" and "lname" from $Values.

ASP−like Perl call:

Not applicable. The [and ...] tag only is used with [if ...], and Perl logic obviates the [if ...] tag.

61.2.2. Description

The [and ...] tag is only used in conjunction with [if ...]. Example:

        [if value fname]
        [and value lname]
        Both first and last name are present.
        [else]
        Missing one of "fname" and "lname" from $Values.
        [/else]
        [/if]

See [if ...].

61.2.2.1. compare

61.2.2.2. op

61.2.2.3. term

61.2.2.4. type

61.3. area

Alias: href

Expands to the URL for an Interchange page or action, including the Interchange session ID and supplied
arguments. This is very similar to the page tag −− these are equivalent:

    [page href=dir/page arg=mv_arg]TargetName[/page]

Interchange Documentation (Full)

61.2.2. Description 384



    <A HREF="[area href=dir/page arg=mv_arg]">TargetName</A>

61.3.1. Summary

    [area href arg]
    [area href=dir/page arg=page_arguments other_named_attributes]

Parameters Description Default

href Path to Interchange page or action

Special arguments

'scan' links to a search (using search
arguments in arg)

♦ 

'http://...' external link (requires form
attribute)

♦ 

process

arg Interchange arguments to page or action none

Attributes Default

form none

search No

secure No

interpolate (reparse)No

Other_Characteristics

Invalidates cache No

Macro No

Has end tag No
Tag expansion example:

   [area href=dir/page.html arg="arg1=AA/arg2=BB"]

   www.here.com/cgi−bin/mycatalog/page.html?mv_session_id=6CZ2whqo&\
   mv_pc=1&mv_arg=arg1%3dAA/arg2%3dBB

ASP−like Perl call:

    $Tag−>area(  { href => "dir/page",
                   arg  => "arguments", }  );

or similarly with positional parameters,

    $Tag−>area($href, $arg, $attribute_hash_reference);

61.3.1.1. See Also

page

61.3.2. Description

The area tag is very similar to the page tag. It produces the URL to call an Interchange page, but it differs

Interchange Documentation (Full)

61.3.1. Summary 385



from page in that it does not supply the surrounding <A HREF ...> notation. This can be used to get control
of your HREF items, perhaps to place an ALT string or a Javascript construct.

It was originally named area because it also can be used in a client−side image map.

The area tag has an alias of href. The two links below are identical in operation:

   <A HREF="[area href=catalog]" ALT="Main catalog page">Catalog Home</A>
   <A HREF="[href href=catalog]" ALT="Main catalog page">Catalog Home</A>

The optional arg is used just as in the page tag.

61.3.2.1. form

The optional form argument allows you to encode a form in the link.

   <A HREF="[area form="mv_order_item=os28044
                        mv_order_size=15oz
                        mv_order_quantity=1
                        mv_separate_items=1
                        mv_todo=refresh"]"> Order 15oz Framing Hammer</A>

See the description of the page tag for more detail.

61.3.2.2. search

Interchange allows you to pass a search in a URL. There are two ways to do this:

Place the search specification in the named search attribute.
Interchange will ignore the href parameter (the link will be set to 'scan'.♦ 
If you give the arg parameter a value, that value will be available as [value mv_arg] within
the search display page.

♦ 

1. 

Set the href parameter to 'scan' and set arg to the search specification.
Note that you can use this form positionally −− the values go into href and arg, so you do
not have to name parameters.

♦ 
2. 

These are identical:

   <A HREF="[area scan
                  se=Impressionists
                  sf=category]">Impressionist Paintings</A>

   <A HREF="[area href=scan
                   arg="se=Impressionists
                        sf=category"]">Impressionist Paintings</A>

   <A HREF="[area search="se=Impressionists
                          sf=category"]">Impressionist Paintings</A>

See the description of the page tag for more detail.

Interchange Documentation (Full)

 61.3.2.1. form 386



61.3.2.3. Examples

Tag expansion example:

   [area href=dir/page.html arg="arg1=AA/arg2=BB"]

   www.here.com/cgi−bin/mycatalog/page.html?mv_session_id=6CZ2whqo&\
   mv_pc=1&mv_arg=arg1%3dAA/arg2%3dBB

Positional call example:

    <A HREF="[area ord/basket]">Check basket</A>

Named call example:

    <A HREF="[area ord/basket]">Check basket</A>

61.4. assign

Allows you to assign numeric values to preempt calculation of one or more of the following tags:

[handling], [salestax], [shipping], and [subtotal]

The assignment is persistent within a user's session until you clear it, an assigned tag will return your value
instead of calculating a value.

Warning −− please be sure you understand the dependencies within the pricing system before using the
assign tag. In particular, you must have the value mv_shipmode set to assign to shipping, and
likewise you must set mv_handling to assign to handling. The salestax and subtotal settings
don't require any session variables be set.

61.4.1. Summary

    [assign tag_name=value tag_name=value ...]
    [assign clear=1]

Attributes Description Default

clear Clears all pending 'assign' tag assignments none

handling Assigns an override value for [handling] tags none

salestax Assigns an override value for [salestax] tags none

shipping Assigns an override value for [shipping] tags none

subtotal Assigns an override value for [subtotal] tags none

Other_Characteristics

Invalidates cache No

Container tag No
ASP−like Perl call:

    $Tag−>assign(  { shipping => 2.99, }  );

Interchange Documentation (Full)

61.3.2.3. Examples 387



61.4.1.1. See Also

[handling], [salestax], [shipping], [subtotal], [Shipping]

61.4.2. Description

The assign tag allows you to assign numeric override values to one or more of the following tags:

[handling], [salestax], [shipping], and [subtotal]

An assigned tag will return your value rather than calculating its own until you clear the assignment.

Assignment is persistent within the user's session (unless cleared) and affects only that user.

Assigning an empty string clears the tag's assignment. You can also clear all pending assignments at once
with the clear attribute.

For example, the following eliminates salestax and sets shipping to $4.99 regardless of weight and
destination:

  [assign salestax=0 shipping=4.99]

This restores the [salestax] tag and eliminates handling charges:

  [assign salestax="" handling=0]

This restores the normal behavior to the [shipping] and [handling] tags:

  [assign clear=1]

Assignment affects only the value returned by a tag. Other behavior, such as formatting for the local currency,
is not affected by the assignment.

Note −− you will get an error in the error log (and any pending assignment for the specified tag will be
cleared) if you try to assign a value other than a number or the empty string ("").

61.4.2.1. clear

Setting this to a true value clears all pending assignments (i.e., all assignable tags return to normal behavior).

61.4.2.2. shipping

This sets the total value of shipping, rounded to locale−specific fractional digits. Always active if assigned a
numeric value. See the [shipping] tag for detail about rounding, etc.

61.4.2.3. handling

This option sets the total value of handling, rounded to fractional digits.

Important note

Interchange Documentation (Full)

61.4.1.1. See Also 388



The [handling] tag is unlike the others in that it will be inactive (despite your assignment) unless the
[value mv_handling] variable is true (i.e., a nonzero, non−blank value).

61.4.2.4. salestax

This preempts the salestax calculation. The assigned value is not rounded.

61.4.2.5. subtotal

This preempts the cart subtotal derived from prices. The assigned value is not rounded.

Note that you cannot assign to [total−cost] −− it will always be the sum of the four above.

Before using the assign tag, please be sure you understand the dependencies within the pricing system, such
as the relationship between [total−cost] and assigned tags.

61.5. attr_list

This tag is intended for use within embedded perl rather than as a standalone tag within a template (i.e., the
[attr_list ...] syntax does not apply).

The $Tag−>attr_list($template, $hashref) usage provides a shorthand for accessing values of
a hash within embedded perl. It also allows you to control defaults or set up conditional values.

61.5.1. Summary

    [attr_list hash]

Parameters Description Default

hash DEFAULT_VALUE

Attributes Default

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache no

Container tag NA (Though the template is technically body text)

Has Subtags No

Nests No
Tag expansion example (ASP−like Perl call):

  [perl tables=products]
     my %opt = ( hashref => 1,
                 sql     => 'select * from  products', );

     my $ary_of_hash = $Db{products}−>query(\%opt);

     my $template = <<EOF;
        {sku} − {description} − {price|Call for price}
        {image?}<IMG SRC="{image}">{/image?}
        {image:}No image available{/image:}

Interchange Documentation (Full)

 61.4.2.4. salestax 389



        <br>
        More body Text here
        <br>
EOF

     foreach my $ref (@$ary_of_hash) {
        $out .= $Tag−>attr_list($template, $ref);
     }
     return $out;
  [/perl]
−−−
        os28113 − The Claw Hand Rake − Call for price
        <IMG SRC="/mycatalog/images/os28113.gif">

        <br>
        More body Text here
        <br>
        os28006 − Painters Brush Set − 29.99
        No image available

        <br>
        More body Text here
        <br>
        ...

61.5.2. Description

Tags an attribute list with values from a hash. Designed for use in embedded Perl.

Tags according to the following rules:

61.5.2.1. {key}

Inserts the value of the key for the reference. In a database query, this is the column name.

61.5.2.2. {key|fallback string}

Displays the value of {key} or if it is zero or blank, the fallback string (i.e., default).

61.5.2.3. {key true string}

Displays true string if the value of {key} is non−blank, non−zero, or displays nothing if the key is false.

61.5.2.4. {key?} true text {/key?}

Displays true text if the value of {key} is non−blank, non−zero, and nothing otherwise.

61.5.2.5. {key:} false text {/key:}

Displays false text if the value of {key} is blank or zero, and nothing otherwise.

61.5.2.6. hash

This is the hash reference whose keys will be expanded within the template (see above).

Interchange Documentation (Full)

61.5.2. Description 390



61.6. banner

Implements random or rotating banner ads. See also Banner/Ad rotation.

61.6.1. Summary

    [banner category]
    [banner category=my_category other_named_attributes]

Parameters Description Default

category default

Attributes Default

table banner

r_field (unweighted) rotate

b_field banner

separator (unweighted)':'

delimiter (unweighted) '{or}'

weighted No

once (weighted) No

c_field (weighted) category

w_field (weighted) weight

interpolate (reparse) No

Other_Characteristics

Invalidates cache No

Container tag No
Tag expansion example:

   [banner category=]

ASP−like Perl call:

    $Tag−>banner(  { category => $key, } );

or similarly with positional parameters,

    $Tag−>banner($category, $attribute_hash_reference);

61.6.1.1. See Also

Banner/Ad rotation

61.6.2. Description

Implements random or rotating banner ads. See Banner/Ad rotation in the Interchange Template
documentation.

Interchange Documentation (Full)

61.6. banner 391



You will need a banner ad table (typically called 'banner') which contains banner data. The following is an
example:

code category weight rotate banner

m_3 cat1 7 0 my banner 3

m_1 cat1 1 0 my banner 1

default 1 Default 1{or}Default 2{or}Default 3

m_2 cat1 2 0 my banner 2

t_1 cat2 4 0 their banner 1

t_2 cat2 1 0 their banner 2
61.6.2.1. category

Default: category="default"

This specifies the category for weighted ad, or the table row (i.e., code value) for an unweighted ad.

61.6.2.2. table

Default: table="banner"

Setting 'table="my_banner_table"' forces the tag to refer to 'my_banner_table' rather than the default
'banner' table for banner ad information.

61.6.2.3. r_field

Default: r_field="rotate"

Unweighted ads only.

A table row may include multiple banners in the 'banner' column. The column specified by r_field contains a
boolean that determines whether to rotate banners. In the above table example, 'Default 1', 'Default 2' and
'Default 3' would rotate.

61.6.2.4. b_field

Default: b_field="banner"

This specifies the column containing the banner descriptor(s). The default is 'banner'. Note that an entry might
be a delimited list of banner descriptors to rotate (see delimiter below).

61.6.2.5. separator

Default: separator=":"

Unweighted ads only.

This sets the separator within the table key (i.e., code) for multi−level categorized ads. See Banner/Ad
rotation.

Interchange Documentation (Full)

 61.6.2.1. category 392



61.6.2.6. delimiter

Default: delimiter="{or}"

Unweighted ads only.

This specifies the delimiter between rotating banner descriptors in the 'banner' column.

61.6.2.7. weighted

The banner tag will not apply weighting from the table unless you set weighted=1. Note that the tag will
behave as if you gave it a standard unweighted entry −− it will look for a matching row rather than a matching
category.

61.6.2.8. once

Weighted ads only.

If the option once is passed (i.e., [banner once=1 weighted=1], then the banners will not be rebuilt until the
total_weight file is removed. See Banner/Ad rotation.

61.6.2.9. c_field

Default: c_field="category"

Weighted ads only.

This specifies the column containing the banner category for weighted ads. The banner tag will display ads
from rows in the table whose category matches the category given in the tag, with frequency corresponding to
the weights in the table.

61.6.2.10. w_field

Default: w_field="weight"

Weighted ads only.

This specifies the column containing the banner weight.

61.7. bounce

61.7.1. Summary

Parameters: href if

Positional parameters in same order.

Pass attribute hash as last to subroutine: no

Must pass named parameter interpolate=1 to cause interpolation.

Interchange Documentation (Full)

 61.6.2.6. delimiter 393



Invalidates cache: no

Called Routine:

ASP−like Perl call:

None. This tag doesn't work with embedded Perl due to special processing.

    [bounce href if]

Parameters Description Default

href DEFAULT_VALUE

if DEFAULT_VALUE

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache no

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [bounce href if]
−−−
   TAG RESULT

ASP−like Perl call:

   $Tag−>bounce(  { href => VALUE_href
if => VALUE_if

}, $body  );

or similarly with positional parameters,

    $Tag−>bounce(href,if, $attribute_hash_reference, $body);

61.7.2. Description

The [bounce ...] tag is designed to send an HTTP redirect (302 status code) to the browser and redirect it to
another (possibly Interchange−parsed) page.

It will stop ITL code execution at that point; further tags will not be run through the parser. Bear in mind that
if you are inside a looping list, that list will run to completion and the [bounce] tag will not be seen until the
loop is complete.

Example of bouncing to an Interchange parsed page:

        [if !scratch real_user]
        [bounce href="[area violation]"]
        [/if]

Interchange Documentation (Full)

61.7.2. Description 394



Note the URL is produced by the [area ...] ITL tag.

Since the HTTP says the URL needs to be absolute, this one might cause a browser warning:

        [if value go_home]
        [bounce href="/"]
        [/if]

But running something like one of the Interchange demos you can do:

        [if value go_home]
        [bounce href="__SERVER_NAME__/"]
        [/if]

        [if value go_home]
        [bounce href="/"]
        [/if]

61.7.2.1. href

61.7.2.2. if

61.8. calc

Calculates the value of the enclosed arithmetic expression.

61.8.1. Summary

    [calc] Expression [/calc]

No parameters

No attributes (though you can break it if you set 'interpolate=0')

Other_Characteristics

Invalidates cache No

Has Subtags No

Container tag Yes

Nests No
ASP−like Perl call:

There is never a reason to call this tag from within perl or ASP code. Simply do the calculation directly.

61.8.2. Description

Calculates the value of the enclosed arithmetic expression.

Use it as follows: [calc] Expression [/calc]

The enclosed region where the arguments are calculated according to normal arithmetic symbols. For
instance:

Interchange Documentation (Full)

 61.7.2.1. href 395



    [calc] 2 + 2 [/calc]

will expand to:

    4

The [calc] tag is really the same as the [perl] tag, except that it doesn't accept arguments, interpolates
surrounded Interchange tags by default, and is slightly more efficient to parse.

Tip: The [calc] tag will remember variable values inside one page, so you can do the equivalent of a memory
store and memory recall for a loop.

ASP Note: There is never a reason to use this tag in a [perl] or ASP section.

61.9. cart

61.9.1. Summary

Parameters: name

Positional parameters in same order.

Pass attribute hash as last to subroutine: no

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: YES

Called Routine:

ASP−like Perl call:

    $Tag−>cart(
        {
         name => VALUE,
        }
    )

 OR

    $Tag−>cart($name);
    [cart name]

Parameters Description Default

name DEFAULT_VALUE

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache YES

Container tag No

Interchange Documentation (Full)

61.9. cart 396



Has Subtags No

Nests Yes
Tag expansion example:

   [cart name]
−−−
   TAG RESULT

ASP−like Perl call:

   $Tag−>cart(  { name => VALUE_name
}, $body  );

or similarly with positional parameters,

    $Tag−>cart(name, $attribute_hash_reference, $body);

61.9.2. Description

Sets the name of the current shopping cart for display of shipping, price, total, subtotal, shipping, and nitems
tags.

61.9.2.1. name

61.10. catch

The page content contained within the [catch label][/catch] block executes if the correspondingly
labelled try block fails.

You can also return a result based on the error message caught in the try block with paired subtags, like this:

   [error message]body text[/error message]

Note that this feature excises all tag/endtag pairs if interpolation is turned off, so the catch tag interpolates
by default.

See also [try].

61.10.1. Summary

    [try my_label]
Body text to return if no error

    [/try]
    .
    .
    .
    [catch label=my_label other_named_attributes]
        [/Pattern matching error message 1/]
            Return this if error 1 occurs
        [/Pattern matching error message 1/]

        [/Pattern matching error message 2/]
            Return this if error 2 occurs, etc.

Interchange Documentation (Full)

61.9.2. Description 397



        [/Pattern matching error message 2/]

Default body text to process if try block caused an error
    [/catch]

Parameters Description Default

label The label shared by the paired try and catch blocks 'default'

Attributes Default

interpolate Yes

reparse Yes

Other_Characteristics

Invalidates cache No

Container tag Yes

Has Subtags
[Error message
text]

body
[/Error message text]

Tag expansion example

Ignoring whitespace, the following would return division result if successful, 0 on a division by zero, or an
error message:

   [set divisor]0[/set]
   [try label=div]
      [perl] eval(1 / [scratch divisor]) [/perl]
   [/try]
   [catch div]
      [/Illegal division by zero/]
         0
      [/Illegal division by zero/]
      [/eval "string" trapped by operation mask/]
         Perl Safe error
      [/eval "string" trapped by operation mask/]
      Other division error
   [/catch]
−−−
   Perl Safe error

ASP−like Perl call:

    $Tag−>catch(  { label => I<'my_label'>, },
                  $body  );

or similarly with positional parameters,

    $Tag−>catch($label, $attribute_hash_reference, $body);

61.10.1.1. See Also

try

Interchange Documentation (Full)

61.10.1.1. See Also 398

http://www.perl.com/pub/doc/manual/html/lib/Safe.html
http://www.perl.com/pub/doc/manual/html/lib/Safe.html


    [catch ]

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache No

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [catch ]
−−−
   TAG RESULT

ASP−like Perl call:

   $Tag−>catch(  {
}, $body  );

or similarly with positional parameters,

    $Tag−>catch(, $attribute_hash_reference, $body);

61.10.2. Description

The page content contained within the [catch label][/catch] block executes if the correspondingly
labelled try block fails. The catch block executes in place on the page if triggered (i.e., it does not return its
result in place of the try block).

You can also return a result based on the error message caught in the try block with paired subtags, like this:

   [/error message/]special catch block for the error[/error message/]

The error message to use in the special block will generally be part of the entry the error generates in your
error log. For example, a division by zero error generates something like the following in the error log:

   127.0.0.1 4cU3Pgsh:127.0.0.1 − [24/May/2001:14:45:07 −0400]\
   tag /cgi−bin/tag72/tag Safe: Illegal division by zero\
   at (eval 526) line 2.

(note that trailing backslashes in the example indicate a continued line).

61.10.2.1. label

This is the label specifying the corresponding [try block. Defaults to 'default'.

61.11. cgi

Returns the the current value of the named CGI input variable. HTML−escapes Interchange tags in the result

Interchange Documentation (Full)

61.10.2. Description 399

http://www.perl.com/pub/doc/manual/html/lib/Safe.html


for security.

Can also set a new CGI value within the current page.

61.11.1. Summary

    [cgi name]
    [cgi name=cgi_var_name other_named_attributes]

Parameters Description Default

name This is the name of the CGI variable whose value you want.None

Attributes Default

set none

hide No

filter none

keep (with filter) No

enable_html No

interpolate (reparse)No

Other_Characteristics

Invalidates cache Yes
Tag expansion example:

Assuming CGI variable 'foo' = 'bar',

   [cgi foo]
−−−
   bar

ASP−like Perl call:

    $Tag−>cgi( { name => var_name } );

# or if you simply want the value:
    $CGI−>{var_name};

# or:
    $CGI::values{var_name};

or similarly with positional parameters,

    $Tag−>cgi($name, $attribute_hash_reference);

61.11.2. Description

Displays the value of a CGI variable submitted to the current page. This is similar to [value ...], except it
displays the transitory values that are submitted with every request.

For instance, if you access the following URL:

        http://VENDURL/pagename?foo=bar

Interchange Documentation (Full)

61.11.1. Summary 400



bar will be substituted for [cgi foo].

This is the same as $CGI−>{foo} in embedded Perl.

61.11.2.1. name

This is the name of the CGI variable whose value you want.

61.11.2.2. set

You can change a value with 'set=new_value'. The tag will return the CGI value you set unless you also set
the hide=1 attribute.

Note that this is only available in new−style tags, for safety reasons.

61.11.2.3. hide

Setting hide=1 suppresses the tag's return value, which can be useful with the set attribute.

61.11.2.4. filter

See the filter tag for a list of filters.

Setting 'filter="filter"' modifies the named CGI variable with the specified filter.

61.11.2.5. keep (with filter)

Set keep=1 if you want the tag to return a filtered result but do not want the filter to modify the CGI value
itself in the $CGI::values hash.

61.11.2.6. default

This sets a return value in case the named CGI variable is missing or otherwise false. The following will
expand to "Using default":

   [cgi name=myname set=0 hide=1]
   [cgi name=myname default="Using default"]

61.11.2.7. enable_html

Any '<' characters will normally be converted into '&lt;' for safety reasons. This conversion can be disabled
using 'enable_html=1'.

61.12. checked

61.12.1. Summary

Parameters: name value

Positional parameters in same order.

Interchange Documentation (Full)

 61.11.2.1. name 401



The attribute hash reference is passed to the subroutine after the parameters as the last argument. This may
mean that there are parameters not shown here.

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: YES

Called Routine:

ASP−like Perl call:

    $Tag−>checked(
        {
         name => VALUE,
         value => VALUE,
        }
    )

 OR

    $Tag−>checked($name, $value, $ATTRHASH);
    [checked name valueother_named_attributes]

Parameters Description Default

name DEFAULT_VALUE

value DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate (reparse)No

Other_Characteristics

Invalidates cache YES

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [checked name value]
−−−
   TAG RESULT

ASP−like Perl call:

   $Tag−>checked(  { name => VALUE_name
                      value => VALUE_value
}, $body  );

or similarly with positional parameters,

    $Tag−>checked(name,value, $attribute_hash_reference, $body);

Interchange Documentation (Full)

 61.11.2.1. name 402



61.12.2. Description

You can provide a "memory" for drop−down menus, radio buttons, and checkboxes with the [checked] and
[selected] tags.

    <INPUT TYPE=radio NAME=foo
            VALUE=on [checked name=foo value=on default=1]>
    <INPUT TYPE=radio NAME=foo
            VALUE=off [checked name=foo value=off]>

This will output CHECKED if the variable var_name is equal to value. Not case sensitive unless the
optional case=1 parameter is used.

The default parameter, if true (non−zero and non−blank), will cause the box to be checked if the variable
has never been defined.

Note that CHECKBOX items will never submit their value if not checked, so the box will not be reset. You
must do something like:

    <INPUT TYPE=checkbox NAME=foo
            VALUE=1 [checked name=foo value=1 default=1]>
    [value name=foo set=""]

By default, the Values space (i.e. [value foo]) is checked −− if you want to use the volatile CGI space (i.e. [cgi
foo]) use the option cgi=1.

61.12.2.1. name

61.12.2.2. value

61.13. control

Returns named scratchpad field or copies named scratch variable to scratchpad. Returns value specified by
'default' attribute if scratchpad variable is undefined or empty. Calling without a name moves to next
scratchpad. Calling without a name and 'reset=1' returns to first scratchpad page.

61.13.1. Summary

    [control name defaultother_named_attributes]

Parameters Description Default

default Value to return if scratchpad variable missing or empty DEFAULT_VALUE

name Name of scratchpad variable to set or return DEFAULT_VALUE

reset Resets scratchpad (i.e. $::Control array) by setting special scratch
variable 'control_index' to 0. Control_index is an index into the
$::Control == $Vend::Session−>{control} array of hashrefs.

(must not specify name; may specify default)• 

DEFAULT_VALUE

set Copies named scratch variable (i.e., from $::Scratch) to scratchpad with
current control index.

DEFAULT_VALUE

Interchange Documentation (Full)

61.12.2. Description 403



Attributes Default

ATT1 none

interpolate (reparse)No

Other_Characteristics

Invalidates cache no

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [control name default]
−−−
   TAG RESULT

ASP−like Perl call:

   $Tag−>control(  { default => VALUE_default
                      name => VALUE_name
}, $body  );

or similarly with positional parameters,

    $Tag−>control(name,default, $attribute_hash_reference, $body);

61.13.2. Description

Returns named scratchpad field or copies named scratch variable to scratchpad. Returns value specified by
'default' attribute if scratchpad variable is undefined or empty. Calling without a name moves to next
scratchpad. Calling without a name and 'reset=1' returns to first scratchpad page.

61.13.2.1. default

Value to return if scratchpad variable missing or empty

61.13.2.2. name

Name of scratchpad variable to set or return

61.13.2.3. reset

Resets scratchpad (i.e. $::Control array) by setting special scratch variable 'control_index' to 0. Control_index
is an index into the $::Control == $Vend::Session−>{control} array of hashrefs.

(must not specify name; may specify default)• 

61.13.2.4. set

Copies named scratch variable (i.e., from $::Scratch) to scratchpad with current control index.

Interchange Documentation (Full)

61.13.2. Description 404



61.14. control_set

Bulk−sets scratchpad variables on the scratchpad page specified by 'index'. Note that, unlike [control], this
does not copy values from scratch.

61.14.1. Summary

This example sets var_one, var_two and var_three in the scratchpad on page 5 (index begins with 0).

  [control_set index=4]
    [var_one]var_one_value[/var_one]
    [var_two]var_two_value[/var_two]
    [var_three]var_three_value[/var_three]
  [/control_set]

Parameters: index

Positional parameters in same order.

The attribute hash reference is passed after the parameters but before the container text argument. This
may mean that there are parameters not shown here.

Must pass named parameter interpolate=1 to cause interpolation.

This is a container tag, i.e. [control_set] FOO [/control_set]. Nesting: NO

Invalidates cache: no

Called Routine:

ASP−like Perl call:

    $Tag−>control_set(
        {
         index => VALUE,
        },
        BODY
    )

 OR

    $Tag−>control_set($index, $ATTRHASH, $BODY);
    [control_set indexother_named_attributes]

Parameters Description Default

index DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate No

reparse Yes

Other_Characteristics

Interchange Documentation (Full)

61.14. control_set 405



Invalidates cache no

Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [control_set index]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>control_set(  { index => VALUE_index
}, $body  );

or similarly with positional parameters,

    $Tag−>control_set(index, $attribute_hash_reference, $body);

61.14.2. Description

Bulk−sets scratchpad variables on the scratchpad page specified by 'index'. Note that, unlike [control], this
does not copy values from scratch.

61.14.2.1. index

61.15. counter

61.15.1. Summary

Parameters: file

Positional parameters in same order.

Invalidates cache: YES

Called Routine:

ASP−like Perl call:

    $Tag−>counter(
        {
         file => VALUE,
        }
    )

 OR

    $Tag−>counter($file, $ATTRHASH);

Attribute aliases

Interchange Documentation (Full)

61.14.2. Description 406



            name ==> file
    [counter file]

Parameters Description Default

file DEFAULT_VALUE

name Alias for file DEFAULT_VALUE

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache YES

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [counter file]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>counter(  { file => VALUE_file
}, $body  );

or similarly with positional parameters,

    $Tag−>counter(file, $attribute_hash_reference, $body);

61.15.2. Description

Manipulates a persistent counter, by default incrementing it and returning the new value.

The counter value is stored in the specified file. If the file name begins with a "/" then it is an absolute path.
Otherwise, it is relative to VendRoot. The default file is etc/counter. If the file does not exist, it is created
and initialized to the value of the start parameter.

The counter is implemented using Perl's File::Counter module, which protects the file against
simultaneous access by multiple processes.

WARNING: This tag will not work under Safe, i.e. in embedded Perl.

Additional parameters:

61.15.2.1. decrement=1

Causes the counter to count down instead of up.

Interchange Documentation (Full)

61.15.2. Description 407

http://www.perl.com/pub/doc/manual/html/lib/Safe.html


61.15.2.2. start=50

Causes a new counter to be created and to start from 50 (for example) if it did not exist before.

61.15.2.3. value=1

Shows the value of the counter without incrementing or decrementing it.

61.15.2.4. file

61.16. currency

61.16.1. Summary

Parameters: convert noformat

Positional parameters in same order.

Pass attribute hash as last to subroutine: no

Interpolates container text by default>.

This is a container tag, i.e. [currency] FOO [/currency]. Nesting: NO

Invalidates cache: no

Called Routine:

ASP−like Perl call:

    $Tag−>currency(
        {
         convert => VALUE,
         noformat => VALUE,
        },
        BODY
    )

 OR

    $Tag−>currency($convert, $noformat, $BODY);
    [currency convert noformat]

Parameters Description Default

convert DEFAULT_VALUE

noformat DEFAULT_VALUE

Attributes Default

interpolate No

reparse Yes

Other_Characteristics

Interchange Documentation (Full)

 61.15.2.2. start=50 408



Invalidates cache no

Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [currency convert noformat]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>currency(  { convert => VALUE_convert
                       noformat => VALUE_noformat
}, $body  );

or similarly with positional parameters,

    $Tag−>currency(convert,noformat, $attribute_hash_reference, $body);

61.16.2. Description

When passed a value of a single number, formats it according to the currency specification. For instance:

    [currency]4[/currency]

will display:

    4.00

or something else depending on the Locale and PriceCommas settings. It can contain a [calc] region. If the
optional "convert" parameter is set, it will convert the value according to PriceDivide> for the current locale.
If Locale is set to fr_FR, and PriceDivide for fr_FR is 0.167, the following sequence

    [currency convert=1] [calc] 500.00 + 1000.00 [/calc] [/currency]

will cause the number 8.982,04 to be displayed.

61.16.2.1. convert

61.16.2.2. noformat

61.17. data

61.17.1. Summary

Parameters: table field key

Positional parameters in same order.

Interchange Documentation (Full)

61.16.2. Description 409



The attribute hash reference is passed to the subroutine after the parameters as the last argument. This may
mean that there are parameters not shown here.

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: no

Called Routine:

ASP−like Perl call:

    $Tag−>data(
        {
         table => VALUE,
         field => VALUE,
         key => VALUE,
        }
    )

 OR

    $Tag−>data($table, $field, $key, $ATTRHASH);

Attribute aliases

            base ==> table
            code ==> key
            col ==> field
            column ==> field
            database ==> table
            name ==> field
            row ==> key
    [data table field keyother_named_attributes]

Parameters Description Default

base Alias for table DEFAULT_VALUE

code Alias for key DEFAULT_VALUE

col Alias for field DEFAULT_VALUE

column Alias for field DEFAULT_VALUE

database Alias for table DEFAULT_VALUE

field DEFAULT_VALUE

hash DEFAULT_VALUE

key DEFAULT_VALUE

name Alias for field DEFAULT_VALUE

row Alias for key DEFAULT_VALUE

table DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate (reparse)No

Other_Characteristics

Interchange Documentation (Full)

61.16.2. Description 410



Invalidates cache no

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [data table field key]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>data(  { field => VALUE_field
                   key => VALUE_key
                   table => VALUE_table
}, $body  );

or similarly with positional parameters,

    $Tag−>data(table,field,key, $attribute_hash_reference, $body);

61.17.2. Description

Syntax: [data table=db_table column=column_name key=key filter="uc|lc|name|namecase|no_white|etc."*
append=1* value="value to set to"* increment=1* ]

Returns the value of the field in a database table, or from the session namespace. If the optional value is
supplied, the entry will be changed to that value. If the option increment* is present, the field will be
atomically incremented with the value in value. Use negative numbers in value to decrement. The append
attribute causes the value to be appended; and finally, the filter attribute is a set of Interchange filters that
are applied to the data 1) after it is read; or 2)before it is placed in the table.

If a DBM−based database is to be modified, it must be flagged writable on the page calling the write tag. Use
[tag flag write]products[/tag] to mark the products database writable, for example. This must be done
before ANY access to that table.

In addition, the [data ...] tag can access a number of elements in the Interchange session database:

    accesses           Accesses within the last 30 seconds
    arg                The argument passed in a [page ...] or [area ...] tag
    browser            The user browser string
    cybercash_error    Error from last CyberCash operation
    cybercash_result   Hash of results from CyberCash (access with usertag)
    host               Interchange's idea of the host (modified by DomainTail)
    last_error         The last error from the error logging
    last_url           The current Interchange path_info
    logged_in          Whether the user is logged in (add−on UserDB feature)
    pageCount          Number of unique URLs generated
    prev_url           The previous path_info
    referer            HTTP_REFERER string
    ship_message       The last error messages from shipping
    source             Source of original entry to Interchange
    time               Time (seconds since Jan 1, 1970) of last access
    user               The REMOTE_USER string

Interchange Documentation (Full)

61.17.2. Description 411



    username           User name logged in as (UserDB feature)

Note: Databases will hide session values, so don't name a database "session". or you won't be able to use the
[data ...] tag to read them. Case is sensitive, so in a pinch you could call the database "Session", but it would
be better not to use that name at all.

61.17.2.1. field

The name of the field whose value you want to fetch. Required unless returning the entire row in combination
with the hash option.

61.17.2.2. hash

The hash option causes the data tag to return its results (the entire row, if you omit the field parameter) as a
reference to a hash with column names as keys into the values of the row.

An example:

        $row_hash = $Tag−>data({
                table => 'products',
                key   => 'os28004',
                hash  => 1,
        });

You could then access desired values this way:

        $out = 'Price: ' . $row_hash−>{price};

61.17.2.3. key

The key that identifies the row containing the value(s) you want to fetch. Required.

61.17.2.4. table

The name of the Interchange−defined table you want to fetch data from. Required.

61.18. default

61.18.1. Summary

Parameters: name default

Positional parameters in same order.

The attribute hash reference is passed to the subroutine after the parameters as the last argument. This may
mean that there are parameters not shown here.

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: YES

Interchange Documentation (Full)

 61.17.2.1. field 412



Called Routine:

ASP−like Perl call:

    $Tag−>default(
        {
         name => VALUE,
         default => VALUE,
        }
    )

 OR

    $Tag−>default($name, $default, $ATTRHASH);
    [default name defaultother_named_attributes]

Parameters Description Default

default DEFAULT_VALUE

name DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate (reparse)No

Other_Characteristics

Invalidates cache YES

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [default name default]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>default(  { default => VALUE_default
                      name => VALUE_name
}, $body  );

or similarly with positional parameters,

    $Tag−>default(name,default, $attribute_hash_reference, $body);

61.18.2. Description

Returns the value of the user form variable variable if it is non−empty. Otherwise returns default,
which is the string "default" if there is no default supplied. Got that? This tag is DEPRECATED anyway.

Interchange Documentation (Full)

61.18.2. Description 413



61.18.2.1. default

61.18.2.2. name

61.19. description

61.19.1. Summary

Parameters: code base

Positional parameters in same order.

Pass attribute hash as last to subroutine: no

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: no

Called Routine:

ASP−like Perl call:

    $Tag−>description(
        {
         code => VALUE,
         base => VALUE,
        }
    )

 OR

    $Tag−>description($code, $base);
    [description code base]

Parameters Description Default

base DEFAULT_VALUE

code DEFAULT_VALUE

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache no

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [description code base]
−−−
   TODO: (tag result)

Interchange Documentation (Full)

 61.18.2.1. default 414



ASP−like Perl call:

   $Tag−>description(  { base => VALUE_base
                          code => VALUE_code
}, $body  );

or similarly with positional parameters,

    $Tag−>description(code,base, $attribute_hash_reference, $body);

61.19.2. Description

Expands into the description of the product identified by code as found in the products database. This is the
value of the database field that corresponds to the catalog.cfg directive DescriptionField. If there
is more than one products file defined, they will be searched in order unless constrained by the optional
argument base.

This tag is especially useful for multi−language catalogs. The DescriptionField directive can be set for
each locale and point to a different database field; for example desc_en for English, desc_fr for French,
etc.

61.19.2.1. base

61.19.2.2. code

61.20. discount

61.20.1. Summary

Parameters: code

Positional parameters in same order.

Pass attribute hash as last to subroutine: no

Must pass named parameter interpolate=1 to cause interpolation.

This is a container tag, i.e. [discount] FOO [/discount]. Nesting: NO

Invalidates cache: YES

Called Routine:

ASP−like Perl call:

    $Tag−>discount(
        {
         code => VALUE,
        },
        BODY
    )

Interchange Documentation (Full)

61.19.2. Description 415



 OR

    $Tag−>discount($code, $BODY);
    [discount code]

Parameters Description Default

code DEFAULT_VALUE

Attributes Default

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache YES

Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [discount code]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>discount(  { code => VALUE_code
}, $body  );

or similarly with positional parameters,

    $Tag−>discount(code, $attribute_hash_reference, $body);

61.20.2. Description

Product discounts can be set upon display of any page. The discounts apply only to the customer receiving
them, and are of one of three types:

    1. A discount for one particular item code (code/key is the item−code)
    2. A discount applying to all item codes (code/key is ALL_ITEMS)
    3. A discount applied after all items are totaled
       (code/key is ENTIRE_ORDER)

The discounts are specified via a formula. The formula is scanned for the variables $q and $s, which are
substituted for with the item quantity and subtotal respectively. In the case of the item and all items discount,
the formula must evaluate to a new subtotal for all items of that code that are ordered. The discount for the
entire order is applied to the entire order, and would normally be a monetary amount to subtract or a flat
percentage discount.

Discounts are applied to the effective price of the product, including any quantity discounts.

To apply a straight 20% discount to all items:

    [discount ALL_ITEMS] $s * .8 [/discount]

Interchange Documentation (Full)

61.20.2. Description 416



or with named attributes:

    [discount code=ALL_ITEMS] $s * .8 [/discount]

To take 25% off of only item 00−342:

    [discount 00−342] $s * .75 [/discount]

To subtract $5.00 from the customer's order:

    [discount ENTIRE_ORDER] $s − 5 [/discount]

To reset a discount, set it to the empty string:

    [discount ALL_ITEMS][/discount]

Perl code can be used to apply the discounts. Here is an example of a discount for item code 00−343 which
prices the second one ordered at 1 cent:

    [discount 00−343]
    return $s if $q == 1;
    my $p = $s/$q;
    my $t = ($q − 1) * $p;
    $t .= 0.01;
    return $t;
    [/discount]

If you want to display the discount amount, use the [item−discount] tag.

    [item−list]
    Discount for [item−code]: [item−discount]
    [/item−list]

Finally, if you want to display the discounted subtotal in a way that doesn't correspond to a standard
Interchange tag, you can use the [calc] tag:

    [item−list]
    Discounted subtotal for [item−code]: [currency][calc]
                                            [item−price noformat] * [item−quantity]
                                            [/calc][/currency]
    [/item−list]

61.20.2.1. code

61.21. dump

Dumps client connection information, cart contents, query value, contents of environment, session, and CGI
with Data::Dumper to the page. This is useful for debugging.

61.21.1. Summary

No parameters.

Interchange Documentation (Full)

 61.20.2.1. code 417



Pass attribute hash as last to subroutine: no

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: no

Called Routine:

ASP−like Perl call:

    $Tag−>dump(
        {
        }
    )

 OR

    $Tag−>dump($);
    [dump ]

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache no

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [dump ]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>dump(  {
}, $body  );

or similarly with positional parameters,

    $Tag−>dump(, $attribute_hash_reference, $body);

61.21.2. Description

Dumps client connection information, cart contents, query value, contents of environment, session, and CGI
with Data::Dumper to the page. This is useful for debugging.

61.22. ecml

Uses ECML (Electronic Commerce Markup Language) module to map Interchange forms/userdb to ECML
checkout

Interchange Documentation (Full)

61.21.2. Description 418



61.22.1. Summary

    [ecml name functionother_named_attributes]

Parameters Description Default

function ecml function (default = 'widget')DEFAULT_VALUE

name DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate (reparse)No

Other_Characteristics

Invalidates cache no

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [ecml name function]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>ecml(  { function => VALUE_function
                   name => VALUE_name
}, $body  );

or similarly with positional parameters,

    $Tag−>ecml(name,function, $attribute_hash_reference, $body);

61.22.2. Description

This package implements the ECML standard for the Interchange demo. ECML stands for "Electronic
Commerce Modeling Language", but at this writing it is a simple standard for naming variables so that
"electronic wallets" can pre−fill−in your checkout form based on users past purchase from other companies.

It translates into ECML from the following Interchange variables:

ECML Interchange variable

Ecom_BillTo_Online_Email b_email

Ecom_BillTo_Postal_City b_city

Ecom_BillTo_Postal_CountryCode b_country

Ecom_BillTo_Postal_Name_First b_fname

Ecom_BillTo_Postal_Name_Last b_lname

Ecom_BillTo_Postal_Name_Middle b_mname

Ecom_BillTo_Postal_Name_Prefix b_title

Interchange Documentation (Full)

61.22.1. Summary 419



Ecom_BillTo_Postal_Name_Suffix b_name_suffix

Ecom_BillTo_Postal_PostalCode b_zip

Ecom_BillTo_Postal_StateProv b_state

Ecom_BillTo_Postal_Street_Line1 b_address1

Ecom_BillTo_Postal_Street_Line2 b_address2

Ecom_BillTo_Postal_Street_Line3 b_address3

Ecom_BillTo_Telecom_Phone_Number b_phone_day

Ecom_ConsumerOrderID mv_order_number

Ecom_Payment_Card_ExpDate_Day mv_credit_card_exp_day

Ecom_Payment_Card_ExpDate_Month mv_credit_card_exp_month

Ecom_Payment_Card_ExpDate_Year mv_credit_card_exp_year

Ecom_Payment_Card_Name c_name

Ecom_Payment_Card_Number mv_credit_card_number

Ecom_Payment_Card_Protocol payment_protocols_available

Ecom_Payment_Card_Type mv_credit_card_type

Ecom_Payment_Card_Verification mv_credit_card_verify

Ecom_ReceiptTo_Online_Email r_email

Ecom_ReceiptTo_Postal_City r_city

Ecom_ReceiptTo_Postal_CountryCode r_country

Ecom_ReceiptTo_Postal_Name_First r_fname

Ecom_ReceiptTo_Postal_Name_Last r_lname

Ecom_ReceiptTo_Postal_Name_Middle r_mname

Ecom_ReceiptTo_Postal_Name_Prefix r_title

Ecom_ReceiptTo_Postal_Name_Suffix r_name_suffix

Ecom_ReceiptTo_Postal_PostalCode r_zip

Ecom_ReceiptTo_Postal_StateProv r_state

Ecom_ReceiptTo_Postal_Street_Line1 r_address1

Ecom_ReceiptTo_Postal_Street_Line2 r_address2

Ecom_ReceiptTo_Postal_Street_Line3 r_address3

Ecom_ReceiptTo_Telecom_Phone_Numberr_phone

Ecom_SchemaVersion ecml_version

Ecom_ShipTo_Online_Email email

Ecom_ShipTo_Postal_City city

Ecom_ShipTo_Postal_CountryCode country

Ecom_ShipTo_Postal_Name_Combined name

Ecom_ShipTo_Postal_Name_First fname

Ecom_ShipTo_Postal_Name_Last lname

Ecom_ShipTo_Postal_Name_Middle mname

Ecom_ShipTo_Postal_Name_Prefix title

Ecom_ShipTo_Postal_Name_Suffix name_suffix

Ecom_ShipTo_Postal_PostalCode zip

Ecom_ShipTo_Postal_StateProv state

Interchange Documentation (Full)

61.22.1. Summary 420



Ecom_ShipTo_Postal_Street_Line1 address1

Ecom_ShipTo_Postal_Street_Line2 address2

Ecom_ShipTo_Postal_Street_Line3 address3

Ecom_ShipTo_Telecom_Phone_Number phone

Ecom_TransactionComplete end_transaction_flag
Once the form variables are input and sent to Interchange, the [ecml function=mapback] tag will cause the
input results to be mapped back from the ECML names to the Interchange names.

If you only have a name variable in your UserDB, the module will attempt to split it into first name and last
name for ECML purposes and map the results back. If you have fname and lname, then it will not.

61.22.2.1. function

ecml function (default = 'widget')

61.22.2.2. name

61.23. either

The [either]this[or]that[/either] implements a check for the first non−zero, non−blank value. It splits on [or],
and then parses each piece in turn. If a value returns true (in the Perl sense: non−zero, non−blank) then
subsequent pieces will be discarded without interpolation.

61.23.1. Summary

  [either]
    This
  [or]
    That
  [or]
    The other
  [/either]

No parameters.

Pass attribute hash as last to subroutine: no

Must pass named parameter interpolate=1 to cause interpolation.

This is a container tag, i.e. [either] FOO [/either]. Nesting: NO

Invalidates cache: no

Called Routine:

ASP−like Perl call:

    $Tag−>either(
        {
        },
        BODY

Interchange Documentation (Full)

 61.22.2.1. function 421



    )

 OR

    $Tag−>either($BODY);
    [either ]

Attributes Default

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache no

Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [either ]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>either(  {
}, $body  );

or similarly with positional parameters,

    $Tag−>either(, $attribute_hash_reference, $body);

61.23.2. Description

NO Description

61.24. error

61.24.1. Summary

Parameters: name

Positional parameters in same order.

The attribute hash reference is passed to the subroutine after the parameters as the last argument. This may
mean that there are parameters not shown here.

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: no

Called Routine:

Interchange Documentation (Full)

61.23.2. Description 422



ASP−like Perl call:

    $Tag−>error(
        {
         name => VALUE,
        }
    )

 OR

    $Tag−>error($name, $ATTRHASH);
    [error nameother_named_attributes]

Parameters Description Default

name DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate (reparse)No

Other_Characteristics

Invalidates cache no

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [error name]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>error(  { name => VALUE_name
}, $body  );

or similarly with positional parameters,

    $Tag−>error(name, $attribute_hash_reference, $body);

61.24.2. Description

    [error var options]
        var is the error name, e.g. "session"

The [error ...] tag is designed to manage form variable checking for the Interchange submit form processing
action. It works in conjunction with the definition set in mv_order_profile, and can generate error
messages in any format you desire.

If the variable in question passes order profile checking, it will output a label, by default bold text if the item
is required, or normal text if not (controlled by the <require> parameter. If the variable fails one or more order
checks, the error message will be substituted into a template and the error cleared from the user's session.

(Below is as of 4.03, the equivalent in 4.02 is [if type=explicit compare="[error all=1 keep=1]"] ... [/if].)

Interchange Documentation (Full)

61.24.2. Description 423



To check errors without clearing them, you can use the idiom:

    [if errors]
    <FONT SIZE="+1" COLOR=RED>
        There were errors in your form submission.
    </FONT>
    <BLOCKQUOTE>
        [error all=1 show_error=1 joiner="<BR>"]
    </BLOCKQUOTE>
    [/if]

The options are:

61.24.2.1. all=1

Display all error messages, not just the one referred to by <var>. The default is only display the error message
assigned to <var>.

text=<optional string to embed the error message(s) in>

place a "%s" somewhere in 'text' to mark where you want the error message placed, otherwise it's appended on
the end. This option also implies show_error.

61.24.2.2. joiner=char

Character used to join multiple error messages. Default is '\n', a newline.

61.24.2.3. keep=1

keep=1 means don't delete the error messages after copy; anything else deletes them.

61.24.2.4. show_error=1

show_error=1 means return the error message text; otherwise just the number of errors found is returned.

61.24.2.5. show_label=1

show_label=1 causes the field label set by a previous [error] tag's std_label attribute (see below) to be
included as part of the error message, like this:

First Name: blank

If no std_label was set, the variable name will be used instead. This can also be used in combination with
show_var to show both the label and the variable name.

show_label was added in 4.7.0.

61.24.2.6. show_var=1

show_var=1 includes the name of the variable the error was found in as part of the error message, like this:

email: 'bob#nothing,net' not a valid email address

Interchange Documentation (Full)

 61.24.2.1. all=1 424



61.24.2.7. std_label

std_label=<label string for error message>

used with 'required' to display a standardized error format. The HTML formatting can be set via the global
variable MV_ERROR_STD_LABEL with the default being:

        <FONT COLOR=RED>label_str<SMALL><I>(%s)</I></SMALL></FONT>

where <label_str> is what you set std_label to and %s is substituted with the error message. This option can
not be used with the text= option.

61.24.2.8. required=1

Specifies that this is a required field for formatting purposes. In the std_label format, it means the field will be
bolded. If you specify your own label string, it will insert HTML anywhere you have {REQUIRED: HTML},
but only when the field is required.

61.24.2.9. name

61.25. export

Exports a database to a delimited text file (see also import).

61.25.1. Summary

    [export tableother_named_attributes]

Parameters Description Default

base Alias for table DEFAULT_VALUE

database Alias for table DEFAULT_VALUE

delete If 'verify' attribute also set, deletes column specified by 'field' attribute
rather than adding a column.

DEFAULT_VALUE

field The column to add (or delete if delete and verify are true) DEFAULT_VALUE

file Filename to export to. Note that the NoAbsolute directive and other
conditions may affect actual location of the output file.

DEFAULT_VALUE

sort Output sorted rows (usage: sort="sort_field:sort_option") (see
search/form variable 'mv_sort_option' for sort options)

DEFAULT_VALUE

table The table to export DEFAULT_VALUE

type Specifies the [line, record] delimiter types. Either NOTES or one of the
following:

  my %Delimiter = (
       2 => ["\n", "\n\n"],
       3 => ["\n%%\n", "\n%%%\n"],
       4 => ["CSV","\n"],
       5 => ['|', "\n"],
       6 => ["\t", "\n"],
       7 => ["\t", "\n"],
       8 => ["\t", "\n"],

DEFAULT_VALUE

Interchange Documentation (Full)

 61.24.2.7. std_label 425



       LINE => ["\n", "\n\n"],
       '%%%' => ["\n%%\n", "\n%%%\n"],
       '%%' => ["\n%%\n", "\n%%%\n"],
       CSV => ["CSV","\n"],
       PIPE => ['|', "\n"],
       TAB => ["\t", "\n"],
       );

If using NOTES
notes_separator (defaults to "\f")♦ 
notes_field (defaults to "notes_field")♦ 

• 

verify must be true when deleting a column DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate (reparse)No

Other_Characteristics

Invalidates cache YES

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [export table]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>export(  { table => VALUE_table
}, $body  );

or similarly with positional parameters,

    $Tag−>export(table, $attribute_hash_reference, $body);

61.25.2. Description

Exports 'table' to a delimited text file. See also import tag which imports files into databases.

61.25.2.1. delete

If 'verify' attribute also set, deletes column specified by 'field' attribute rather than adding a column.

61.25.2.2. field

The column to add (or delete if delete and verify are true)

61.25.2.3. file

Filename to export to. Note that the NoAbsolute directive and other conditions may affect actual location of
the output file.

Interchange Documentation (Full)

61.25.2. Description 426



61.25.2.4. sort

Output sorted rows (usage: sort="sort_field:sort_option") (see search/form variable 'mv_sort_option' for sort
options)

61.25.2.5. table

The table to export

61.25.2.6. type

Specifies the [line, record] delimiter types. Either NOTES or one of the following:

  my %Delimiter = (
        2 => ["\n", "\n\n"],
        3 => ["\n%%\n", "\n%%%\n"],
        4 => ["CSV","\n"],
        5 => ['|', "\n"],
        6 => ["\t", "\n"],
        7 => ["\t", "\n"],
        8 => ["\t", "\n"],
        LINE => ["\n", "\n\n"],
        '%%%' => ["\n%%\n", "\n%%%\n"],
        '%%' => ["\n%%\n", "\n%%%\n"],
        CSV => ["CSV","\n"],
        PIPE => ['|', "\n"],
        TAB => ["\t", "\n"],
        );

If using NOTES
notes_separator (defaults to "\f")♦ 
notes_field (defaults to "notes_field")♦ 

• 

61.25.2.7. verify

must be true when deleting a column

61.26. field

61.26.1. Summary

Parameters: name code

Positional parameters in same order.

Pass attribute hash as last to subroutine: no

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: no

Called Routine:

Interchange Documentation (Full)

 61.25.2.4. sort 427



ASP−like Perl call:

    $Tag−>field(
        {
         name => VALUE,
         code => VALUE,
        }
    )

 OR

    $Tag−>field($name, $code);

Attribute aliases

            col ==> name
            column ==> name
            field ==> name
            key ==> code
            row ==> code
    [field name code]

Parameters Description Default

code DEFAULT_VALUE

col Alias for name DEFAULT_VALUE

column Alias for name DEFAULT_VALUE

field Alias for name DEFAULT_VALUE

key Alias for code DEFAULT_VALUE

name DEFAULT_VALUE

row Alias for code DEFAULT_VALUE

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache no

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [field name code]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>field(  { code => VALUE_code
                    name => VALUE_name
}, $body  );

or similarly with positional parameters,

    $Tag−>field(name,code, $attribute_hash_reference, $body);

Interchange Documentation (Full)

 61.25.2.4. sort 428



61.26.2. Description

Expands into the value of the field name for the product identified by code as found by searching the products
database. It will return the first entry found in the series of Product Files. the products database. If you want
to constrain it to a particular database, use the [data base name code] tag.

Note that if you only have one ProductFile products, which is the default, [field column key] is the
same as [data products column key].

61.26.2.1. code

61.26.2.2. name

61.27. file

61.27.1. Summary

Parameters: name type

Positional parameters in same order.

Pass attribute hash as last to subroutine: no

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: no

Called Routine:

ASP−like Perl call:

    $Tag−>file(
        {
         name => VALUE,
         type => VALUE,
        }
    )

 OR

    $Tag−>file($name, $type);
    [file name type]

Parameters Description Default

name DEFAULT_VALUE

type DEFAULT_VALUE

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache no

Interchange Documentation (Full)

61.26.2. Description 429



Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [file name type]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>file(  { name => VALUE_name
                   type => VALUE_type
}, $body  );

or similarly with positional parameters,

    $Tag−>file(name,type, $attribute_hash_reference, $body);

61.27.2. Description

Inserts the contents of the named file. The file should normally be relative to the catalog directory −− file
names beginning with / or .. are not allowed if the Interchange server administrator has set NoAbsolute to
Yes.

The optional type parameter will do an appropriate ASCII translation on the file before it is sent.

61.27.2.1. name

61.27.2.2. type

61.28. filter

61.28.1. Summary

Parameters: op

Positional parameters in same order.

Pass attribute hash as last to subroutine: no

Must pass named parameter interpolate=1 to cause interpolation.

This is a container tag, i.e. [filter] FOO [/filter]. Nesting: NO

Invalidates cache: no

Called Routine:

ASP−like Perl call:

Interchange Documentation (Full)

61.27.2. Description 430



    $Tag−>filter(
        {
         op => VALUE,
        },
        BODY
    )

 OR

    $Tag−>filter($op, $BODY);
    [filter op]

Parameters Description Default

op DEFAULT_VALUE

Attributes Default

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache no

Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [filter op]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>filter(  { op => VALUE_op
}, $body  );

or similarly with positional parameters,

    $Tag−>filter(op, $attribute_hash_reference, $body);

61.28.2. Description

Applies any of Interchange's standard filters to an arbitrary value, or you may define your own. The filters are
also available as parameters to the cgi, data, and value tags.

Filters can be applied in sequence and as many as needed can be applied.

Here is an example. If you store your author or artist names in the database "LAST, First" so that they sort
properly, you still might want to display them normally as "First Last". This call

    [filter op="name namecase"]WOOD, Grant[/filter]

will display as

    Grant Wood

Interchange Documentation (Full)

61.28.2. Description 431



Another way to do this would be:

    [data table=products column=artist key=99−102 filter="name namecase"]

Filters available include:

61.28.2.1. cgi

Returns the value of the CGI variable. Useful for starting a filter sequence with a seed value.

    'cgi' =>    sub {
                    return $CGI::values(shift);
                },

61.28.2.2. digits

Returns only digits.

    'digits' => sub {
                    my $val = shift;
                    $val =~ s/\D+//g;
                    return $val;
                },

61.28.2.3. digits_dot

Returns only digits and periods, i.e. [.0−9]. Useful for decommifying numbers.

    'digits_dot' => sub {
                    my $val = shift;
                    $val =~ s/[^\d.]+//g;
                    return $val;
                },

61.28.2.4. dos

Turns linefeeds into carriage−return / linefeed pairs.

    'dos' =>    sub {
                    my $val = shift;
                    $val =~ s/\r?\n/\r\n/g;
                    return $val;
                },

61.28.2.5. entities

Changes < to &lt;, " to &quot;, etc.

    'entities' => sub {
                    return HTML::Entities::encode(shift);
                },

Interchange Documentation (Full)

 61.28.2.1. cgi 432



61.28.2.6. gate

Performs a security screening by testing to make sure a corresponding scratch variable has been set.

    'gate' =>   sub {
                    my ($val, $var) = @_;
                    return '' unless $::Scratch−>{$var};
                    return $val;
                },

61.28.2.7. lc

Lowercases the text.

    'lc' =>     sub {
                    return lc(shift);
                },

61.28.2.8. lookup

Looks up an item in a database based on the passed table and column. Call would be:

    [filter op="uc lookup.country.name"]us[/filter]

This would be the equivalent of [data table=country column=name key=US].

    'lookup' => sub {
                        my ($val, $tag, $table, $column) = @_;
                        return tag_data($table, $column, $val) || $val;
                },

61.28.2.9. mac

Changes newlines to carriage returns.

    'mac' =>    sub {
                    my $val = shift;
                    $val =~ s/\r?\n|\r\n?/\r/g;
                    return $val;
                },

61.28.2.10. name

Transposes a LAST, First name pair.

    'name' => sub {
                    my $val = shift;
                    return $val unless $val =~ /,/;
                    my($last, $first) = split /\s*,\s*/, $val, 2;
                    return "$first $last";
                },

Interchange Documentation (Full)

 61.28.2.6. gate 433



61.28.2.11. namecase

Namecases the text. Only works on values that are uppercase in the first letter, i.e. [filter
op=namecase]LEONARDO da Vinci[/filter] will return "Leonardo da Vinci".

    'namecase' => sub {
                    my $val = shift;
                    $val =~ s/([A−Z]\w+)/\L\u$1/g;
                    return $val;
                },

61.28.2.12. no_white

Strips all whitespace.

    'no_white' =>   sub {
                    my $val = shift;
                    $val =~ s/\s+//g;
                    return $val;
                },

61.28.2.13. pagefile

Strips leading slashes and dots.

    'pagefile' => sub {
                    $_[0] =~ s:^[./]+::;
                    return $_[0];
                },

61.28.2.14. sql

Change single−quote characters into doubled versions, i.e. ' becomes ''.

    'sql'       => sub {
                    my $val = shift;
                    $val =~ s:':'':g; # '
                    return $val;
                },

61.28.2.15. strip

Strips leading and trailing whitespace.

    'strip' =>  sub {
                    my $val = shift;
                    $val =~ s/^\s+//;
                    $val =~ s/\s+$//;
                    return $val;
                },

61.28.2.16. text2html

Rudimentary HTMLizing of text.

    'text2html' => sub {

Interchange Documentation (Full)

 61.28.2.11. namecase 434



                    my $val = shift;
                    $val =~ s|\r?\n\r?\n|<P>|;
                    $val =~ s|\r?\n|<BR>|;
                    return $val;
                },

61.28.2.17. uc

Uppercases the text.

    'uc' =>     sub {
                    return uc(shift);
                },

61.28.2.18. unix

Removes those crufty carriage returns.

    'unix' =>   sub {
                    my $val = shift;
                    $val =~ s/\r?\n/\n/g;
                    return $val;
                },

61.28.2.19. urlencode

Changes non−word characters (except colon) to %3c notation.

    'urlencode' => sub {
                    my $val = shift;
                    $val =~ s|[^\w:]|sprintf "%%%02x", ord $1|eg;
                    return $val;
                },

61.28.2.20. value

Returns the value of the user session variable. Useful for starting a filter sequence with a seed value.

    'value' =>  sub {
                    return $::Values−>(shift);
                },

61.28.2.21. word

Only returns word characters. Locale does apply if collation is properly set.

    'word' =>   sub {
                    my $val = shift;
                    $val =~ s/\W+//g;
                    return $val;
                },

You can define your own filters in a GlobalSub (or Sub or ActionMap):

    package Vend::Interpolate;

Interchange Documentation (Full)

 61.28.2.17. uc 435



    $Filter{reverse} = sub { $val = shift; return scalar reverse $val  };

That filter will reverse the characters sent.

The arguments sent to the subroutine are the value to be filtered, any associated variable or tag name, and any
arguments appended to the filter name with periods as the separator.

A [filter op=lookup.products.price]99−102[/filter] will send ('99−102', undef,
'products', 'price') as the parameters. Assuming the value of the user variable foo is bar, the call [value
name=foo filter="lookup.products.price.extra"] will send ('bar', 'foo', 'products', 'price',
'extra').

61.28.2.22. op

61.29. flag

Controls Interchange flags. For example, flags affect database access and transactions for those databases able
to support these features. See also the [tag] tag.

61.29.1. Summary

    [flag type]

Parameters Description Default

build Forces build of static Interchange page specified by the name attributeDEFAULT_VALUE

checkhtml DEFAULT_VALUE

commit Attempts to commit transactions DEFAULT_VALUE

flag Alias for type DEFAULT_VALUE

name Alias for type DEFAULT_VALUE

read Flags the table read−only DEFAULT_VALUE

rollback Attempts to rollback transactions DEFAULT_VALUE

show Normally, the [flag] tag returns nothing to the page. Setting 'show=1'
causes the tag to return status, if any.

DEFAULT_VALUE

table Alias for tables DEFAULT_VALUE

tables The name of the table to flag

'table' is an alias• 

DEFAULT_VALUE

transactionsReopens the database in transactions mode if Safe.pm is not active (e.g.,
in a global subroutine, usertag or [perl global=1] tag). The limitation
exists because it is not possible to reopen a database within Safe.pm.

DEFAULT_VALUE

type DEFAULT_VALUE

value The boolean value of the flag DEFAULT_VALUE

write Flags the table writable by default (or read−only if you also set the
value=0 attribute)

DEFAULT_VALUE

Attributes Default

interpolate (reparse)No

Interchange Documentation (Full)

 61.28.2.22. op 436

http://www.perl.com/pub/doc/manual/html/lib/Safe.html
http://www.perl.com/pub/doc/manual/html/lib/Safe.html


Other_Characteristics

Invalidates cache YES

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [flag type]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>flag(  { type => VALUE_type
}, $body  );

or similarly with positional parameters,

    $Tag−>flag(type, $attribute_hash_reference, $body);

61.29.2. Description

The flag tag controls database access and transactions.

If a DBM−based database is to be modified, it must be flagged writable on the page calling the write tag.

For example, you can call

  [flag type=write value=1 table=products]

to mark the products DBM database writable. This must be done before ANY access to that table.

Note that SQL databases are always writable if allowed by the SQL database itself, and in−memory databases
will never be written.

Using [flag build] forces static build of a page, even if it contains dynamic elements.

61.29.2.1. build

Forces build of static Interchange page specified by the name attribute

61.29.2.2. checkhtml

61.29.2.3. commit

Attempts to commit transactions

61.29.2.4. read

Flags the table read−only

Interchange Documentation (Full)

61.29.2. Description 437



61.29.2.5. rollback

Attempts to rollback transactions

61.29.2.6. show

Normally, the [flag] tag returns nothing to the page. Setting 'show=1' causes the tag to return status, if any.

61.29.2.7. tables

The name of the table to flag

'table' is an alias• 

61.29.2.8. transactions

Reopens the database in transactions mode if Safe.pm is not active (e.g., in a global subroutine, usertag or
[perl global=1] tag). The limitation exists because it is not possible to reopen a database within Safe.pm.

61.29.2.9. type

61.29.2.10. value

The boolean value of the flag

61.29.2.11. write

Flags the table writable by default (or read−only if you also set the value=0 attribute)

61.30. fly_list

61.30.1. Summary

Parameters: code base

Positional parameters in same order.

Pass attribute hash as last to subroutine: no

Must pass named parameter interpolate=1 to cause interpolation.

This is a container tag, i.e. [fly_list] FOO [/fly_list]. Nesting: NO

Invalidates cache: no

Called Routine:

ASP−like Perl call:

    $Tag−>fly_list(

Interchange Documentation (Full)

 61.29.2.5. rollback 438

http://www.perl.com/pub/doc/manual/html/lib/Safe.html
http://www.perl.com/pub/doc/manual/html/lib/Safe.html


        {
         code => VALUE,
         base => VALUE,
        },
        BODY
    )

 OR

    $Tag−>fly_list($code, $base, $BODY);
    [fly_list code base]

Parameters Description Default

base DEFAULT_VALUE

code DEFAULT_VALUE

Attributes Default

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache no

Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [fly_list code base]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>fly_list(  { base => VALUE_base
                       code => VALUE_code
}, $body  );

or similarly with positional parameters,

    $Tag−>fly_list(code,base, $attribute_hash_reference, $body);

61.30.2. Description

Syntax: [fly−list prefix=tag_prefix* code=code*]

Defines an area in a random page which performs the flypage lookup function, implementing the tags below.

   [fly−list]
    (contents of flypage.html)
   [/fly−list]

If you place the above around the contents of the demo flypage, in a file named flypage2.html, it will
make these two calls display identical pages:

Interchange Documentation (Full)

61.30.2. Description 439



    [page 00−0011] One way to display the Mona Lisa [/page]
    [page flypage2 00−0011] Another way to display the Mona Lisa [/page]

If you place a [fly−list] tag alone at the top of the page, it will cause any page to act as a flypage.

By default, the prefix is item, meaning the [item−code] tag will display the code of the item, the
[item−price] tag will display price, etc. But if you use the prefix, i.e. [fly−list prefix=fly],
then it will be [fly−code]; prefix=foo would cause [foo−code], etc.

61.30.2.1. base

61.30.2.2. code

61.31. fly_tax

61.31.1. Summary

Parameters: area

Positional parameters in same order.

Pass attribute hash as last to subroutine: no

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: no

Called Routine:

ASP−like Perl call:

    $Tag−>fly_tax(
        {
         area => VALUE,
        }
    )

 OR

    $Tag−>fly_tax($area);
    [fly_tax area]

Parameters Description Default

area DEFAULT_VALUE

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache no

Container tag No

Has Subtags No

Interchange Documentation (Full)

 61.30.2.1. base 440



Nests Yes
Tag expansion example:

   [fly_tax area]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>fly_tax(  { area => VALUE_area
}, $body  );

or similarly with positional parameters,

    $Tag−>fly_tax(area, $attribute_hash_reference, $body);

61.31.2. Description

Builds a tax rate from taxarea, taxrate, taxshipping, variable values, and the SalesTax directive
value.

61.31.2.1. area

61.32. goto

Skips page content between [goto name] and [label name]. Note that the goto tag is not interpreted in the
standard way, and you cannot use the '$Tag−>goto()' Perl syntax. Note also that skipping endtags with goto
will probably break your page.

61.32.1. Summary

   [goto name=label_name if=condition]
content to skip

   [label name=label_name]

or positionally,

   [goto name if]
content to skip

   [label name]

Parameters Description Default

name The name set in the corresponding [label] tag none

if Condition for goto. Should evaluate to truth value before tag is parsed.true

Other_Characteristics

Container tag No, but you use it like this:

[goto name=label_name if=condition]

body text
[label label_name]

Interchange Documentation (Full)

61.31.2. Description 441



Has Subtags [label] interpreted by goto

ASP−like Perl call:

No Perl call available (Note that this tag is not parsed in the standard way).

61.32.2. Description

Skips page content between [goto name] and [label name]. Note that the goto tag is not interpreted in the
standard way, and you cannot use the '$Tag−>goto()' Perl syntax. Note also that skipping endtags with goto
will probably break your page.

The correspondingly named [label] tag marks the end of the page content the goto should skip. Note that
the [label] tag is not an end tag, but simply a marker for the end of the text to skip.

Technical note (Interchange 4.8): This tag may not work properly if you have more than one goto/label pair
on a page.

61.32.2.1. name

This should match the name set in a [label] tag after the goto tag in the page (i.e., don't create loops).

61.32.2.2. if

Condition for goto. If the argument to 'if' is true, the tag will skip the text between the goto and <label>.
Note that the tag itself does not evaluate the condition. The condition must evaluate to a true or false value
before the goto tag processes it.

For example, this will not execute the goto:

   [set go]0[/set]
   [goto name="there" if="[scratch go]"]

61.33. handling

61.33.1. Summary

Parameters: mode

Positional parameters in same order.

The attribute hash reference is passed to the subroutine after the parameters as the last argument. This may
mean that there are parameters not shown here.

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: YES

Called Routine:

Interchange Documentation (Full)

61.32.2. Description 442



ASP−like Perl call:

    $Tag−>handling(
        {
         mode => VALUE,
        }
    )

 OR

    $Tag−>handling($mode, $ATTRHASH);

Attribute aliases

            carts ==> cart
            modes ==> mode
            name ==> mode
            tables ==> table
    [handling modeother_named_attributes]

Parameters Description Default

carts Alias for cart DEFAULT_VALUE

mode DEFAULT_VALUE

modes Alias for mode DEFAULT_VALUE

name Alias for mode DEFAULT_VALUE

tables Alias for table DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate (reparse)No

Other_Characteristics

Invalidates cache YES

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [handling mode]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>handling(  { mode => VALUE_mode
}, $body  );

or similarly with positional parameters,

    $Tag−>handling(mode, $attribute_hash_reference, $body);

Interchange Documentation (Full)

61.32.2. Description 443



61.33.2. Description

Calculates and inserts handling costs. Accepts the same noformat and convert arguments as the shipping tag.

61.33.2.1. mode

61.34. harness

Test harness block. Similar to try/catch. Interprets the body text and checks the return value against expected
and explicitly bad cases.

Returns DIED, OK, or NOT OK message along with your result if not the expected value.

61.34.1. Summary

    [harness other_named_attributes]

Parameters Description Default

expected Tagname for delimiting your expected return value (default "OK") DEFAULT_VALUE

name This will appear in your output message (useful for distinguishing
harness tags from one another) (default "testnnn")

DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache no

Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [harness ]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>harness(  {
}, $body  );

or similarly with positional parameters,

    $Tag−>harness(, $attribute_hash_reference, $body);

Interchange Documentation (Full)

61.33.2. Description 444



61.34.2. Description

Test harness block. Similar to try/catch. Interprets the body text and checks the return value against expected
and explicitly bad cases.

Returns DIED, OK, or NOT OK message along with the harness name and your result if not the expected
value.

61.34.2.1. expected

Tagname for delimiting your expected return value (default "OK")

61.34.2.2. name

This will appear in your output message (useful for distinguishing harness tags from one another) (default
"testnnn")

61.35. href

Alias for [area] tag.

61.36. html_table

Builds an HTML table

61.36.1. Summary

    [html_table other_named_attributes]

Parameters Description Default

columns Whitespace−delimited list of columns DEFAULT_VALUE

delimiter Line delimiter to use if tag body is delimited text rather than an array
reference (default "\t")

DEFAULT_VALUE

fc HTML attributes for <TD> in the first cell DEFAULT_VALUE

fr HTML attributes for <TR> in the first row DEFAULT_VALUE

record_delim Record delimiter to use if tag body is delimited text rather than an array
reference (default "\n")

DEFAULT_VALUE

td HTML attributes for <TD> DEFAULT_VALUE

th HTML attributes for <TH> DEFAULT_VALUE

tr HTML attributes for <TR> DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache no

Interchange Documentation (Full)

61.34.2. Description 445



Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [html_table ]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>html_table(  {
}, $body  );

or similarly with positional parameters,

    $Tag−>html_table(, $attribute_hash_reference, $body);

61.36.2. Description

Builds an HTML table

61.36.2.1. columns

Whitespace−delimited list of columns

61.36.2.2. delimiter

Line delimiter to use if tag body is delimited text rather than an array reference (default "\t")

61.36.2.3. fc

HTML attributes for <TD> in the first cell

61.36.2.4. fr

HTML attributes for <TR> in the first row

61.36.2.5. record_delim

Record delimiter to use if tag body is delimited text rather than an array reference (default "\n")

61.36.2.6. td

HTML attributes for <TD>

61.36.2.7. th

HTML attributes for <TH>

Interchange Documentation (Full)

61.36.2. Description 446



61.36.2.8. tr

HTML attributes for <TR>

61.37. if

61.37.1. Summary

Parameters: type term op compare

THIS TAG HAS SPECIAL POSITIONAL PARAMETER HANDLING.

Pass attribute hash as last to subroutine: no

Must pass named parameter interpolate=1 to cause interpolation.

This is a container tag, i.e. [if] FOO [/if]. Nesting: NO

Invalidates cache: YES

Called Routine:

Called Routine for positional:

ASP−like Perl call:

Not applicable. Any [if ...] call can be better and more efficiently done with Perl.

Attribute aliases

            base ==> type
            comp ==> compare
            condition ==> compare
            operator ==> op
    [if type term op compare]

Parameters Description Default

base Alias for type DEFAULT_VALUE

comp Alias for compare DEFAULT_VALUE

compare DEFAULT_VALUE

condition Alias for compare DEFAULT_VALUE

op DEFAULT_VALUE

operator Alias for op DEFAULT_VALUE

term DEFAULT_VALUE

type DEFAULT_VALUE

Attributes Default

interpolate No

reparse Yes

Interchange Documentation (Full)

 61.36.2.8. tr 447



Other_Characteristics

Invalidates cache YES

Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [if type term op compare]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>if(  { compare => VALUE_compare
                 op => VALUE_op
                 term => VALUE_term
                 type => VALUE_type
}, $body  );

or similarly with positional parameters,

    $Tag−>if(type,term,op,compare, $attribute_hash_reference, $body);

61.37.2. Description

Named call example: [if type="type" term="field" op="op" compare="compare"]

Positional call example: [if type field op compare]

negated: [if type="!type" term="field" op="op" compare="compare"]

Positional call example: [if !type field op compare]

Allows conditional building of HTML based on the setting of various Interchange session and database
values. The general form is:

    [if type term op compare]
    [then]
                                If true, this is printed on the document.
                                The [then] [/then] is optional in most
                                cases. If ! is prepended to the type
                                setting, the sense is reversed and
                                this will be output for a false condition.
    [/then]
    [elsif type term op compare]
                                Optional, tested when if fails
    [/elsif]
    [else]
                                Optional, printed when all above fail
    [/else]
    [/if]

The [if] tag can also have some variants:

Interchange Documentation (Full)

61.37.2. Description 448



    [if type=explicit compare=`$perl_code`]
        Displayed if valid Perl CODE returns a true value.
    [/if]

You can do some Perl−style regular expressions:

    [if value name =~ /^mike/]
                                This is the if with Mike.
    [elsif value name =~ /^sally/]
                                This is an elsif with Sally.
    [/elsif]
    [elsif value name =~ /^pat/]
                                This is an elsif with Pat.
    [/elsif]
    [else]
                                This is the else, no name I know.
    [/else]
    [/if]

While named parameter tag syntax works for [if ...], it is more convenient to use positional calls in most
cases. The only exception is if you are planning on doing a test on the results of another tag sequence:

    [if value name =~ /[value b_name]/]
        Shipping name matches billing name.
    [/if]

Oops! This will not work. You must do instead

    [if base=value field=name op="=~" compare="/[value b_name]/"]
        Shipping name matches billing name.
    [/if]

or better yet

    [if type=explicit compare=`
                        $Values−>{name} =~ /$Values−>{b_name}/
                        `]
        Shipping name matches billing name.
    [/if]

Interchange also supports a limited [and ...] and [or ...] capability:

    [if value name =~ /Mike/]
    [or value name =~ /Jean/]
    Your name is Mike or Jean.
    [/if]

    [if value name =~ /Mike/]
    [and value state =~ /OH/]
    Your name is Mike and you live in Ohio.
    [/if]

If you wish to do very complex AND and OR operations, you will have to use [if explicit] or better yet
embedded Perl/ASP. This allows complex testing and parsing of values.

There are many test targets available:

Interchange Documentation (Full)

61.37.2. Description 449



61.37.2.1. config Directive

The Interchange configuration variables. These are set by the directives in your Interchange configuration file
(or the defaults).

    [if config CreditCardAuto]
    Auto credit card validation is enabled.
    [/if]

61.37.2.2. data database::field::key

The Interchange databases. Retrieves a field in the database and returns true or false based on the value.

    [if data products::size::99−102]
    There is size information.
    [else]
    No size information.
    [/else]
    [/if]

    [if data products::size::99−102 =~ /small/i]
    There is a small size available.
    [else]
    No small size available.
    [/else]
    [/if]

61.37.2.3. discount

Checks to see if a discount is present for an item.

    [if discount 99−102]
    Item is discounted.
    [/if]

61.37.2.4. explicit

A test for an explicit value. If perl code is placed between a [condition] [/condition] tag pair, it will be used to
make the comparison. Arguments can be passed to import data from user space, just as with the [perl] tag.

    [if explicit]
    [condition]
        $country = '[value country]';
        return 1 if $country =~ /u\.?s\.?a?/i;
        return 0;
    [/condition]
    You have indicated a US address.
    [else]
    You have indicated a non−US address.
    [/else]
    [/if]

This example is a bit contrived, as the same thing could be accomplished with [if value country =~
/u\.?s\.?a?/i], but you will run into many situations where it is useful.

This will work for Variable values:

Interchange Documentation (Full)

 61.37.2.1. config Directive 450



    [if type=explicit compare="__MYVAR__"] .. [/if]

61.37.2.5. file

Tests for existence of a file. Useful for placing image tags only if the image is present.

    [if type=file term="/home/user/www/images/[item−code].gif"]
    <IMG SRC="[item−code].gif">
    [/if]

The file test requires that the SafeUntrap directive contains ftfile (which is the default).

61.37.2.6. items

The Interchange shopping carts. If not specified, the cart used is the main cart. Usually used as a litmus test to
see if anything is in the cart, for example:

  [if items]You have items in your shopping cart.[/if]

  [if items layaway]You have items on layaway.[/if]

61.37.2.7. ordered

Order status of individual items in the Interchange shopping carts. If not specified, the cart used is the main
cart. The following items refer to a part number of 99−102.

  [if ordered 99−102] Item 99−102 is in your cart. [/if]
    Checks the status of an item on order, true if item
    99−102 is in the main cart.

  [if ordered 99−102 layaway] ... [/if]
    Checks the status of an item on order, true if item
    99−102 is in the layaway cart.

  [if ordered 99−102 main size] ... [/if]
    Checks the status of an item on order in the main cart,
    true if it has a size attribute.

  [if ordered 99−102 main size =~ /large/i] ... [/if]
    Checks the status of an item on order in the main cart,
    true if it has a size attribute containing 'large'.

    To make sure it is exactly large, you could use:

  [if ordered 99−102 main size eq 'large'] ... [/if]

61.37.2.8. pragma

The Interchange Pragma settings, set with the the catalog.cfg manpage directive Pragma or with [pragma
name].

    [if pragma dynamic_variables]
    __THE_VARIABLE__
    [else]
    [data table=variable column=Variable key=THE_VARIABLE]
    [/else]
    [/if]

Interchange Documentation (Full)

 61.37.2.5. file 451



61.37.2.9. scratch

The Interchange scratchpad variables, which can be set with the [set name]value[/set] element.

    [if scratch mv_separate_items]
    ordered items will be placed on a separate line.
    [else]
    ordered items will be placed on the same line.
    [/else]
    [/if]

61.37.2.10. session

the Interchange session variables. of particular interest are login, frames, secure, and browser.

61.37.2.11. validcc

a special case, takes the form [if validcc no type exp_date]. evaluates to true if the supplied credit card
number, type of card, and expiration date pass a validity test. does a Luhn−10 calculation to weed out typos or
phony card numbers. Uses the standard CreditCardAuto variables for targets if nothing else is passed.

61.37.2.12. value

the Interchange user variables, typically set in search, control, or order forms. Variables beginning with mv_
are Interchange special values, and should be tested/used with caution.

The field term is the specifier for that area. For example, [if session logged_in] would return true if the
logged_in session parameter was set.

As an example, consider buttonbars for frame−based setups. It would be nice to display a different buttonbar
(with no frame targets) for sessions that are not using frames:

    [if scratch frames]
        __BUTTONBAR_FRAMES__
    [else]
        __BUTTONBAR__
    [/else]
    [/if]

Another example might be the when search matches are displayed. If you use the string '[value
mv_match_count] titles found', it will display a plural for only one match. Use:

    [if value mv_match_count != 1]
        [value mv_match_count] matches found.
    [else]
        Only one match was found.
    [/else]
    [/if]

The op term is the compare operation to be used. Compare operations are as in Perl:

    ==  numeric equivalence
    eq  string equivalence
    >   numeric greater−than
    gt  string greater−than

Interchange Documentation (Full)

 61.37.2.9. scratch 452



    <   numeric less−than
    lt  string less−than
    !=  numeric non−equivalence
    ne  string non−equivalence

Any simple perl test can be used, including some limited regex matching. More complex tests are best done
with [if explicit].

61.37.2.13. [then] text [/then]

This is optional if you are not nesting if conditions, as the text immediately following the [if ..] tag is used as
the conditionally substituted text. If nesting [if ...] tags you should use a [then][/then] on any outside
conditions to ensure proper interpolation.

61.37.2.14. [elsif type field op* compare*]

named attributes: [elsif type="type" term="field" op="op" compare="compare"]

Additional conditions for test, applied if the initial [if ..] test fails.

61.37.2.15. [else] text [/else]

The optional else−text for an if or if_field conditional.

61.37.2.16. [condition] text [/condition]

Only used with the [if explicit] tag. Allows an arbitrary expression in Perl to be placed inside, with its return
value interpreted as the result of the test. If arguments are added to [if explicit args], those will be passed as
arguments are in the [perl] construct.

61.37.2.17. compare

61.37.2.18. op

61.37.2.19. term

61.37.2.20. type

61.38. import

61.38.1. Summary

Parameters: table type

Positional parameters in same order.

The attribute hash reference is passed after the parameters but before the container text argument. This
may mean that there are parameters not shown here.

Interpolates container text by default>.

Interchange Documentation (Full)

61.37.2.13. [then] text [/then] 453



This is a container tag, i.e. [import] FOO [/import]. Nesting: NO

Invalidates cache: YES

Called Routine:

ASP−like Perl call:

    $Tag−>import(
        {
         table => VALUE,
         type => VALUE,
        },
        BODY
    )

 OR

    $Tag−>import($table, $type, $ATTRHASH, $BODY);

Attribute aliases

            base ==> table
            database ==> table
    [import table typeother_named_attributes]

Parameters Description Default

base Alias for table DEFAULT_VALUE

database Alias for table DEFAULT_VALUE

table DEFAULT_VALUE

type DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache YES

Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [import table type]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>import(  { table => VALUE_table
                     type => VALUE_type
}, $body  );

Interchange Documentation (Full)

61.37.2.13. [then] text [/then] 454



or similarly with positional parameters,

    $Tag−>import(table,type, $attribute_hash_reference, $body);

61.38.2. Description

Named attributes:

    [import table=table_name
            type=(TAB|PIPE|CSV|%%|LINE)
            continue=(NOTES|UNIX|DITTO)
            separator=c]

Import one or more records into a database. The type is any of the valid Interchange delimiter types, with the
default being defined by the setting of the database DELIMITER. The table must already be a defined
Interchange database table; it cannot be created on the fly. (If you need that, it is time to use SQL.)

The type of LINE and continue setting of NOTES is particularly useful, for it allows you to name your
fields and not have to remember the order in which they appear in the database. The following two imports are
identical in effect:

    [import table=orders]
    code: [value mv_order_number]
    shipping_mode: [shipping−description]
    status: pending
    [/import]

    [import table=orders]
    shipping_mode: [shipping−description]
    status: pending
    code: [value mv_order_number]
    [/import]

The code or key must always be present, and is always named code.

If you do not use NOTES mode, you must import the fields in the same order as they appear in the ASCII
source file.

The [import ....] TEXT [/import] region may contain multiple records. If using NOTES mode,
you must use a separator, which by default is a form−feed character (^L).

61.38.2.1. table

61.38.2.2. type

61.39. include

61.39.1. Summary

Parameters: file locale

Positional parameters in same order.

Interchange Documentation (Full)

61.38.2. Description 455



Pass attribute hash as last to subroutine: no

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: no

Called Routine:

ASP−like Perl call:

Not applicable.

    [include file locale]

Parameters Description Default

file DEFAULT_VALUE

locale DEFAULT_VALUE

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache no

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [include file locale]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>include(  { file => VALUE_file
                      locale => VALUE_locale
}, $body  );

or similarly with positional parameters,

    $Tag−>include(file,locale, $attribute_hash_reference, $body);

61.39.2. Description

Same as [file name] except interpolates for all Interchange tags and variables. Does NOT do locale
translations.

61.39.2.1. file

Interchange Documentation (Full)

61.39.2. Description 456



61.39.2.2. locale

61.40. index

Creates an index for the specified table.

61.40.1. Summary

    [index tableother_named_attributes]

Parameters Description Default

base Alias for table DEFAULT_VALUE

basefile Database filename. Exports the table to this filename if old or missing
before indexing. See also the export tag for additional relevant
attributes such as delimiter type, etc.

DEFAULT_VALUE

col alias for fields DEFAULT_VALUE

columns alias for fields DEFAULT_VALUE

database Alias for table DEFAULT_VALUE

export_only Just do the export if necessary (not the index). DEFAULT_VALUE

extension Index file extension (default "idx") DEFAULT_VALUE

fields field(s) to index DEFAULT_VALUE

fn alias for fields DEFAULT_VALUE

show_statusReturn '1' to the page if successful DEFAULT_VALUE

spec The index specification DEFAULT_VALUE

table DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate (reparse)No

Other_Characteristics

Invalidates cache YES

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [index table]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>index(  { table => VALUE_table
}, $body  );

or similarly with positional parameters,

    $Tag−>index(table, $attribute_hash_reference, $body);

Interchange Documentation (Full)

 61.39.2.2. locale 457



61.40.2. Description

Creates an index for the specified table.

61.40.2.1. basefile

Database filename. Exports the table to this filename if old or missing before indexing. See also the export
tag for additional relevant attributes such as delimiter type, etc.

61.40.2.2. col

alias for fields

61.40.2.3. columns

alias for fields

61.40.2.4. export_only

Just do the export if necessary (not the index).

61.40.2.5. extension

Index file extension (default "idx")

61.40.2.6. fields

field(s) to index

61.40.2.7. fn

alias for fields

61.40.2.8. show_status

Return '1' to the page if successful

61.40.2.9. spec

The index specification

61.40.2.10. table

61.41. item_list

61.41.1. Summary

Parameters: name

Interchange Documentation (Full)

61.40.2. Description 458



The attribute hash reference is passed after the parameters but before the container text argument. This
may mean that there are parameters not shown here.

Must pass named parameter interpolate=1 to cause interpolation.

This is a container tag, i.e. [item_list] FOO [/item_list]. Nesting: NO

Invalidates cache: YES

Called Routine:

ASP−like Perl call:

    NOTE: This would not usually be used with embedded Perl −− a better
    choice would normally be:

                 for(@$Items) { CODE }

    $Tag−>item_list(
        {
         name => VALUE,
        },
        BODY
    )

 OR

    $Tag−>item_list($name, $ATTRHASH, $BODY);

Attribute aliases

            cart ==> name
    [item_list nameother_named_attributes]

Parameters Description Default

cart Alias for name DEFAULT_VALUE

name DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache YES

Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [item_list name]
−−−
   TODO: (tag result)

Interchange Documentation (Full)

61.40.2. Description 459



ASP−like Perl call:

   $Tag−>item_list(  { name => VALUE_name
}, $body  );

or similarly with positional parameters,

    $Tag−>item_list(name, $attribute_hash_reference, $body);

61.41.2. Description

Within any page, the [item_list cart*] element shows a list of all the items ordered by the customer so far. It
works by repeating the source between [item_list] and [/item_list] once for each item ordered.

NOTE: The special tags that reference item within the list are not normal Interchange tags, do not take named
attributes, and cannot be contained in an HTML tag (other than to substitute for one of its values or provide a
conditional container). They are interpreted only inside their corresponding list container. Normal Interchange
tags can be interspersed, though they will be interpreted after all of the list−specific tags.

Between the item_list markers the following elements will return information for the current item:

61.41.2.1. [if−data table column]

If the database field column in table table is non−blank, the following text up to the [/if_data] tag is
substituted. This can be used to substitute IMG or other tags only if the corresponding source item is present.
Also accepts a [else]else text[/else] pair for the opposite condition.

61.41.2.2. [if−data ! table column]

Reverses sense for [if−data].

61.41.2.3. [/if−data]

Terminates an [if_data table column] element.

61.41.2.4. [if−field fieldname]

If the products database field fieldname is non−blank, the following text up to the [/if_field] tag is substituted.
If you have more than one products database table (see ProductFiles), it will check them in order until a
matching key is found. This can be used to substitute IMG or other tags only if the corresponding source item
is present. Also accepts a [else]else text[/else] pair for the opposite condition.

61.41.2.5. [if−field ! fieldname]

Reverses sense for [if−field].

61.41.2.6. [/if−field]

Terminates an [if_field fieldname] element.

Interchange Documentation (Full)

61.41.2. Description 460



61.41.2.7. [item−accessories attribute*, type*, field*, database*, name*]

Evaluates to the value of the Accessories database entry for the item. If passed any of the optional arguments,
initiates special processing of item attributes based on entries in the product database.

61.41.2.8. [item−code]

Evaluates to the product code for the current item.

61.41.2.9. [item−data database fieldname]

Evaluates to the field name fieldname in the arbitrary database table database, for the current item.

61.41.2.10. [item−description]

Evaluates to the product description (from the products file) for the current item.

In support of OnFly, if the description field is not found in the database, the description setting in the
shopping cart will be used instead.

61.41.2.11. [item−field fieldname]

Evaluates to the field name fieldname in the products database, for the current item. If the item is not found in
the first of the ProductFiles, all will be searched in sequence.

61.41.2.12. [item−increment]

Evaluates to the number of the item in the match list. Used for numbering search matches or order items in the
list.

61.41.2.13. [item−last]tags[/item−last]

Evaluates the output of the Interchange tags encased inside the tags, and if it evaluates to a numerical
non−zero number (i.e. 1, 23, or −1) then the list iteration will terminate. If the evaluated number is negative,
then the item itself will be skipped. If the evaluated number is positive, then the item itself will be shown but
will be last on the list.

      [item−last][calc]
        return −1 if '[item−field weight]' eq '';
        return 1 if '[item−field weight]' < 1;
        return 0;
        [/calc][/item−last]

If this is contained in your [item−list] (or [search−list] or flypage) and the weight field is empty,
then a numerical −1 will be output from the [calc][/calc] tags; the list will end and the item will not be shown.
If the product's weight field is less than 1, a numerical 1 is output. The item will be shown, but will be the last
item shown. (If it is an [item−list], any price for the item will still be added to the subtotal.)

61.41.2.14. [item−modifier attribute]

Evaluates to the modifier value of attribute for the current item.

Interchange Documentation (Full)

61.41.2.7. [item−accessories attribute*, type*, field*, database*, name*] 461



61.41.2.15. [item−next]tags[/item_next]

Evaluates the output of the Interchange tags encased inside, and if it evaluates to a numerical non−zero
number (i.e. 1, 23, or −1) then the item will be skipped with no output. Example:

      [item−next][calc][item−field weight] < 1[/calc][/item−next]

If this is contained in your [item−list] (or [search−list] or flypage) and the product's weight field is
less than 1, then a numerical 1 will be output from the [calc][/calc] operation. The item will not be shown. (If
it is an [item−list], any price for the item will still be added to the subtotal.)

61.41.2.16. [item−price n* noformat*]

Evaluates to the price for quantity n (from the products file) of the current item, with currency formatting. If
the optional "noformat" is set, then currency formatting will not be applied.

61.41.2.17. [discount−price n* noformat*]

Evaluates to the discount price for quantity n (from the products file) of the current item, with currency
formatting. If the optional "noformat" is set, then currency formatting will not be applied. Returns regular
price if not discounted.

61.41.2.18. [item−discount]

Returns the difference between the regular price and the discounted price.

61.41.2.19. [item−discount_subtotal]

Inserts the discounted subtotal of the ordered items.

61.41.2.20. [item−quantity]

Evaluates to the quantity ordered for the current item.

61.41.2.21. [item−subtotal]

Evaluates to the subtotal (quantity * price) for the current item. Quantity price breaks are taken into account.

61.41.2.22. [modifier−name attribute]

Evaluates to the name to give an input box in which the customer can specify the modifier to the ordered item.

61.41.2.23. [quantity−name]

Evaluates to the name to give an input box in which the customer can enter the quantity to order.

61.41.2.24. name

Interchange Documentation (Full)

61.41.2.15. [item−next]tags[/item_next] 462



61.42. label

The page label for goto. See [goto] tag for description. Note that this is not a standard tag, but is simply a
marker used by goto.

Parameter: name

   [goto name=label_name if=condition]
content to skip

   [label name=label_name]

61.42.1. Summary

NO SUMMARY SECTION

    [label ]

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache No

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [label ]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>label(  {
}, $body  );

or similarly with positional parameters,

    $Tag−>label(, $attribute_hash_reference, $body);

61.42.2. Description

NO DESCRIPTION SECTION

61.43. log

Log contained text to specified file.

Interchange Documentation (Full)

61.42. label 463



61.43.1. Summary

    [log fileother_named_attributes]

Parameters Description Default

arg Alias for file DEFAULT_VALUE

create Set create=1 to create the file if not present DEFAULT_VALUE

delim Line delimiter DEFAULT_VALUE

file name of file to log to. 'file=">filename"' also sets 'create' attribute. DEFAULT_VALUE

hide Suppress status otherwise returned by tag to the page. DEFAULT_VALUE

process Processing (if any) to apply to the content while logging

nostrip (don't strip leading/trailing whitespace and convert
"\r\n" to "\n"

• 

DEFAULT_VALUE

record_delim Record delimiter DEFAULT_VALUE

type Log type

text (ordinary text file)• 
quot (delimited entries)• 
error (add Interchange error formatting and time/location
stamps)

• 

DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache no

Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [log file]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>log(  { file => VALUE_file
}, $body  );

or similarly with positional parameters,

    $Tag−>log(file, $attribute_hash_reference, $body);

Interchange Documentation (Full)

61.43.1. Summary 464



61.43.2. Description

Log contained text to specified file.

61.43.2.1. create

Set create=1 to create the file if not present

61.43.2.2. delim

Line delimiter

61.43.2.3. file

name of file to log to. 'file=">filename"' also sets 'create' attribute.

61.43.2.4. hide

Suppress status otherwise returned by tag to the page.

61.43.2.5. process

Processing (if any) to apply to the content while logging

nostrip (don't strip leading/trailing whitespace and convert "\r\n" to "\n"• 

61.43.2.6. record_delim

Record delimiter

61.43.2.7. type

Log type

text (ordinary text file)• 
quot (delimited entries)• 
error (add Interchange error formatting and time/location stamps)• 

61.44. loop

61.44.1. Summary

Parameters: list

Positional parameters in same order.

The attribute hash reference is passed after the parameters but before the container text argument. This
may mean that there are parameters not shown here.

Must pass named parameter interpolate=1 to cause interpolation.

Interchange Documentation (Full)

61.43.2. Description 465



This is a container tag, i.e. [loop] FOO [/loop]. Nesting: NO

Invalidates cache: no

Called Routine:

ASP−like Perl call:

    NOTE: This would not usually be used with embedded Perl −− a better
    choice would normally be:

                 for(@list) { CODE }

    $Tag−>loop(
        {
         list => VALUE,
        },
        BODY
    )

 OR

    $Tag−>loop($list, $ATTRHASH, $BODY);

Attribute aliases

            arg ==> list
            args ==> list
    [loop listother_named_attributes]

Parameters Description Default

arg Alias for list DEFAULT_VALUE

args Alias for list DEFAULT_VALUE

list DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache no

Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [loop list]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>loop(  { list => VALUE_list

Interchange Documentation (Full)

61.43.2. Description 466



}, $body  );

or similarly with positional parameters,

    $Tag−>loop(list, $attribute_hash_reference, $body);

61.44.2. Description

Returns a string consisting of the LIST, repeated for every item in a comma−separated or space−separated list.
Operates in the same fashion as the [item−list] tag, except for order−item−specific values. Intended to pull
multiple attributes from an item modifier −− but can be useful for other things, like building a pre−ordained
product list on a page.

Loop lists can be nested reliably in Interchange by using the prefix="tag" parameter. New syntax:

    [loop list="A B C"]
        [loop prefix=mid list="[loop−code]1 [loop−code]2 [loop−code]3"]
            [loop prefix=inner list="X Y Z"]
                [mid−code]−[inner−code]
            [/loop]
        [/loop]
    [/loop]

You can do an arbitrary search with the search="args" parameter, just as in a one−click search:

    [loop search="se=Americana/sf=category"]
        [loop−code] [loop−field title]
    [/loop]

The above will show all items with a category containing the whole world "Americana", and will work the
same in both old and new syntax.

Ranges are accepted when you pass a list if you set the ranges option:

    [loop list="A..Z" ranges=1][loop−code] [/loop]

The above lists all of the characters from A to Z. Any Perl incrementing variable list will work, but most
commonly a range would be something like 1..100. You can mix regular sets −− 1..5 10 20 would
produce the list 1 2 3 4 5 10 20.

If you surround the repeating text section with a [list] [/list] anchor, the more−list, ml=N, and
on−match / no−match processing is done just as in [query] and [search−region].

Using the acclist option will parse Interchange option lists, as used in product options. The value is
available with [loop−code], the label with [loop−param label]. If the size data for SKU TS−007
was set to the string S=Small, M=Medium, L=Large, XL=Extra Large then you could produce a
select list of options this way:

    [loop list="[data products size TS−007]" acclist=1]
            [on−match]<SELECT NAME=mv_order_size>[/on−match]
                [list]<OPTION VALUE="[loop−code]"> [loop−param label]</OPTION>[/list]
        [on−match]</SELECT>[/on−match]
    [/loop]

Interchange Documentation (Full)

61.44.2. Description 467



Of course the above is probably more easily produced with [accessories code=TS−007
attribute=size], but there will be other uses for the capability. For instance:

         <SELECT NAME=Season>
    [loop acclist=1
                list="
                        Q1=Winter,
                        Q2=Spring,
                        Q3=Summer,
                        Q4=Fall
                "]> <OPTION VALUE="[loop−code]"> [loop−param label]</OPTION>
    [/loop]

If your parameter list needs to have spaces in the parameters, surround them with double or single quotes and
set the quoted=1 option: in product options. If the size data for SKU TS−007 was set to the string
S=Small, M=Medium, L=Large, XL=Extra Large then you could produce a select list of options
this way:

    [loop list="[data products size TS−007]" acclist=1]
            [on−match]<SELECT NAME=mv_order_size>[/on−match]
                [list]<OPTION VALUE="[loop−code]"> [loop−param label]</OPTION>[/list]
        [on−match]</SELECT>[/on−match]
    [/loop]

A nice shortcut is available when using [loop] to generate <OPTION> lists inside HTML
<SELECT>...</SELECT> blocks, when you want the user's last selection to be chosen by default on
subsequent page views. Interchange simplifies this with functions that output "SELECTED" (surrounded by
appropriate whitespace) for an <OPTION> if a certain value is set to the <OPTION VALUE="...">. (It sounds
more complicated than it really is.)

For example, consider:

<select name=search_cat>
[loop
        search="
                fi=cat
                st=db
                ra=yes
                rf=name
                tf=name
                un=1
        "
]
<option[selected search_cat [loop−code]>[loop−code]
[/loop]
</select>

When the user returns to the page, their last selection will be chosen as the default. (Assuming the value
search_cat was set after the search, which is normally is with standard searches.)

[loop] offers the option attribute, which can give loops that parse faster and are easier to write. The
following example is equivalent to the one above:

<select name=search_cat>
[loop
        option=search_cat
        search="

Interchange Documentation (Full)

61.44.2. Description 468



                fi=cat
                st=db
                ra=yes
                rf=name
                tf=name
                un=1
        "
]
<option>[loop−code]
[/loop]
</select>

It works equally well when option values are explicitly specified:

<option value="[loop−code]">So−called "[loop−code]"

See also the ictemplates documentation in the section "Checks and Selections."

61.44.2.1. [if−loop−data table column] IF [else] ELSE [/else][/if−loop−field]

Outputs the IF if the column in table is non−empty, and the ELSE (if any) otherwise.

See [if−prefix−data].

61.44.2.2. [if−loop−field column] IF [else] ELSE [/else][/if−loop−field]

Outputs the IF if the column in the products table is non−empty, and the ELSE (if any) otherwise. Will
fall through to the first non−empty field if there are multiple ProductFiles.

See [if−prefix−field].

61.44.2.3. [if−loop−param param] IF [else] ELSE [/else][/if−loop−param]

Only works if you have named return fields from a search (or from a passed list with the lr=1 parameter).

Outputs the IF if the returned param is non−empty, and the ELSE (if any) otherwise.

See [if−prefix−param].

61.44.2.4. [if−loop−pos N] IF [else] ELSE [/else][/if−loop−pos]

Only works if you have multiple return fields from a search (or from a passed list with the lr=1 parameter).

Parameters are numbered from ordinal 0, with [loop−pos 0] being the equivalent of [loop−code].

Outputs the IF if the returned positional parameter N is non−empty, and the ELSE (if any) otherwise.

See [if−prefix−pos].

61.44.2.5. [loop−accessories]

Outputs an [accessories ...] item.

Interchange Documentation (Full)

61.44.2.1. [if−loop−data table column] IF [else] ELSE [/else][/if−loop−field] 469



See [prefix−accessories].

61.44.2.6. [loop−change marker]

See [prefix−change].

61.44.2.7. [loop−code]

Evaluates to the code for the current item.

See [prefix−code].

61.44.2.8. [loop−data database fieldname]

Evaluates to the field name fieldname in the arbitrary database table database, for the current item.

See [prefix−data].

61.44.2.9. [loop−description]

Evaluates to the product description (from the products file, passed description in on−fly item, or description
attribute in cart) for the current item.

See [prefix−description].

61.44.2.10. [loop−field fieldname]

Evaluates to the field name fieldname in the database, for the current item.

See [prefix−field].

61.44.2.11. [loop−increment]

Evaluates to the number of the item in the list. Used for numbering items in the list.

Starts from integer 1.

See [prefix−increment].

61.44.2.12. [loop−last]tags[/loop−last]

Evaluates the output of the Interchange tags encased inside, and if it evaluates to a numerical non−zero
number (i.e. 1, 23, or −1) then the loop iteration will terminate. If the evaluated number is negative, then the
item itself will be skipped. If the evaluated number is positive, then the item itself will be shown but will be
last on the list.

      [loop−last][calc]
        return −1 if '[loop−field weight]' eq '';
        return 1 if '[loop−field weight]' < 1;
        return 0;
        [/calc][/loop−last]

Interchange Documentation (Full)

61.44.2.6. [loop−change marker] 470



If this is contained in your [loop list] and the weight field is empty, then a numerical −1 will be output
from the [calc][/calc] tags; the list will end and the item will not be shown. If the product's weight field is less
than 1, a numerical 1 is output. The item will be shown, but will be the last item shown.

61.44.2.13. [loop−next]tags[/loop−next]

Evaluates the output of the Interchange tags encased inside, and if it evaluates to a numerical non−zero
number (i.e. 1, 23, or −1) then the loop will be skipped with no output. Example:

      [loop−next][calc][loop−field weight] < 1[/calc][/loop−next]

If this is contained in your [loop list] and the product's weight field is less than 1, then a numerical 1
will be output from the [calc][/calc] operation. The item will not be shown.

61.44.2.14. [loop−price n* noformat*]

Evaluates to the price for optional quantity n (from the products file) of the current item, with currency
formatting. If the optional "noformat" is set, then currency formatting will not be applied.

61.44.2.15. list

61.45. mail

Mail contained text to recipient specified by 'to' using the program specified with the SendMailProgram
catalog directive.

61.45.1. Summary

    [mail toother_named_attributes]

Parameters Description Default

extra Additional headers (these will also be added to 'raw' messages) DEFAULT_VALUE

hide Suppress tag return value. This would otherwise be the 'success' attribute
setting.

DEFAULT_VALUE

raw Send it raw without creating headers and checking content, recipient,
subject, etc.

DEFAULT_VALUE

show The tag will return the final message with headers in the page DEFAULT_VALUE

success Tag return value if successful (default is 1). DEFAULT_VALUE

to DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache YES

Container tag Yes

Has Subtags No

Interchange Documentation (Full)

61.44.2.13. [loop−next]tags[/loop−next] 471



Nests No
Tag expansion example:

   [mail to]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>mail(  { to => VALUE_to
}, $body  );

or similarly with positional parameters,

    $Tag−>mail(to, $attribute_hash_reference, $body);

61.45.2. Description

Mail contained text to recipient specified by 'to' using the program specified with the SendMailProgram
catalog directive.

61.45.2.1. extra

Additional headers (these will also be added to 'raw' messages)

61.45.2.2. hide

Suppress tag return value. This would otherwise be the 'success' attribute setting.

61.45.2.3. raw

Send it raw without creating headers and checking content, recipient, subject, etc.

61.45.2.4. show

The tag will return the final message with headers in the page

61.45.2.5. success

Tag return value if successful (default is 1).

61.45.2.6. to

61.46. mvasp

Executes the ASP−style perl code contained by the tag. The code will run under the restrictions of the Safe
module. This is very similar to the [perl] tag, except that the standard '<%' and '%>' ASP delimiters allow
you to mix HTML and perl code.

Interchange Documentation (Full)

61.45.2. Description 472

http://www.perl.com/pub/doc/manual/html/lib/Safe.html


61.46.1. Summary

    [mvasp tables] ASP here [/mvasp]
    [mvasp tables="db1 db2 ..." other_named_attributes] ASP here [/mvasp]

Parameters Description Default

tables Database tables to be made available to ASP Perl codenone

table Alias for tables none

Attributes Default

failure none

no_return Always true

subs No

arg="subs" Same assubs

global No

file none

interpolate No

reparse No

Other_Characteristics

Invalidates cache Yes

Has Subtags <% and %>

Container tag Yes

Nests No
Tag expansion example:

   [mvasp tables="products" failure="ASP Broke <BR>"]
      <P>This is HTML</p>
      <% my $sku = $Values−>{code}; %>
      <P>More HTML</p>
      <% my $result = "Looked up SKU $sku. It is a ";
         $result .= $Tag−>data('products', 'description', $sku );
         $Document−>write( "$result <br>\n" ); %>
      <P>Still more HTML</p>
   [/mvasp]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
      <P>This is HTML</p>

      <P>More HTML</p>
      Looked up SKU os28044. It is a Framing Hammer <br>

      <P>Still more HTML</p>

61.46.1.1. See Also

perl, Interchange Programming

61.46.2. Description

Executes the ASP−style perl code contained by the tag. The code will run under the restrictions of the Safe
module. This is very similar to the [perl no_return=1] tag, except that the standard '<%' and '%>' ASP
delimiters allow you to mix HTML and perl code.

Interchange Documentation (Full)

61.46.1. Summary 473

http://www.perl.com/pub/doc/manual/html/lib/Safe.html


See the perl tag and ASP−Like Perl sections for more detail.

61.46.2.1. tables

Whitespace−separated list of database tables to make available within the ASP−Perl code. See perl tag.

61.46.2.2. failure

The value the tag should return in case the perl code fails the eval. See perl tag.

61.46.2.3. no_return

The return value of the perl code is always suppressed. If you want output from the ASP code sections, you
must explicitly write it with the &HTML or $Document−>write() functions.

You can also retrieve the return value of the perl code from the session hash via
[data session mv_perl_result]. See perl tag.

61.46.2.4. subs

Enable GlobalSub routines (requires catalog directive AllowGlobal). See perl tag.

61.46.2.5. global

Turn off Safe protection (requires catalog directive AllowGlobal). See perl tag.

61.46.2.6. file

Prepend the contents of the specified file or FileDatabase entry to the perl code before eval'ing it. See perl
tag.

61.46.2.7. Examples

See the ASP−Like Perl section of Interchange Programming.

61.47. nitems

Returns the total number of items ordered. Uses the current cart if none specified.

61.47.1. Summary

    [nitems name]

Parameters Description Default

compare Regular expression the specified qualifier attribute's value must match to
be counted. This replaces the truth value comparison.

Default: None (uses truth value of the specified qualifier
attribute)

• 

DEFAULT_VALUE

Interchange Documentation (Full)

 61.46.2.1. tables 474

http://www.perl.com/pub/doc/manual/html/lib/Safe.html


name Cart name

Default: current cart• 

DEFAULT_VALUE

qualifier An item attribute that must be true in order to count the item.

Default: None• 

DEFAULT_VALUE

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache YES

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [nitems name]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>nitems(  { name => VALUE_name
}, $body  );

or similarly with positional parameters,

    $Tag−>nitems(name, $attribute_hash_reference, $body);

61.47.2. Description

Expands into the total number of items ordered so far. Takes an optional cart name as a parameter.

61.47.2.1. compare

Regular expression the specified qualifier attribute's value must match to be counted. This replaces the truth
value comparison.

Default: None (uses truth value of the specified qualifier attribute)• 

61.47.2.2. name

Cart name

Default: current cart• 

61.47.2.3. qualifier

An item attribute that must be true in order to count the item.

Default: None• 

Interchange Documentation (Full)

61.47.2. Description 475



61.48. options

Builds HTML widgets as defined in the options table for selecting options associated with a given product.
This tag handles simple, matrix or modular options. See also the accessories tag.

Here is an illustrative example from the 'tools' sample data set of the foundation catalog:

===
   [options code=os28005]
−−−
   <input type=hidden name=mv_item_option value="logo">
     <SELECT NAME="mv_order_logo">
     <OPTION VALUE="c">Construct Something
     <OPTION VALUE="y" SELECTED>Your Logo</SELECT><BR>
   <input type=hidden name=mv_item_option value="color">
     <INPUT TYPE="radio" NAME="mv_order_color" VALUE="BLK" >&nbsp;Black
     <INPUT TYPE="radio" NAME="mv_order_color" VALUE="BEIGE" >&nbsp;Beige
     <INPUT TYPE="radio" NAME="mv_order_color" VALUE="WHITE" >&nbsp;White<BR>
   <input type=hidden name=mv_item_option value="bristle">
     <SELECT NAME="mv_order_bristle">
     <OPTION VALUE="synthetic">Synthetic
     <OPTION VALUE="camel">Camel Hair</SELECT>
===

61.48.1. Summary

    [options code]

Parameters Description Default

bold Boldfaces the labels if the 'label' option is set.

Default: False• 

DEFAULT_VALUE

code Product key (usually sku).

No default• 

DEFAULT_VALUE

joiner The joiner for the widgets.

Default: <BR>• 

DEFAULT_VALUE

label Shows labels for the options with the widgets.

The following example (using another item from the 'tools' data) illustrates the price and label
attributes:

===
   [options code=os28011 label=1 price=1]
−−−
   Handle<BR>
     <input type=hidden name=mv_item_option value="handle">
       <SELECT NAME="mv_order_handle">
       <OPTION VALUE="W">Wood handle
       <OPTION VALUE="E">Ebony handle ($20.00)</SELECT><BR>
   Blade material<BR>
     <input type=hidden name=mv_item_option value="blade">
       <SELECT NAME="mv_order_blade">

DEFAULT_VALUE

Interchange Documentation (Full)

61.48. options 476



       <OPTION VALUE="P">Plastic blade ($−1.22)
       <OPTION VALUE="S" SELECTED>Steel blade
       <OPTION VALUE="T">Titanium blade ($100.00)</SELECT>
===

(again, the output has been reformatted to fit the page).

Default: False• 
price Boolean. If set and the options have prices, the HTML widget(s) will show the prices. This is

like the price attribute of the accessories tag.

Note that the price_data setting comes from the 'price' column of the options table.
Technical note−− If your options table has different mappings, you can control this with
$::Variable−>{MV_OPTION_TABLE_MAP}

False

table Table to use for option attributes.

Default: 'options'• 

DEFAULT_VALUE

td Results as table rows. For example, compare the following example from the 'tools' sample data
set with the earlier example:

===
   [options code=os28005 td=1]
−−−
   <td><input type=hidden name=mv_item_option value="logo">
      <SELECT NAME="mv_order_logo">
      <OPTION VALUE="c">Construct Something
      <OPTION VALUE="y" SELECTED>Your Logo</SELECT></td>
   <td><input type=hidden name=mv_item_option value="color">
      <INPUT TYPE="radio" NAME="mv_order_color" VALUE="BLK" >&nbsp;Black
      <INPUT TYPE="radio" NAME="mv_order_color" VALUE="BEIGE" >&nbsp;Beige
      <INPUT TYPE="radio" NAME="mv_order_color" VALUE="WHITE" >&nbsp;White</td>
   <td><input type=hidden name=mv_item_option value="bristle">
      <SELECT NAME="mv_order_bristle">
      <OPTION VALUE="synthetic">Synthetic
      <OPTION VALUE="camel">Camel Hair</SELECT></td>
===

(Note that the output was reformatted to fit this page)

DEFAULT_VALUE

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache no

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [options code]
−−−
   TODO: (tag result)

ASP−like Perl call:

Interchange Documentation (Full)

61.48. options 477



   $Tag−>options(  { code => VALUE_code
}, $body  );

or similarly with positional parameters,

    $Tag−>options(code, $attribute_hash_reference, $body);

61.48.2. Description

NO DESCRIPTION SECTION

61.48.2.1. bold

Boldfaces the labels if the 'label' option is set.

Default: False• 

61.48.2.2. code

Product key (usually sku).

No default• 

61.48.2.3. joiner

The joiner for the widgets.

Default: <BR>• 

61.48.2.4. label

Shows labels for the options with the widgets.

The following example (using another item from the 'tools' data) illustrates the price and label attributes:

===
   [options code=os28011 label=1 price=1]
−−−
   Handle<BR>
     <input type=hidden name=mv_item_option value="handle">
       <SELECT NAME="mv_order_handle">
       <OPTION VALUE="W">Wood handle
       <OPTION VALUE="E">Ebony handle ($20.00)</SELECT><BR>
   Blade material<BR>
     <input type=hidden name=mv_item_option value="blade">
       <SELECT NAME="mv_order_blade">
       <OPTION VALUE="P">Plastic blade ($−1.22)
       <OPTION VALUE="S" SELECTED>Steel blade
       <OPTION VALUE="T">Titanium blade ($100.00)</SELECT>
===

(again, the output has been reformatted to fit the page).

Default: False• 

Interchange Documentation (Full)

61.48.2. Description 478



61.48.2.5. price

Boolean. If set and the options have prices, the HTML widget(s) will show the prices. This is like the price
attribute of the accessories tag.

Note that the price_data setting comes from the 'price' column of the options table.
Technical note−− If your options table has different mappings, you can control this with
$::Variable−>{MV_OPTION_TABLE_MAP}
Default: False• 

61.48.2.6. table

Table to use for option attributes.

Default: 'options'• 

61.48.2.7. td

Results as table rows. For example, compare the following example from the 'tools' sample data set with the
earlier example:

===
   [options code=os28005 td=1]
−−−
   <td><input type=hidden name=mv_item_option value="logo">
      <SELECT NAME="mv_order_logo">
      <OPTION VALUE="c">Construct Something
      <OPTION VALUE="y" SELECTED>Your Logo</SELECT></td>
   <td><input type=hidden name=mv_item_option value="color">
      <INPUT TYPE="radio" NAME="mv_order_color" VALUE="BLK" >&nbsp;Black
      <INPUT TYPE="radio" NAME="mv_order_color" VALUE="BEIGE" >&nbsp;Beige
      <INPUT TYPE="radio" NAME="mv_order_color" VALUE="WHITE" >&nbsp;White</td>
   <td><input type=hidden name=mv_item_option value="bristle">
      <SELECT NAME="mv_order_bristle">
      <OPTION VALUE="synthetic">Synthetic
      <OPTION VALUE="camel">Camel Hair</SELECT></td>
===

(Note that the output was reformatted to fit this page)

61.49. or

61.49.1. Summary

Parameters: type term op compare

THIS TAG HAS SPECIAL POSITIONAL PARAMETER HANDLING.

Pass attribute hash as last to subroutine: no

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: no

Interchange Documentation (Full)

 61.48.2.5. price 479



Called Routine:

Called Routine for positional:

ASP−like Perl call:

    $Tag−>or(
        {
         type => VALUE,
         term => VALUE,
         op => VALUE,
         compare => VALUE,
        }
    )

 OR

    $Tag−>or($type, $term, $op, $compare);

Attribute aliases

            base ==> type
            comp ==> compare
            operator ==> op
    [or type term op compare]

Parameters Description Default

base Alias for type DEFAULT_VALUE

comp Alias for compare DEFAULT_VALUE

compare DEFAULT_VALUE

op DEFAULT_VALUE

operator Alias for op DEFAULT_VALUE

term DEFAULT_VALUE

type DEFAULT_VALUE

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache no

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [or type term op compare]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>or(  { compare => VALUE_compare
                 op => VALUE_op
                 term => VALUE_term

Interchange Documentation (Full)

 61.48.2.5. price 480



                 type => VALUE_type
}, $body  );

or similarly with positional parameters,

    $Tag−>or(type,term,op,compare, $attribute_hash_reference, $body);

61.49.2. Description

NO Description

61.49.2.1. compare

61.49.2.2. op

61.49.2.3. term

61.49.2.4. type

61.50. order

Expands into a hypertext link which will include the specified item in the list of products to order and display
the order page.

61.50.1. Summary

    [order code quantity]Link Text[/order]
    [order code=os28044 quantity=2]Link Text</A>

Parameters Description Default

code This is the unique identifier for the item, typically the SKU in the products tablenone

quantity Quantity to order 1

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache No

Container tag No

Has end tag No ([/order] is a macro for </A>)
Tag expansion example:

   [order os28044 2]Buy Framing Hammer[/order]
−−−
   <A HREF="http://localhost.localdomain/cgi−bin/tag72/ord/basket?\
   mv_session_id=6CZ2whqo&mv_pc=1&mv_action=refresh&\
   mv_order_item=os28044&mv_order_quantity=3">Buy Framing Hammer</A>

ASP−like Perl call:

    $Tag−>order($code, $quantity);

Interchange Documentation (Full)

61.49.2. Description 481



61.50.2. Description

Expands into a hypertext link which will include the specified code in the list of products to order and display
the order page. code should be a product code listed in one of the "products" databases.

61.50.3. How to Order an Item

Interchange can either use a form−based order or a link−based order to place an item in the shopping cart. The
order tag creates a link−based order.

You can use the area tag with form variables if you need more control, for example, to change frames for
the order:

   <A HREF="[area href=ord/basket
                  form="mv_order_item=os28044
                        mv_order_quantity=2
                        mv_action=refresh"]"
    TARGET=newframe> Order Framing Hammer</A>

To order with a form, you set the form variable mv_order_item to the item−code/SKU and use the
refresh action:

   <FORM ACTION="[process]" METHOD=POST>
   <INPUT TYPE=hidden  NAME="mv_todo"        VALUE="refresh">
   <INPUT TYPE=hidden  NAME="mv_order_item"  VALUE="os28044">

   Order <INPUT NAME="mv_order_quantity" SIZE=3 VALUE=1> Framing Hammer

   <INPUT TYPE=submit VALUE="Order!">
   </FORM>

Groups of items may be batched:

   <FORM ACTION="[process]" METHOD=POST>
   <INPUT TYPE=hidden  NAME="mv_todo"        VALUE="refresh">

   <INPUT TYPE=hidden  NAME="mv_order_item"  VALUE="TK112">
   <INPUT NAME="mv_order_quantity" SIZE=3> Standard Toaster

   <INPUT TYPE=hidden  NAME="mv_order_item"  VALUE="TK200">
   <INPUT NAME="mv_order_quantity" SIZE=3> Super Toaster

   <INPUT TYPE=submit VALUE="Order!">
   </FORM>

Items that have a quantity of zero (or blank) will be skipped. Only items with a positive quantity will be
placed in the basket.

Attributes like size or color may be specified at time of order. See the accessories tag for detail.

61.51. page

Expands to a hyperlink to an Interchange page or action, including surrounding <A HREF ...>. The URL
within the link includes the Interchange session ID and supplied arguments. The optional [/page] is simply a

Interchange Documentation (Full)

61.50.2. Description 482



macro for </A>.

If you do not want the <A HREF ...>, use the area tag instead −− these are equivalent:

    [page href=dir/page arg=mv_arg]TargetName[/page]
    <A HREF="[area href=dir/page arg=mv_arg]">TargetName</A>

61.51.1. Summary

    [page href arg]
    [page href=dir/page arg=page_arguments other_named_attributes]

Parameters Description Default

href Path to Interchange page or action

Special arguments

'scan' treats arg as a search argument♦ 
'http://...' external link (requires form
attribute)

♦ 

process

arg Interchange arguments to page or action none

base alias for arg none

Attributes Default

extra none

form none

search No

secure No

interpolate (reparse)No

Other_Characteristics

Invalidates cache No

Macro No

Has end tag No ([/page] is a macro for </A>)
Tag expansion example:

   [page href=dir/page.html arg="arg1=AA/arg2=BB"]

   <a href="www.here.com/cgi−bin/mycatalog/page.html?mv_session_id=6CZ2whqo&\
   mv_pc=1&mv_arg=arg1%3dAA/arg2%3dBB">

ASP−like Perl call:

    $Tag−>page(  { href => "dir/page",
                   arg  => "arguments", }  );

or similarly with positional parameters,

    $Tag−>page($href, $arg, $attribute_hash_reference);

Using arrayref for joined search (see also Attribute Arrays and Hashes)

Interchange Documentation (Full)

61.51.1. Summary 483



    my $searchref = [ "se=hammer/fi=products/sf=description",
                      "se=plutonium/fi=products/sf=description", ];

    $Tag−>page( { href   => 'scan',
                  search => $searchref, } );

61.51.1.1. See Also

area

61.51.2. Description

The page tag inserts a hyperlink to the specified Interchange page or action. For example, [page shirts] will
expand into

   <a href="http://www.here.com/cgi−bin/mycatalog/shirts?mv_session_id=6CZ2whqo&mv_pc=1">

The catalog page displayed will come from "shirts.html" in the pages directory.

The additional argument will be passed to Interchange and placed in the {arg} session parameter. This allows
programming of a conditional page display based on where the link came from. The argument is then
available with the tag [data session arg], or the embedded Perl session variable $Session−>{arg}. Spaces and
some other characters will be escaped with the %NN HTTP−style notation and unescaped when the argument
is read back into the session.

For better performance, Interchange can prebuild and cache pages that would otherwise be generated
dynamically. If Interchange has built such a static page for the target, the page tag produces a link to the
cached page whenever the user has accepted and sent back a cookie with the session ID. If the user did not
accept the cookie, Interchange cannot use the cache, since the link must then include the mv_session_id
argument in order to preserve session.

61.51.2.1. form

The optional form argument allows you to encode a form in the link.

        [page form="mv_order_item=os28044
                    mv_order_size=15oz
                    mv_order_quantity=1
                    mv_separate_items=1
                    mv_todo=refresh"] Order 15oz Framing Hammer</A>

The two form values mv_session_id and mv_arg are automatically added when appropriate. The form value
mv_arg receives the value of the tag's arg parameter.

This would generate a form that ordered quantity one of item number os28044 with size 15oz. The item
would appear on a separate line in the shopping cart, since mv_separate_items is set. Since the href is
not set, you will go to the default shopping cart page −− alternatively, you could have set
mv_orderpage=yourpage to go to yourpage.

All normal Interchange form caveats apply −− you must have an action, you must supply a page if you don't
want to go to the default, etc.

Interchange Documentation (Full)

61.51.1.1. See Also 484



You can theoretically submit any form with this, though none of the included values can have newlines or
trailing whitespace. If you want to do something like that you will have to write a UserTag.

If the parameter href is not supplied, process is used, causing normal Interchange form processing.

If the href points to an http:// link, then no Interchange URL processing will be done, but the URL will
include mv_session_id, mv_pc, and any arguments supplied with the arg attribute:

       [page  href="http://www.elsewhere.net/cgi/script"
              form="cgi_1=ONE
                    cgi_2=TWO"
               arg="Interchange argument"]External link</A>

       <A HREF="http://www.elsewhere.net/cgi/script?\
        mv_session_id=6CZ2whqo&mv_pc=1&mv_arg=Interchange%20argument&\
        cgi_1=ONE&cgi_2=TWO">External link</A>

61.51.2.2. search

Interchange allows you to pass a search in a URL. There are two ways to do this:

Place the search specification in the named search attribute.
Interchange will ignore the href parameter (the link will be set to 'scan'.♦ 
If you give the arg parameter a value, that value will be available as [value mv_arg] within
the search display page.

♦ 

1. 

Set the href parameter to 'scan' and set arg to the search specification.
Note that you can use this form positionally −− the values go into href and arg, so you do
not have to name parameters.

♦ 
2. 

These are identical:

   [page scan
         se=Impressionists
         sf=category]
      Impressionist Paintings
   [/page]

   [page href=scan
          arg="se=Impressionists
               sf=category"]
      Impressionist Paintings
   </A>

   [page search="se=Impressionists
                 sf=category"]
      Impressionist Paintings
   [/page]

Here is the same thing from a non−Interchange page (e.g., a home page), assuming '/cgi−bin/mycatalog' is the
CGI path to Interchange's vlink):

     <A HREF="/cgi−bin/mycatalog/scan/se=Impressionists/sf=category">
        Impressionist Paintings
     </A>

Interchange Documentation (Full)

 61.51.2.2. search 485



Sometimes, you will find that you need to pass characters that will not be interpreted positionally. In that case,
you should quote the arguments:

    [page href=scan
          arg=|
                se="Something with spaces"
          |]

See the Search and Form Variables appendix for a listing of the form variables along with two−letter
abbreviations and descriptions.

They can be treated just the same as form variables on the page, except that they can't contain spaces, '/' in a
file name, or quote marks. These characters can be used in URL hex encoding, i.e. %20 is a space, %2F is a /,
etc. −− &sp; or &#32; will not be recognized. If you use one of the methods below to escape these "unsafe"
characters, you won't have to worry about this.

You may specify a one−click search in three different ways. The first is as used in previous versions, with the
scan URL being specified completely as the page name. The second two use the "argument" parameter to the
[page ...] or [area ...]> tags to specify the search (an argument to a scan is never valid anyway).

61.51.2.3. Original syntax

If you wish to do an OR search on the fields category and artist for the strings "Surreal" and "Gogh", while
matching substrings, you would do:

 [page scan se=Surreal/se=Gogh/os=yes/su=yes/sf=artist/sf=category]
    Van Gogh −− compare to surrealists
 [/page]

In this method of specification, to replace a / (slash) in a file name (for the sp, bd, or fi parameter) you must
use the shorthand of ::, i.e. sp=results::standard. (This may not work for some browsers, so you should
probably either put the page in the main pages directory or define the page in a search profile.)

61.51.2.4. Ampersand syntax

You can substitute & for / in the specification and be able to use / and quotes and spaces in the specification.

 [page scan se="Van Gogh"&sp=lists/surreal&os=yes&su=yes&sf=artist&sf=category]
    Van Gogh −− compare to surrealists
 [/page]

Any "unsafe" characters will be escaped.

61.51.2.5. Multi−line syntax

You can specify parameters one to a line, as well.

    [page scan
        se="Van Gogh"
        sp=lists/surreal
        os=yes
        su=yes
        sf=artist
        sf=category

Interchange Documentation (Full)

61.51.2.3. Original syntax 486



    ] Van Gogh −− compare to surrealists [/page]

Any "unsafe" characters will be escaped. You may not search for trailing spaces in this method; it is allowed
in the other notations.

61.51.2.6. Joined searches

You can also specify a joined search using an attribute array (see Attribute Arrays and Hashes):

    [page href=scan
      search.0="se=fragrant
                fi=products
                sf=smell"
      search.1="se=purple
                sf=color"
      search.2="se=perennial
                sf=type"]

The search routine called by the page tag automatically adds the other relevant search specification elements,
including the 'co=yes' to indicate a combined search (joined searches are described in the Interchange
database documentation).

61.51.2.7. [/page]

This is not an actual end tag, but simply a macro that expands to </A>. The following two lines are
equivalent:

  [page shirts]Our shirt collection[/page]
  [page shirts]Our shirt collection</A>

Tip: In large pages, just use the </A> tag for a small performance improvement.

61.52. perl

Executes the perl code contained by the tag. The code will run under the restrictions of Perl's Safe module by
default. The tag expands to the value returned by the enclosed code (i.e., printing to STDOUT or STDERR is
useless).

See also Interchange Programming.

61.52.1. Summary

    [perl tables] Code here [/perl]
    [perl tables="db1 db2 ..." other_named_attributes] Code here [/perl]

Parameters Description Default

tables Database tables to be made available to ASP Perl codenone

table Alias for tables none

Attributes Default

failure none

no_return No

Interchange Documentation (Full)

61.51.2.6. Joined searches 487

http://www.perl.com/pub/doc/manual/html/lib/Safe.html


subs No

arg="subs" Same assubs

global No

file none

number_errorsnone

eval_label none

short_errors none

trim_errors none

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache Yes

Has Subtags No

Container tag Yes
Tag expansion example:

   [perl tables="products" failure="Perl code error <BR>"]
my $result = "Looked up SKU $Values−>{code}. It is a ";

      $result .= $Tag−>data('products', 'description', $Values−>{code} );
return ("$result <br>\n");

   [/perl]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
   Looked up SKU os28044. It is a Framing Hammer <br>

ASP−like Perl call: (e.g., to use it like a runtime eval() within your code)

    $Tag−>perl(  { tables  => "products", },
                 $code  );

or similarly with positional parameters,

    $Tag−>perl( $tables, $attribute_hash_reference );

61.52.1.1. See Also

See also Interchange Programming, [calc], and [mvasp].

61.52.2. Description

This tag allows you to embed perl code within an Interchange page. The code will run under the restrictions of
Perl's Safe module by default. Perl's 'warnings' and 'strict' pragmas are both turned off, and Safe will
block you from turning them on, since it blocks Perl's 'use' command. (This is not usually a problem, since
you should probably use an alternative such as a usertag if your code is complex enough to need strict.)

The tag expands to the value returned by the enclosed code (i.e., printing to STDOUT or STDERR is useless).

    [perl]
        $name    = $Values−>{name};
        $browser = $Session−>{browser};

return "Hi, $name! How do you like your $browser?

Interchange Documentation (Full)

61.52.1.1. See Also 488

http://www.perl.com/pub/doc/manual/html/lib/Safe.html
http://www.perl.com/pub/doc/manual/html/lib/Safe.html


    [/perl]

Object references are available for most Interchange tags and functions, as well as direct references to
Interchange session and configuration values.

Object Description

$CGI−>{key} Hash reference to raw submitted values

$CGI_array−>{key} Arrays of submitted values

$Carts−>{cartname} Direct reference to shopping carts

$Config−>{key} Direct reference to $Vend::Cfg

$DbSearch−>array(@args)Do a DB search and get results

$Document−>header() Writes header lines

$Document−>send() Writes to output

$Document−>write() Writes to page

$Scratch−>{key} Direct reference to scratch area

$Session−>{key} Direct reference to session area

$Tag−>tagname(@args) Call a tag as a routine (UserTag too!)

$TextSearch−>array(@args)Do a text search and get results

$Values−>{key} Direct reference to user form values

$Variable−>{key} Config variables (same as $Config−>{Variable});

&HTML($html) Same as $Document−>write($html);

&Log($msg) Log to the error log
For full descriptions of these objects, see Interchange Perl Objects.

61.52.2.1. tables

This should be a whitespace−separated list of database tables you want to make available within the Perl code.

If you wish to use database values in your Perl code, the tag must pre−open the table(s) you will be using.
Here is an example using the products table:

    [perl tables=products]
my $cost = $Tag−>data('products', 'our_cost', $Values−>{code});

        $min_price = $cost * ( 1 + $min_margin );
return ($min_price > $sale_price) ? $min_price : $sale_price;

    [/perl]

If you do not do this, your code will fail with a runtime Safe error when it tries to look up 'our_cost' in the
products database with the data tag.

Even if you properly specify the tables to pre−open, some database operations will still be restricted because
Safe mode prohibits creation of new objects. For SQL, most operations can be performed if the
Safe::Hole module is installed. Otherwise, you may have to set the global=1 attribute to use data from
SQL tables.

Interchange databases can always be accessed as long as they are pre−opened by using an item first.

Technical note:

Interchange Documentation (Full)

 61.52.2.1. tables 489

http://www.perl.com/pub/doc/manual/html/lib/Safe.html


Safe objects (including database handles) may persist within a page, and the perl tag does not necessarily
destroy objects created earlier in the page. As a result, your code may work even though you did not set
'tables' properly, only to break later when you change something elsewhere on the page.

For example, this will work because the first call to [accessories ...] opens the (default) products table:

  [accessories code=os28044 attribute=size]

  [perl]
    return $Tag−>accessories( { attribute => 'size',
                                code      => 'os28085' } );
  [/perl]

If you remove the first [accessories ...] tag, then the $Tag−>accessories call will fail with a Safe error unless
you also set 'tables=products' in the perl tag.

The moral of this story is to ensure that you pass all necessary tables in the perl tag.

61.52.2.2. failure

If your code contains a compile or runtime error and fails to evaluate (i.e., eval($code) would set $@), the tag
will return the value set for the failure attribute. The error will be logged as usual.

For example,

    [perl failure="It Broke"]
my $cost = $Tag−>data('products', 'our_cost', $Values−>{code});

        $min_price = $cost * ( 1 + $min_margin );
return ($min_price > $sale_price) ? $min_price : $sale_price;

    [/perl]

will return 'It Broke' because the $Tag−>Data(...) call will fail under the Safe module (see tables above).

61.52.2.3. no_return

If no_return=1, this attribute suppresses the return value of the perl code.

You can retrieve the return value from the session hash via [data session mv_perl_result] until it
gets overwritten by another perl tag.

If no_return is set, the perl tag will return any output explicitly written with the &HTML or
$Document−>write() functions.

Note:

If no_return is not set, then the $Document−>write() buffer is not returned (unless you use
$Document−>hot(1) or $Document−>send(), in which case the contents of the write buffer will probably
appear before anything else on the page). See Interchange Perl Objects for more detail.

Here is an example:

    [perl tables=products no_return=1]
my $cost = $Tag−>data('products', 'our_cost', $Values−>{code});

Interchange Documentation (Full)

 61.52.2.2. failure 490

http://www.perl.com/pub/doc/manual/html/lib/Safe.html
http://www.perl.com/pub/doc/manual/html/lib/Safe.html
http://www.perl.com/pub/doc/manual/html/lib/Safe.html


        $min_price = $cost * ( 1 + $min_margin );
        &HTML( ($min_price > $sale_price) ? $min_price : $sale_price );

return ($min_price > $sale_price) ? 'too low' : 'ok';
    [/perl]

This will put the same price on the page as our earlier example, but

$Session−>{mv_perl_result} will be either 'too low' or 'ok'.

The [mvasp] tag is very similar to [perl no_return=1].

61.52.2.4. subs

If you have set the AllowGlobal catalog directive, setting subs=1 will enable you to call GlobalSub
routines within the enclosed perl code. Note that this can compromise security.

61.52.2.5. global

If you have set the AllowGlobal catalog directive, setting global=1 will turn off Safe protection within
the tag.

The code within the tag will then be able to do anything the user ID running Interchange can. This seriously
compromises security, and you should know what you are doing before using it in a public site. It is especially
dangerous if a single Interchange server is shared by multiple companies or user IDs.

Also, full 'use strict' checking is turned on by default when in global mode. You can turn it off by using
'no strict;' within your code. Note that any strict errors will go to the Interchange error logs, and the
tag itself will fail silently within the page.

61.52.2.6. file

This prepends the contents of the specified file or FileDatabase entry to the enclosed perl code (if any), then
executes as usual.

For example,

    [perl file="my_script.pl"][/perl]

would execute myscript.pl and expand to its return value.

Absolute filenames (or filenames containing '../') are prohibited by the NoAbsolute catalog directive.

If the filename is not absolute, Interchange first looks for a file in the current directory, then in the list set with
the TemplateDir catalog directive. If it fails to find a file by that name, it then looks for an entry by that
name in the database specified with the FileDatabase catalog directive.

61.52.2.7. file

Add line numbers to the source code displayed in the error.log, amazingly useful if some of the perl is being
generated elsewhere and interpolated.

Interchange Documentation (Full)

 61.52.2.4. subs 491

http://www.perl.com/pub/doc/manual/html/lib/Safe.html


61.52.2.8. eval_label

Set to a string, will replace the (eval ###) in the error message with this label, handy to quickly track down
bugs when you have more than one perl block in the page, especially if you are using short_errors.

61.52.2.9. short_errors

If set to a true value, syntax errors and the like in perl tags will log just the error, not the whole source code of
the block in question, handy when you have the code open in an editor anyway and don't want the error itself
to get scrolled away when running 'tail −f error.log'.

61.52.2.10. trim_errors

If set to a number, and the error produced includes a line number, then only that number of lines before and
after the broken line itself will be displayed, instead of the whole block.

61.53. price

61.53.1. Summary

Parameters: code

Positional parameters in same order.

The attribute hash reference is passed to the subroutine after the parameters as the last argument. This may
mean that there are parameters not shown here.

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: no

Called Routine:

ASP−like Perl call:

    $Tag−>price(
        {
         code => VALUE,
        }
    )

 OR

    $Tag−>price($code, $ATTRHASH);

Attribute aliases

            base ==> mv_ib
    [price codeother_named_attributes]

Parameters Description Default

Interchange Documentation (Full)

 61.52.2.8. eval_label 492



base Alias for mv_ib DEFAULT_VALUE

code DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate (reparse)No

Other_Characteristics

Invalidates cache no

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [price code]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>price(  { code => VALUE_code
}, $body  );

or similarly with positional parameters,

    $Tag−>price(code, $attribute_hash_reference, $body);

61.53.2. Description

Arguments:

        code       Product code/SKU
        base       Only search in product table *base*
        quantity   Price for a quantity
        discount   If true(1), check discount coupons and apply
        noformat   If true(1), don't apply currency formatting

Expands into the price of the product identified by code as found in the products database. If there is more
than one products file defined, they will be searched in order unless constrained by the optional argument
base. The optional argument quantity selects an entry from the quantity price list. To receive a raw number,
with no currency formatting, use the option noformat=1.

Interchange maintains a price in its database for every product. The price field is the one required field in the
product database −− it is necessary to build the price routines.

For speed, Interchange builds the code that is used to determine a product's price at catalog configuration
time. If you choose to change a directive that affects product pricing you must reconfigure the catalog.

Quantity price breaks are configured by means of the CommonAdjust directive. There are a number of
CommonAdjust recipes which can be used; the standard example in the demo calls for a separate pricing table
called pricing. Observe the following:

   CommonAdjust  pricing:q2,q5,q10,q25, ;products:price, ==size:pricing

Interchange Documentation (Full)

61.53.2. Description 493



This says to check quantity and find the applicable column in the pricing database and apply it. In this case, it
would be:

    2−4      Column *q2*
    5−9      Column *q5*
    10−24    Column *q10*
    25 up    Column *q25*

What happens if quantity is one? It "falls back" to the price that is in the table products, column price.

After that, if there is a size attribute for the product, the column in the pricing database corresponding to that
column is checked for additions or subtractions (or even percentage changes).

If you use this tag in the demo:

    [price code=99−102 quantity=10 size=XL]

the price will be according to the q10 column, adjusted by what is in the XL column. (The row is of course
99−102.) The following entry in pricing:

  code    q2   q5   q10  q25  XL
  99−102  10   9    8    7    .50

Would yield 8.50 for the price. Quantity of 10 in the q10 column, with 50 cents added for extra large (XL).

Following are several examples based on the above entry as well as this the entry in the products table:

  code    description   price    size
  99−102  T−Shirt       10.00    S=Small, M=Medium, L=Large*, XL=Extra Large

NOTE: The examples below assume a US locale with 2 decimal places, use of commas to separate, and a
dollar sign ($) as the currency formatting.

  TAG                                          DISPLAYS
  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−     −−−−−−−−
  [price 99−102]                               $10.00
  [price code="99−102"]                        $10.00
  [price code="99−102" quantity=1]             $10.00
  [price code="99−102" noformat=1]             10
  [price code="99−102" quantity=5]             $9.00
  [price code="99−102" quantity=5 size=XL]     $9.50
  [price code="99−102" size=XL]                $10.50
  [price code="99−102" size=XL noformat=1]     10.5

Product discounts for specific products, all products, or the entire order can be configured with the [discount
...] tag. Discounts are applied on a per−user basis −− you can gate the discount based on membership in a club
or other arbitrary means.

Adding [discount 99−102] $s * .9[/discount] deducts 10% from the price at checkout, but the price tag will
not show that unless you add the discount=1 parameter.

    [price code="99−102"]            −−>   $10.00
    [price code="99−102" discount=1] −−>   $9.00

See Product Discounts.

Interchange Documentation (Full)

61.53.2. Description 494



61.53.2.1. code

61.54. process

This is a shortcut for the 'process' action, expanding to your catalog URL and session ID. It is analogous to the
area tag for the 'process' page, but is more limited. The following expansion is illustrative:

   [process target=targetframe]
−−−
   http://www.here.com/cgi−bin/mycatalog/process.html?\
   id=6CZ2whqo" TARGET="targetframe

(the trailing backslash indicates continuation, i.e., the result should be only one line)

Note the mismatched quotes in the expansion. Your surrounding HTML should supply the containing quotes,
like this:

   <A HREF="[process target=targetframe]">...

Aliases: process_target, process_order

61.54.1. Summary

    [process target secure]
    [process target=targetframe secure=1 other_named_attributes]

Parameters Description Default

target The target frame or window None

secure Boolean. If true (secure=1), the URL will link to your secure server.No

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache No

Container tag No
Tag expansion example:

   [process targetframe 1]
−−−
   http://secure.here.com/cgi−bin/mycatalog/process.html?\
   id=6CZ2whqo" TARGET="targetframe

ASP−like Perl call:

    $Tag−>process(  { target => 'frametarget',
                      secure => 1, } );

or similarly with positional parameters,

    $Tag−>process($target, $secure, $attribute_hash_reference);

Interchange Documentation (Full)

 61.53.2.1. code 495



61.55. process_search

This is an exact alias for [area search].

61.56. query

Passes SQL statements through to SQL databases, or allows SQL queries via Interchange's database
abstraction into non−SQL databases and text files. The latter requires the Perl SQL Statement module
(included with Bundle::Interchange from CPAN).

61.56.1. Summary

    [query sql]
    [query sql="SQL_query_text" other_named_attributes]

Parameters Description Default

sql The SQL statement.

Passed directly through to an SQL database.• 
For a non−SQL table, the tag interprets your SQL first. See the SQL Statement
module for limitations and detail.

• 

none

query Alias for sql none

Attributes Default

table products

base (alias for table) products

type (row_count, html, list, textref)none: uses arrayref="" if no type

arrayref arrayref="" if no type given

hashref none

more (type=list) No

xx form var. abbrev. (type=list) see form variable

 (type=list) sql

list_prefix (type=list) list

random (type=list) No

safe_data (type=list) No

label (type=list) current

form (type=list) none

wantarray No

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache No

Container tag Yes

Has subtags Yes

Nests No

Interchange Documentation (Full)

61.55. process_search 496

http://search.cpan.org/doc/JWIED/SQL-Statement-0.1017/lib/SQL/Statement.pm
http://search.cpan.org/doc/JWIED/SQL-Statement-0.1017/lib/SQL/Statement.pm


Tag usage example:

This will list sku, description and price for ten products per page, followed by hyperlinks to the other pages of
the list. Note that you may interpolate Interchange tags in the usual way if you double−quote the SQL
statement.

   [query sql="select sku, description, price from products where price < [value mv_arg]"
         type=list
         more=1
           ml=10]

      [on_match]Matched<br>[/on_match]
      [no_match]Not Found<br>[/no_match]

      [list]
        [sql−code] [sql−param description] [sql−price]
      [/list]

      [more_list]
        [more]
      [/more_list]
   [/query]

ASP−like Perl call:

my $sql = "select * from products order by price";
my $result_array = $Tag−>query( { sql => $sql,  },

                                   $body );
my ($same_results, $col_name_hash, $col_name_array) =

                      $Tag−>query( { sql => $sql,  },
                                   $body );

my $result_hasharray = $Tag−>query( { sql     => $sql,
                                         hashref => 'my_results',  },
                                       $body );

or similarly with positional parameters,

    $Tag−>query( $sql, $attribute_hash_reference, $body);

61.56.2. Description

The query tag allows you to make SQL queries. If you are using an SQL database table, the tag will pass
your SQL statement directly to the database and return the result.

If your table is not in an SQL database (for example, GDBM, text, LDAP, and in−memory tables),
Interchange will internally convert it to an Interchange search specification with the Perl SQL Statement
module (included with Bundle::Interchange from CPAN). This means that you can use simple SQL queries
regardless of the underlying database implementation.

61.56.2.1. Subtags

For list queries (type=list), the following subtags are available:

Subtag Usage

Interchange Documentation (Full)

61.56.2. Description 497

http://search.cpan.org/doc/JWIED/SQL-Statement-0.1017/lib/SQL/Statement.pm


on_match  [on_match]
do this if something matched

 [/on_match]

no_match  [no_match]
do this if nothing matched

 [/no_match]

list  [list_prefix]
do this for each matched item

 [/list_prefix]

The 'list' subtag defines a region where you can use any of the looping subtags that work in
array−list context (see Looping tags and Sub−tags).

The default looping tag prefix will be 'sql'. Note however that you can override this by setting the
prefix attribute in the enclosing query tag.

Similarly, the list_prefix attribute renames the [list] subtag itself to the value you set (see
list_prefix below).

more_list  [more_list]
   [more]
 [/more_list]

The 'more_list' and 'more' subtags are used when paginating the query results (see 'more'
attribute). The [more] subtag will expand to a list of links to the other pages of the query results.

See also the example at the end of the Summary section above.

61.56.2.2. Perl and ASP usage

If you are calling $Tag−>query within a perl tag (or whenever the code is secured by the Safe.pm module),
you must be sure to set the tables attribute properly in the enclosing perl tag (see the perl tag
documentation for detail).

The types that return text to a page (i.e., row_count, html, and textref) work as usual, returning an appropriate
string. Note that you may also have access to the results as an array reference in
$Vend::Interpolate::Tmp−>{''} for the life of the page.

If you do not set a type, the tag will return a reference to an array of array references, since the default with no
type is arrayref="".

If you call $Tag−>query in scalar context and set arrayref or hashref, it will return your results as a reference
to an array of either arrayrefs or hashrefs, respectively (i.e., the same data structures you would get from Perl's
DBI.pm module with fetchall_arrayref).

In list context, the first returned element is the aforementioned reference to your results. The second element
is a hash reference to your column names, and the third element is an an array reference to the list of column
names.

The following examples should be illustrative:

  [perl tables=products]
my $sql = "select sku, price, description from products

where price < 10 order by price";

Interchange Documentation (Full)

61.56.2.2. Perl and ASP usage 498

http://www.perl.com/pub/doc/manual/html/lib/Safe.html


my $results = $Tag−>query( { sql => $sql, } );
my ( $same_results, $col_name_hashref, $col_name_arrayref)

        = $Tag−>query( { sql => $sql, } );

my $hash_results = $Tag−>query( {     sql => $sql,
                                      hashref => 'my_results' } );

# $Vend::Interpolate::Tmp−>{my_results} == $hash_results
# $Vend::Interpolate::Tmp−>{''} == $results == $same_results

return $Tag−>uneval( $results );
  [/perl]

Technical Note: The $Tag−>query() call works a bit differently in GlobalSubs and UserTags than within a
perl tag. Specifically, in a GlobalSub or global UserTag, if you call query() in list context and want the three
references (i.e., results, column hash and column array), then you need to set the 'wantarray=1' attribute in the
query() call. See the wantarray attribute.

61.56.2.3. sql

This is the text of your SQL statement. The standard Interchange quoting rules apply. For example, use double
quotes (") if you want to interpolate Interchange tags within your SQL statement, backticks (`) to calculate a
value, etc.

   [query sql="select description, price from products
               where price < [value mv_arg]" ...]
      ...
   [/query]

61.56.2.4. table

The table attribute sets the database to use for the query. The default will typically be the database containing
the 'products' table (unless you have changed the first entry in $Vend::Cfg−>{ProductFiles}).

61.56.2.5. type

If you are not setting the 'arrayref' or 'hashref' attributes, then the type attribute defines the way the
query will return its results. The type should be one of the following:

Type Returns

html The html type returns the results in an html table. You will need to supply the enclosing
<TABLE ...> and </TABLE> html tags. The following is an example of typical usage:

 <TABLE>
   [query sql="select * from products
               where price > 12
               order by price"
         type=html]
   [/query]
 </TABLE>

list This allows you to use subtags to control the query output and pagination. See the Subtags
section above for detail.

row_count This causes the tag to return the number of rows in the query result.

textref

Interchange Documentation (Full)

 61.56.2.3. sql 499



This causes the tag to return a the query results as a serialized array of arrays that Perl can
evaluate with its eval() function. Here is an illustrative example:

  my $rows = eval( $Tag−>query( { sql  => "select * from products"
                                  type => "textref" } )
                 );

  my $r3_c0 = $rows−>[3]−>[0];

If you do not specify a type, the tag will create an arrayref as if you had set 'arrayref=""'.

61.56.2.6. arrayref and hashref

If you set 'arrayref=keyname' or 'hashref=keyname', the query will not return results to the page.
Instead, it will place the results of your query in the $Vend::Interpolate::Tmp hash. Using
'arrayref=my_query' sets $Vend::Interpolate::Tmp−>{my_query} to refer to an array of array references,
while 'hashref=my_query' creates an array of hash references.

Note that this is useful only if you intend to access the results within Perl code (for example, within a [perl]
tag), since there is no direct output to the returned page.

The $Vend::Interpolate::Tmp hash persists only for the life of the template page being processed. If you need
the query results array reference to outlive the page, you will have to save the reference somewhere more
persistent such as the $Session hash:

   $Session−>{my_query} = $Vend::Interpolate::Tmp−>{my_query};

Beware the impact on performance if you do this with large result sets.

Technical note −− the string returned by the 'textref' type will eval() to the 'arrayref' data structure.

61.56.2.7. more

Requires 'type=list'.

You must set more=1 to properly paginate your results from list queries (see 'type=list' above. If you do
not set more=1, then the links to later pages will merely redisplay the first page of your results.

61.56.2.8. form variable abbreviations

Requires 'type=list'.

See the Search and Form Variables appendix for a list of form variables. Note that you must use the
two−letter abbreviation rather than the full form variable name.

A few deserve special mention:

Abbr Name Description

ml mv_matchlimit Sets number of rows to return. If paginating (more=1), sets rows returned per page.

fm mv_first_match Start displaying search at specified match

sp mv_search_pageSets the page for search display

st mv_searchtype

Interchange Documentation (Full)

 61.56.2.6. arrayref and hashref 500



Forces a specific search type (text, glimpse, db or sql), overriding the default
determined from your database implementation.

61.56.2.9.

Requires 'type=list'.

Setting 'prefix=foo' overrides the default prefix of 'sql' for loop subtags within a list region (see Looping
tags and Sub−tags).

See the list_prefix attribute below for an illustrative example.

61.56.2.10. list_prefix

Requires 'type=list'.

Setting 'list_prefix=bar' overrides the default region tagname of 'list'. The best way to show this is by
example. Compare the following two examples of list queries, the first using the defaults and the second with
explicitly set prefix and list_prefix.

   [query sql="select sku, description, price from products
               where price < 20"
         type=list
         more=1
           ml=10]

      [on_match]Matched<br>[/on_match]
      [no_match]Not Found<br>[/no_match]

      [list]
        [sql−code] [sql−param description] [sql−price]
      [/list]

      [more_list]
        [more]
      [/more_list]
   [/query]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

   [query  sql="select sku, description, price from products
                where price < 20"
          type=list

prefix=foo
list_prefix=bar

          more=1
            ml=10]

      [on_match]Matched<br>[/on_match]
      [no_match]Not Found<br>[/no_match]

      [bar]
        [foo−code] [foo−param description] [foo−price]
      [/bar]

      [more_list]
        [more]
      [/more_list]
   [/query]

Interchange Documentation (Full)

 61.56.2.9. 501



61.56.2.11. random

Requires 'type=list'.

You can use the 'random' attribute to randomly select a set of rows from the whole result set of your query.
In other words, setting 'random=n', where n > 0, causes the [list] region to loop over n randomly chosen
rows rather than the full query result set.

The example below would display three randomly chosen products priced under 20.

   [query sql="select * from products
               where price < 20"
         type=list
       random=3]

      [list]
        [sql−code] [sql−param description] [sql−price]
      [/list]

   [/query]

61.56.2.12. safe_data

Requires 'type=list'.

Note −− you should not set this unless you need it and know what you are doing.

Setting 'safe_data=1' allows the [sql−data] tag to return values containing the '[' character. See also
Looping tags and Sub−tags.

Beware of reparsing issues.

61.56.2.13. label

Requires 'type=list'.

If you are setting up multiple simultaneously active search objects within a page, this allows you to
distinguish them. The default label is 'current'. Most people will not need this.

61.56.2.14. form

Requires 'type=list'.

You can use this to pass one CGI form variable in the pagination links of a [more−list]. For example,
'form="foo=bar"' to include '&foo=bar' in the URL of each of the pagination links.

Note that the variable will not be available in the initial result set since the query returns the first page directly
(i.e., you did not follow a pagination link).

61.56.2.15. wantarray

This is relevant only when calling $Tag−>query( ... ) within global Perl code such as a globalsub or global
usertag where $MVSAFE::Safe is not defined. In these cases, setting 'wantarray=1' allows the call to

Interchange Documentation (Full)

 61.56.2.11. random 502



  $Tag−>query( { wantarray => 1, ... }, ... );

to return references as it would if called within an ordinary [perl] tag. Note that it does not force list context
if you call $Tag−>query in scalar context.

Technical note −− the ordinary [query ...] ... [/query] usage forces scalar context on the query call and
suppresses the return value for those types that would return references if $Tag−>query were called within a
[perl] tag. The wantarray option is needed because global subs and usertags are also affected by this unless
you set wantarray.

61.57. read_cookie

Returns the value of the named cookie. Returns nothing if the cookie does not exist.

61.57.1. Summary

    [read_cookie name]
    [read_cookie name=mycookie]

Attributes Description Default

name The name of the cookie whose value you wantnone

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache Yes

Container tag No
Usage example:

   [read−cookie name=MV_SESSION_ID]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
   6CZ2whqo

ASP−like Perl call:

    $Tag−>read_cookie(  { name => $name, }  );

or similarly with positional parameters,

    $Tag−>read_cookie( $name );

61.57.2. Description

This tag expands to the value of the named cookie (or nothing if the cookie does not exist).

See the Netscape specification at http://www.netscape.com/newsref/std/cookie_spec.html if you need more
cookie−specific detail.

Interchange Documentation (Full)

61.57. read_cookie 503

http://www.netscape.com/newsref/std/cookie_spec.html


61.57.2.1. name

This is the name of the cookie whose value you want to retrieve.

61.57.2.2. Parsing an HTTP_COOKIE string

If you pass this tag a second parameter within a Perl call, it will use your value as the HTTP_COOKIE string
(ignoring the real one). This only applies if you pass the values positionally within a perl call since there is no
name for the HTTP_COOKIE string input:

  $Tag−>read_cookie('MV_SESSION_ID', "MV_SESSION_ID=UnHyaDQj:127.0.0.1; ...");

61.58. restrict

Restrict tag execution in a region. If a restricted tag is encountered, it is simply output.

61.58.1. Summary

    [restrict tag1 tag2]
    [restrict policy=deny enable="page area value"]

Attributes Description Default

policy Whether to allow or deny by default. deny

enable Tags to enable when default policy is deny.none

disable Tags to disable. Overrides enable. none

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache Yes

Container tag No
Usage example:

   [read−cookie name=MV_SESSION_ID]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
   6CZ2whqo

ASP−like Perl call:

    N/A. Cannot be called effectively.

61.58.2. Description

Restrict tag execution in a region. If a restricted tag is encountered, it is simply output. It can be used to allow
certain tags in a user−editable region, while denying dangerous tags. Or it can be used to restrict all tag
execution in a region.

Interchange Documentation (Full)

 61.57.2.1. name 504



61.58.2.1. policy

Default is deny, which makes most sense. You then specifically enable certain ITL tags. If you set allow by
default, you must be very careful that you really are disabling all of what you consider to be dangerous tags.

61.58.2.2. enable

A space−separated or comma−separated list of tags to disable when the default policy is deny. Has no effect
when the default policy is allow, and any tags passed in the disable parameter override the enable.

61.58.2.3. disable

A space−separated or comma−separated list of tags to disable when the default policy is allow. If you have a
list of tags that are enabled, perhaps stored in a scratch variable, you can disable some of those tags since this
takes precedence over the enable.

61.59. row

61.59.1. Summary

Parameters: width

Positional parameters in same order.

Pass attribute hash as last to subroutine: no

Interpolates container text by default>.

This is a container tag, i.e. [row] FOO [/row]. Nesting: NO

Invalidates cache: no

Called Routine:

ASP−like Perl call:

    $Tag−>row(
        {
         width => VALUE,
        },
        BODY
    )

 OR

    $Tag−>row($width, $BODY);
    [row width]

Parameters Description Default

width DEFAULT_VALUE

Attributes Default

Interchange Documentation (Full)

 61.58.2.1. policy 505



interpolate No

reparse Yes

Other_Characteristics

Invalidates cache no

Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [row width]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>row(  { width => VALUE_width
}, $body  );

or similarly with positional parameters,

    $Tag−>row(width, $attribute_hash_reference, $body);

61.59.2. Description

Formats text in tables. Intended for use in emailed reports or <PRE></PRE> HTML areas. The parameter nn
gives the number of columns to use. Inside the row tag, [col param=value ...] tags may be used.

61.59.2.1. [col width=nn wrap=yes|no gutter=n align=left|right|input spacing=n]

Sets up a column for use in a [row]. This parameter can only be contained inside a [row nn] [/row] tag pair.
Any number of columns (that fit within the size of the row) can be defined.

The parameters are:

    width=nn        The column width, I<including the gutter>. Must be
                    supplied, there is no default. A shorthand method
                    is to just supply the number as the I<first> parameter,
                    as in [col 20].

    gutter=n        The number of spaces used to separate the column (on
                    the right−hand side) from the next. Default is 2.

    spacing=n       The line spacing used for wrapped text. Default is 1,
                    or single−spaced.

    wrap=(yes|no)   Determines whether text that is greater in length than
                    the column width will be wrapped to the next line. Default
                    is I<yes>.

    align=(L|R|I)   Determines whether text is aligned to the left (the default),
                    the right, or in a way that might display an HTML text
                    input field correctly.

Interchange Documentation (Full)

61.59.2. Description 506



61.59.2.2. [/col]

Terminates the column field.

61.59.2.3. width

61.60. salestax

61.60.1. Summary

Parameters: name noformat

Positional parameters in same order.

Pass attribute hash as last to subroutine: no

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: YES

Called Routine:

ASP−like Perl call:

    $Tag−>salestax(
        {
         name => VALUE,
         noformat => VALUE,
        }
    )

 OR

    $Tag−>salestax($name, $noformat);

Attribute aliases

            cart ==> name
    [salestax name noformat]

Parameters Description Default

cart Alias for name DEFAULT_VALUE

name DEFAULT_VALUE

noformat DEFAULT_VALUE

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache YES

Container tag No

Has Subtags No

Interchange Documentation (Full)

61.59.2.2. [/col] 507



Nests Yes
Tag expansion example:

   [salestax name noformat]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>salestax(  { name => VALUE_name
                       noformat => VALUE_noformat
}, $body  );

or similarly with positional parameters,

    $Tag−>salestax(name,noformat, $attribute_hash_reference, $body);

61.60.2. Description

Expands into the sales tax on the subtotal of all the items ordered so far for the cart, default cart is main. If
there is no key field to derive the proper percentage, such as state or zip code, it is set to 0. If the noformat tag
is present and non−zero, the raw number with no currency formatting will be given.

61.60.2.1. name

61.60.2.2. noformat

61.61. scratch

61.61.1. Summary

Parameters: name

Positional parameters in same order.

Pass attribute hash as last to subroutine: no

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: YES

Called Routine:

ASP−like Perl call:

    $Tag−>scratch(
        {
         name => VALUE,
        }
    )

 OR

Interchange Documentation (Full)

61.60.2. Description 508



    $Tag−>scratch($name);
    [scratch name]

Parameters Description Default

name DEFAULT_VALUE

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache YES

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [scratch name]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>scratch(  { name => VALUE_name
}, $body  );

or similarly with positional parameters,

    $Tag−>scratch(name, $attribute_hash_reference, $body);

61.61.2. Description

Returns the contents of a scratch variable to the page. (A scratch variable is set with a [set] value [/set]
container pair.)

61.61.2.1. name

61.62. scratchd

Deletes the named scratch variable and returns its value before the deletion. For example,

    [scratchd varname_to_delete]

deletes the scratch variable varname_to_delete.

See also the scratch and set tags.

61.62.1. Summary

    [scratchd P_PARAM]
    [scratchd N_PARAM other_named_attributes]

Interchange Documentation (Full)

61.61.2. Description 509



Parameters Description Default

name Name of scratch variable to deleteNone

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache Yes

Container tag No
Tag expansion example:

   [set myvar]This is myvar[/set]
   .
   .
   .
   [scratchd myvar]
−−−
   This is myvar

ASP−like Perl call:

    $Tag−>scratchd($name, $attribute_hash_reference);

61.62.2. Description

Deletes the named scratch variable and returns its value before the deletion.

61.63. search_list

Formats results returned by a search. Must be enclosed within a search_region. Has sub−tags (see
Looping tags and Sub−tags).

61.64. search_region

61.64.1. Summary

Parameters: arg

The attribute hash reference is passed after the parameters but before the container text argument. This
may mean that there are parameters not shown here.

Must pass named parameter interpolate=1 to cause interpolation.

This is a container tag, i.e. [search_region] FOO [/search_region]. Nesting: NO

Invalidates cache: no

Called Routine:

ASP−like Perl call:

Interchange Documentation (Full)

61.62.2. Description 510



    $Tag−>search_region(
        {
         arg => VALUE,
        },
        BODY
    )

 OR

    $Tag−>search_region($arg, $ATTRHASH, $BODY);

Attribute aliases

            args ==> arg
            params ==> arg
            search ==> arg
    [search_region argother_named_attributes]

Parameters Description Default

arg DEFAULT_VALUE

args Alias for arg DEFAULT_VALUE

params Alias for arg DEFAULT_VALUE

search Alias for arg DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache no

Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [search_region arg]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>search_region(  { arg => VALUE_arg
}, $body  );

or similarly with positional parameters,

    $Tag−>search_region(arg, $attribute_hash_reference, $body);

61.64.2. Description

NO Description

Interchange Documentation (Full)

61.64.2. Description 511



61.64.2.1. arg

61.65. selected

61.65.1. Summary

Parameters: name value

Positional parameters in same order.

The attribute hash reference is passed to the subroutine after the parameters as the last argument. This may
mean that there are parameters not shown here.

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: YES

Called Routine:

ASP−like Perl call:

    $Tag−>selected(
        {
         name => VALUE,
         value => VALUE,
        }
    )

 OR

    $Tag−>selected($name, $value, $ATTRHASH);
    [selected name valueother_named_attributes]

Parameters Description Default

name DEFAULT_VALUE

value DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate (reparse)No

Other_Characteristics

Invalidates cache YES

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [selected name value]
−−−
   TODO: (tag result)

Interchange Documentation (Full)

 61.64.2.1. arg 512



ASP−like Perl call:

   $Tag−>selected(  { name => VALUE_name
                       value => VALUE_value
}, $body  );

or similarly with positional parameters,

    $Tag−>selected(name,value, $attribute_hash_reference, $body);

61.65.2. Description

You can provide a "memory" for drop−down menus, radio buttons, and checkboxes with the [checked] and
[selected] tags.

This will output SELECTED if the variable var_name is equal to value. If the optional MULTIPLE
argument is present, it will look for any of a variety of values. Not case sensitive unless the optional case=1
parameter is used.

Here is a drop−down menu that remembers an item−modifier color selection:

    <SELECT NAME="color">
    <OPTION [selected color blue]> Blue
    <OPTION [selected color green]> Green
    <OPTION [selected color red]> Red
    </SELECT>

Here is the same thing, but for a shopping−basket color selection

    <SELECT NAME="[modifier−name color]">
    <OPTION [selected [modifier−name color] blue]> Blue
    <OPTION [selected [modifier−name color] green]> Green
    <OPTION [selected [modifier−name color] red]> Red
    </SELECT>

By default, the Values space (i.e. [value foo]) is checked −− if you want to use the volatile CGI space (i.e. [cgi
foo]) use the option cgi=1.

61.65.2.1. name

61.65.2.2. value

61.66. set

61.66.1. Summary

Parameters: name

Positional parameters in same order.

Pass attribute hash as last to subroutine: no

Interchange Documentation (Full)

61.65.2. Description 513



Must pass named parameter interpolate=1 to cause interpolation.

This is a container tag, i.e. [set] FOO [/set]. Nesting: NO

Invalidates cache: YES

Called Routine:

ASP−like Perl call:

    $Tag−>set(
        {
         name => VALUE,
        },
        BODY
    )

 OR

    $Tag−>set($name, $BODY);
    [set name]

Parameters Description Default

name DEFAULT_VALUE

Attributes Default

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache YES

Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [set name]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>set(  { name => VALUE_name
}, $body  );

or similarly with positional parameters,

    $Tag−>set(name, $attribute_hash_reference, $body);

61.66.2. Description

Sets a scratch variable to value.

Interchange Documentation (Full)

61.66.2. Description 514



Most of the mv_* variables that are used for search and order conditionals are in another namespace −− they
can be set by means of hidden fields in a form.

You can set an order profile with:

  [set checkout]
  name=required
  address=required
  [/set]
  <INPUT TYPE=hidden NAME=mv_order_profile VALUE="checkout">

A search profile would be set with:

  [set substring_case]
  mv_substring_match=yes
  mv_case=yes
  [/set]
  <INPUT TYPE=hidden NAME=mv_profile VALUE="substring_case">

Any of these profile values can be set in the OrderProfile files as well.

61.66.2.1. name

61.67. set_cookie

Sets browser cookie(s) with the specified attributes.

61.67.1. Summary

    [set_cookie named_attributes]

Parameters must be named (no positional usage except in Perl call)

Attributes Description Default

name The name you give the cookie none

value The value (automatically html−escaped by Interchange)none

expire Expiration date as

"Wdy, DD−Mon−YYYY HH:MM:SS GMT"

none

domain Overrides the domain(s) set in CookieDomain Domain(s), if any, defined in the
CookieDomain directive

path legal URL paths for the cookie URL path(s) to your catalog,
including aliases

Other_Characteristics

Invalidates cache Yes

Container tag No
Usage example:

   [set−cookie name=mycookie
              value="the value"
             expire="Tue, 03−Apr−2001 17:00:00 GMT" ]

Interchange Documentation (Full)

 61.66.2.1. name 515



−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
This tag returns no value in the page

ASP−like Perl call:

    $Tag−>set_cookie(  { name   => $name,
                         value  => $value,
                         expire => $expire,
                         domain => $domain,
                         path   => $path, }  );

or similarly with positional parameters,

    $Tag−>set_cookie( $name, $value, $expire, $domain, $path );

61.67.2. Description

This tag sets one or more browser cookies with your specified name, value, and expiration. (Interchange will
set more than one cookie if needed to ensure that the cookie is visible from all Catalog URL path aliases
and CookieDomains.)

See the Netscape specification at http://www.netscape.com/newsref/std/cookie_spec.html for more
cookie−specific detail.

If you need access to the cookie from outside of your Interchange catalog, you can also set the domain and
URL paths for which the cookie will be valid. If you need the cookie only within your catalog and the
domains specified by the CookieDomain directive, you probably should not override the Interchange
domain and path defaults.

61.67.2.1. name

This is the name of the cookie. This is the key you will use when reading the cookie later.

61.67.2.2. value

This is the value to store in the cookie.

61.67.2.3. expire

Persistent cookies (that outlive a browser session) require an expiration date. The date must be a string of the
form:

"Wdy, DD−Mon−YYYY HH:MM:SS GMT"

and the timezone must be GMT.

If you do not supply a date, the cookie will disappear when the user closes the browser.

61.67.2.4. domain

The value you set will override the Interchange default domain(s). You might set this if you need access to the
cookie from outside the Interchange catalog, but it is usually better to set the CookieDomain directive in

Interchange Documentation (Full)

61.67.2. Description 516

http://www.netscape.com/newsref/std/cookie_spec.html


your catalog.

The default is to use your catalog's domain or all CookieDomain values.

61.67.2.5. path

The value you set will override the Interchange default URL path(s).

The default is to set a cookie with a path for each catalog alias (see the Catalog directive). This ensures that
the cookie will be visible regardless of how the end user returns to your catalog.

61.68. seti

61.68.1. Summary

Parameters: name

Positional parameters in same order.

Pass attribute hash as last to subroutine: no

Interpolates container text by default>.

This is a container tag, i.e. [seti] FOO [/seti]. Nesting: NO

Invalidates cache: YES

Called Routine:

ASP−like Perl call:

    $Tag−>seti(
        {
         name => VALUE,
        },
        BODY
    )

 OR

    $Tag−>seti($name, $BODY);
    [seti name]

Parameters Description Default

name DEFAULT_VALUE

Attributes Default

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache YES

Interchange Documentation (Full)

 61.67.2.5. path 517



Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [seti name]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>seti(  { name => VALUE_name
}, $body  );

or similarly with positional parameters,

    $Tag−>seti(name, $attribute_hash_reference, $body);

61.68.2. Description

Equivalent to the [set] tag, except that it interpolates by default.

61.68.2.1. name

61.69. setlocale

Sets locale and/or currency for the current page. Can be made persistent for the user with the 'persist' option.
Resets default locale if called without arguments. See also Setting the Locale in the template documentation.

61.69.1. Summary

    [setlocale ]

Parameters Description Default

currency The currency format to use.

Default: [scratch mv_currency] (see also 'persist' attribute)• 

DEFAULT_VALUE

locale The locale to use.

Default: [scratch mv_locale] (see also 'persist' attribute)• 

DEFAULT_VALUE

persist Setting 'persist=1' also sets the scratch variables, mv_locale and
mv_currency to specified locale and currency. This makes the locale
settings persistent for the user's session. Otherwise (persist=0), the
setlocale tag affects the remainder of the current page only.

DEFAULT_VALUE

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache no

Interchange Documentation (Full)

61.68.2. Description 518



Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [setlocale ]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>setlocale(  {
}, $body  );

or similarly with positional parameters,

    $Tag−>setlocale(, $attribute_hash_reference, $body);

61.69.2. Description

Immediately sets the locale to locale, and will cause it to persist in future user pages if the persist is set
to a non−zero, non−blank value. If the currency attribute is set, the pricing and currency−specific locale
keys and Interchange configuration directives are modified to that locale. If there are no arguments, it sets it
back to the user's default locale as defined in the scratch variables mv_locale and mv_currency.

This allows:

    Dollar Pricing:

    [setlocale en_US]
    [item−list]
    [item−code]: [item−price]<BR>
    [/item−list]

    Franc Pricing:

    [setlocale fr_FR]
    [item−list]
    [item−code]: [item−price]<BR>
    [/item−list]

    [comment] Return to the user's default locale [/comment]
    [setlocale]

61.69.2.1. currency

The currency format to use.

Default: [scratch mv_currency] (see also 'persist' attribute)• 

61.69.2.2. locale

The locale to use.

Interchange Documentation (Full)

61.69.2. Description 519



Default: [scratch mv_locale] (see also 'persist' attribute)• 

61.69.2.3. persist

Setting 'persist=1' also sets the scratch variables, mv_locale and mv_currency to specified locale and
currency. This makes the locale settings persistent for the user's session. Otherwise (persist=0), the
setlocale tag affects the remainder of the current page only.

61.70. shipping

Returns the cost of shipping the items in the cart via the shipping mode set with the mode parameter. See also
the Shipping section of the Database documentation.

61.70.1. Summary

    [shipping mode]

Parameters Description Default

add Adds the argument to add as data for a shipping.asc file (in $Vend::Cfg−>{ScratchDir}/) and sets it. DEFAULT_VALUE

cart
Alias: carts Comma−delimited list of names of carts to calculate shipping cost for.• 
Default: current cart• 

DEFAULT_VALUE

carts Alias for cart DEFAULT_VALUE

convert Applies the conversion (if any) set with the PriceDivide catalog configuration directive.

Default: True• 

DEFAULT_VALUE

default Resets shipping mode to default of [value mv_shipmode] DEFAULT_VALUE

file Filename to read shipping from (default is usual shipping database, e.g., shipping.asc) DEFAULT_VALUE

format Format for results with label attribute.

Default: '<OPTION VALUE="%M"%S>%D (%F)'• 
For example,• 

    [shipping mode="FLAT"
             label=1
            format="My Format Desc %D Price %F"]

DEFAULT_VALUE

handling Boolean−− use [value mv_handling] rather than [value mv_shipping] as first default for mode. Note that this attribute matters
only if you do not specify the mode in the tag.

Note that this is set by the [handling tag (which calls the shipping tag internally). You should probably use the
handling tag rather than setting this directly.

• 

Default: False• 

DEFAULT_VALUE

hide Suppresses output DEFAULT_VALUE

label By default, returns HTML <OPTION ...> widget for shipping mode(s), including description and cost. You can override the
widget with the format attribute. Note that label overrides noformat.

Here is an example from the foundation checkout.html page:• 

   [shipping

DEFAULT_VALUE

Interchange Documentation (Full)

 61.69.2.3. persist 520



     label=1
     mode=|E<lbracket>{{CMD[jump="#data"]data}} table=country key='[default country US]' col=shipmodes]|
   ]

mode
Aliases: name, modes Whitespace, null or comma delimited list of modes for which to calculate shipping cost. See
also mv_shipmode.

• 

Default: [value mv_handling] if handling=1 or [value mv_shipmode] or 'default'• 

DEFAULT_VALUE

modes Alias for mode DEFAULT_VALUE

name Alias for mode DEFAULT_VALUE

noformat Returns result as a number rather than a string formatted for the current locale's currency.

Default: True• 

DEFAULT_VALUE

reset_messageBoolean. Blanks the session's current shipping message (i.e., $Session−>{ship_message}). DEFAULT_VALUE

reset_modes Clears list of modes in $Vend::Cfg−>{Shipping_line}

Default: False• 

DEFAULT_VALUE

table
Alias: tables Whitespace−delimited list of tables containing shipping data required for perl or query calculations (e.g.,
in the 'PERL' field of your shipping database −− see Shipping). You must specify the tables to get past the Perl
'Safe.pm' protection. For example, you will get 'Safe' errors if you refer to an SQL table without specifying it here.

• 

Default: None• 

DEFAULT_VALUE

tables Alias for table DEFAULT_VALUE

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache YES

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [shipping mode]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>shipping(  { mode => VALUE_mode
}, $body  );

or similarly with positional parameters,

    $Tag−>shipping(mode, $attribute_hash_reference, $body);

61.70.2. Description

This tag calculates the shipping cost for items in the current cart via the specified shipping mode (usually set
in the mv_shipmode variable). See the Shipping section of the Database documentation for detail.

Interchange Documentation (Full)

61.70.2. Description 521

http://www.perl.com/pub/doc/manual/html/lib/Safe.html
http://www.perl.com/pub/doc/manual/html/lib/Safe.html


61.70.2.1. Rounding

Note that the tag rounds the calculated shipping cost to a locale−specific number of fractional digits (e.g., to
the nearest penny, or 2 digits after the decimal point in the USA).

61.70.2.2. add

Adds the argument to add as data for a shipping.asc file (in $Vend::Cfg−>{ScratchDir}/) and sets it.

61.70.2.3. cart

Alias: carts Comma−delimited list of names of carts to calculate shipping cost for.• 
Default: current cart• 

61.70.2.4. convert

Applies the conversion (if any) set with the PriceDivide catalog configuration directive.

Default: True• 

61.70.2.5. default

Resets shipping mode to default of [value mv_shipmode]

61.70.2.6. file

Filename to read shipping from (default is usual shipping database, e.g., shipping.asc)

61.70.2.7. format

Format for results with label attribute.

Default: '<OPTION VALUE="%M"%S>%D (%F)'• 
For example,• 

    [shipping mode="FLAT"
             label=1
            format="My Format Desc %D Price %F"]

61.70.2.8. handling

Boolean−− use [value mv_handling] rather than [value mv_shipping] as first default for mode. Note that this
attribute matters only if you do not specify the mode in the tag.

Note that this is set by the [handling tag (which calls the shipping tag internally). You should
probably use the handling tag rather than setting this directly.

• 

Default: False• 

Interchange Documentation (Full)

61.70.2.1. Rounding 522



61.70.2.9. hide

Suppresses output

61.70.2.10. label

By default, returns HTML <OPTION ...> widget for shipping mode(s), including description and cost. You
can override the widget with the format attribute. Note that label overrides noformat.

Here is an example from the foundation checkout.html page:• 

   [shipping
     label=1
     mode=|E<lbracket>{{CMD[jump="#data"]data}} table=country key='[default country US]' col=shipmodes]|
   ]

61.70.2.11. mode

Aliases: name, modes Whitespace, null or comma delimited list of modes for which to calculate
shipping cost. See also mv_shipmode.

• 

Default: [value mv_handling] if handling=1 or [value mv_shipmode] or 'default'• 

61.70.2.12. noformat

Returns result as a number rather than a string formatted for the current locale's currency.

Default: True• 

61.70.2.13. reset_message

Boolean. Blanks the session's current shipping message (i.e., $Session−>{ship_message}).

61.70.2.14. reset_modes

Clears list of modes in $Vend::Cfg−>{Shipping_line}

Default: False• 

61.70.2.15. table

Alias: tables Whitespace−delimited list of tables containing shipping data required for perl or query
calculations (e.g., in the 'PERL' field of your shipping database −− see Shipping). You must specify
the tables to get past the Perl 'Safe.pm' protection. For example, you will get 'Safe' errors if you refer
to an SQL table without specifying it here.

• 

Default: None• 

61.71. shipping_desc

Returns the shipping description for the specified shipping mode. See the Shipping section of the Database
documentation. See also shipping.asc database for shipping modes.

Interchange Documentation (Full)

 61.70.2.9. hide 523

http://www.perl.com/pub/doc/manual/html/lib/Safe.html
http://www.perl.com/pub/doc/manual/html/lib/Safe.html


Alias: shipping_description

The two tags below are identical in operation:

   [shipping_desc mode]
   [shipping_description mode]

61.71.1. Summary

    [shipping_desc mode]
    [shipping_desc mode=shipping_mode]

Parameters Description Default

mode Shipping mode. This is a key into the shipping.asc database.
See Shipping documentation.

mv_shipmode, or
'default' if mv_shipmode
not set

Other_Characteristics

Invalidates cache Yes, but only if no mode given

Container tag No
Tag expansion example:

   [shipping_desc 1DM]
−−−
   UPS Next Day Air Early AM

ASP−like Perl call:

    $Tag−>shipping_desc( $mode );

61.72. soap

61.72.1. Summary

Parameters: call uri proxy

Positional parameters in same order.

The attribute hash reference is passed to the subroutine after the parameters as the last argument. This may
mean that there are parameters not shown here.

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: YES

Called Routine:

ASP−like Perl call:

    $Tag−>soap(
        {
         call => VALUE,

Interchange Documentation (Full)

61.71.1. Summary 524



         uri => VALUE,
         proxy => VALUE,
        }
    )

 OR

    $Tag−>soap($call, $uri, $proxy, $ATTRHASH);
    [soap call uri proxyother_named_attributes]

Parameters Description Default

call DEFAULT_VALUE

proxy DEFAULT_VALUE

uri DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate (reparse)No

Other_Characteristics

Invalidates cache YES

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [soap call uri proxy]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>soap(  { call => VALUE_call
                   proxy => VALUE_proxy
                   uri => VALUE_uri
}, $body  );

or similarly with positional parameters,

    $Tag−>soap(call,uri,proxy, $attribute_hash_reference, $body);

61.72.2. Description

NO Description

61.72.2.1. call

61.72.2.2. proxy

61.72.2.3. uri

Interchange Documentation (Full)

61.72.2. Description 525



61.73. strip

Strips leading and trailing whitespace from the contained body text.

61.73.1. Summary

    [strip]
       Body text to strip
    [/strip]

No parameters.

Other_Characteristics

Invalidates cache No

Container tag Yes

Has Subtags No
ASP−like Perl call:

   $Tag−>strip($BODY);

or even better, just do it directly like this

   $BODY =~ s/^\s+//;
   $BODY =~ s/\s+$//;

61.74. subtotal

61.74.1. Summary

Parameters: name noformat

Positional parameters in same order.

Pass attribute hash as last to subroutine: no

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: YES

Called Routine:

ASP−like Perl call:

    $Tag−>subtotal(
        {
         name => VALUE,
         noformat => VALUE,
        }
    )

 OR

Interchange Documentation (Full)

61.73. strip 526



    $Tag−>subtotal($name, $noformat);

Attribute aliases

            cart ==> name
    [subtotal name noformat]

Parameters Description Default

cart Alias for name DEFAULT_VALUE

name DEFAULT_VALUE

noformat DEFAULT_VALUE

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache YES

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [subtotal name noformat]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>subtotal(  { name => VALUE_name
                       noformat => VALUE_noformat
}, $body  );

or similarly with positional parameters,

    $Tag−>subtotal(name,noformat, $attribute_hash_reference, $body);

61.74.2. Description

Positional: [subtotal cart* noformat*]

mandatory: NONE

optional: cart noformat

Expands into the subtotal cost, exclusive of sales tax, of all the items ordered so far for the optional cart. If
the noformat tag is present and non−zero, the raw number with no currency formatting will be given.

61.74.2.1. name

Interchange Documentation (Full)

61.74.2. Description 527



61.74.2.2. noformat

61.75. tag

61.75.1. Summary

Parameters: op arg

Positional parameters in same order.

The attribute hash reference is passed after the parameters but before the container text argument. This
may mean that there are parameters not shown here.

Must pass named parameter interpolate=1 to cause interpolation.

This is a container tag, i.e. [tag] FOO [/tag]. Nesting: NO

Invalidates cache: no

Called Routine:

ASP−like Perl call:

    $Tag−>tag(
        {
         op => VALUE,
         arg => VALUE,
        },
        BODY
    )

 OR

    $Tag−>tag($op, $arg, $ATTRHASH, $BODY);

Attribute aliases

            description ==> arg
    [tag op argother_named_attributes]

Parameters Description Default

arg DEFAULT_VALUE

description Alias for arg DEFAULT_VALUE

op DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache no

Interchange Documentation (Full)

 61.74.2.2. noformat 528



Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [tag op arg]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>tag(  { arg => VALUE_arg
                  op => VALUE_op
}, $body  );

or similarly with positional parameters,

    $Tag−>tag(op,arg, $attribute_hash_reference, $body);

61.75.2. Description

Performs any of a number of operations, based on the presence of arg. The arguments that may be given are:

61.75.2.1. export database file* type*

Exports a complete Interchange database to its text source file (or any specified file). The integer n, if
specified, will select export in one of the enumerated Interchange export formats. The following tag will
export the products database to products.txt (or whatever you have defined its source file as), in the format
specified by the Database directive:

    [tag export products][/tag]

Same thing, except to the file products/new_products.txt:

    [tag export products products/newproducts.txt][/tag]

Same thing, except the export is done with a PIPE delimiter:

    [tag export products products/newproducts.txt 5][/tag]

The file is relative to the catalog directory, and only may be an absolute path name if NoAbsolute is set to No.

61.75.2.2. flag arg

Sets an Interchange condition.

The following enables writes on the products and sizes databases held in Interchange internal DBM
format:

    [tag flag write]products sizes[/tag]

Interchange Documentation (Full)

61.75.2. Description 529



SQL databases are always writable if allowed by the SQL database itself −− in−memory databases will never
be written.

The [tag flag build][/tag] combination forces static build of a page, even if dynamic elements are contained.
Similarly, the [tag flag cache][/tag] forces search or page caching (not usually wise).

61.75.2.3. log dir/file

Logs a message to a file, fully interpolated for Interchange tags. The following tag will send every item code
and description in the user's shopping cart to the file logs/transactions.txt:

    [tag log logs/transactions.txt]
    [item_list][item−code]  [item−description]
    [/item_list][/tag]

The file is relative to the catalog directory, and only may be an absolute path name if NoAbsolute is set to No.

61.75.2.4. mime description_string

Returns a MIME−encapsulated message with the boundary as employed in the other mime tags, and the
description_string used as the Content−Description. For example

   [tag mime My Plain Text]Your message here.[/tag]

will return

  Content−Type: TEXT/PLAIN; CHARSET=US−ASCII
  Content−ID: [sequential, lead as in mime boundary]
  Content−Description: My Plain Text

  Your message here.

When used in concert with [tag mime boundary], [tag mime header], and [tag mime id], allows MIME
attachments to be included −− typically with PGP−encrypted credit card numbers. See the demo page
ord/report.html for an example.

61.75.2.5. mime boundary

Returns a MIME message boundary with unique string keyed on session ID, page count, and time.

61.75.2.6. mime header

Returns a MIME message header with the proper boundary for that session ID, page count, and time.

61.75.2.7. mime id

Returns a MIME message id with the proper boundary for that session ID, page count, and time.

61.75.2.8. show_tags

The encased text will not be substituted for with Interchange tags, with < and [ characters changed to &#lt; and
&#91; respectively.

Interchange Documentation (Full)

 61.75.2.3. log dir/file 530



    [tag show_tags][value whatever][/tag]

61.75.2.9. time

Formats the current time according to POSIX strftime arguments. The following is the string for Thursday,
April 30, 1997.

    [tag time]%A, %B %d, %Y[/tag]

61.75.2.10. touch

Touches a database to allow use of the tag_data() routine in user−defined subroutines. If this is not done, the
routine will error out if the database has not previously been accessed on the page.

    [tag touch products][/tag]

61.75.2.11. arg

61.75.2.12. op

61.76. time

61.76.1. Summary

Parameters: locale

Positional parameters in same order.

The attribute hash reference is passed after the parameters but before the container text argument. This
may mean that there are parameters not shown here.

Must pass named parameter interpolate=1 to cause interpolation.

This is a container tag, i.e. [time] FOO [/time]. Nesting: NO

Invalidates cache: no

Called Routine:

ASP−like Perl call:

    $Tag−>time(
        {
         locale => VALUE,
        },
        BODY
    )

 OR

    $Tag−>time($locale, $ATTRHASH, $BODY);
    [time localeother_named_attributes]

Interchange Documentation (Full)

 61.75.2.9. time 531



Parameters Description Default

locale DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache no

Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [time locale]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>time(  { locale => VALUE_locale
}, $body  );

or similarly with positional parameters,

    $Tag−>time(locale, $attribute_hash_reference, $body);

61.76.2. Description

Formats the current time according to POSIX strftime arguments. The following is the string for Monday,
January 1, 2001.

    [time]%A, %B %d, %Y[/tag]

See the strftime man page for information on the arguments (which are the same as modern UNIX date
commands).

Accepts the following options:

61.76.2.1. adjust

If you wish to temporarily adjust the time for display purposes, you can pass an adjust parameter with the
number of hours (plus or minus) from the local time or from GMT:

        [time]%c[/time]
        [time adjust="−3"]%c[/time]

Will display:

 Mon 01 Jan 2001 11:29:03 AM EST
 Mon 01 Jan 2001 08:29:03 AM EST

Interchange Documentation (Full)

61.76.2. Description 532



Note that the time zone does not change −− you should either pick a format which doesn't display zone, use
the tz parameter, or manage it yourself.

NOTE: You can adjust time globally for an Interchange installation by setting the $ENV{TZ} variable on
many systems. Set TZ in your environment and then restart Interchange:

        ## bash/ksh/sh
        TZ=PST7PDT; export TZ
        interchange −restart

        ## csh/tcsh
        setenv TZ PST7PDT
        interchange −restart

On most modern UNIX systems, all times will now be in the PST zone.

61.76.2.2. gmt

If you want to display time as GMT, use the gmt parameter:

        [time]%c[/time]
        [time gmt=1]%c[/time]

will display:

        Mon 01 Jan 2001 11:33:26 AM EST
        Mon 01 Jan 2001 04:33:26 PM EST

Once again, the zone will not be set to GMT, so you should pick a format string which doesn't use zone, use
the tz parameter, or manage it yourself.

61.76.2.3. locale

Format the time according to the named locale, assuming that locale is available on your operating system.
For example, the following:

        [time locale=en_US]%B %d, %Y[/time]
        [time locale=fr_FR]%B %d, %Y[/time]

should display:

        January 01, 2001
        janvier 01, 2001

61.76.2.4. tz

Use the passed tz to display the time. Will adjust for hours difference.

Example:

        [time tz=GMT0]
        [time tz=CST6CDT]
        [time tz=PST8PDT]

Interchange Documentation (Full)

 61.76.2.2. gmt 533



will display:

        Mon 01 Jan 2001 04:43:02 PM GMT
        Mon 01 Jan 2001 10:43:02 AM CST
        Mon 01 Jan 2001 08:43:02 AM PST

Note that the first alphabetical string is the zone name when not under daylight savings time, the digit is the
number of hours displacement from GMT, and the second alphabetical string is the zone name when in
daylight savings time. NOTE: This may not work on all operating systems.

61.76.2.5. zerofix

Strips leading zeroes from numbers.

61.76.2.6. locale

61.77. timed_build

61.77.1. Summary

Parameters: file

Positional parameters in same order.

The attribute hash reference is passed after the parameters but before the container text argument. This
may mean that there are parameters not shown here.

Must pass named parameter interpolate=1 to cause interpolation.

This is a container tag, i.e. [timed_build] FOO [/timed_build]. Nesting: NO

Invalidates cache: no

Called Routine:

ASP−like Perl call:

    $Tag−>timed_build(
        {
         file => VALUE,
        },
        BODY
    )

 OR

    $Tag−>timed_build($file, $ATTRHASH, $BODY);
    [timed_build fileother_named_attributes]

Parameters Description Default

file DEFAULT_VALUE

Attributes Default

Interchange Documentation (Full)

 61.76.2.5. zerofix 534



ATT1 none

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache no

Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [timed_build file]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>timed_build(  { file => VALUE_file
}, $body  );

or similarly with positional parameters,

    $Tag−>timed_build(file, $attribute_hash_reference, $body);

61.77.2. Description

Allows you to build CPU−intensive regions of ITL tags on a timed basis.

In the simplest case, surround a region of ITL with [timed−build] and [/timed−build]:

        [timed−build]
                Built at [time]%c[/time].
        [/timed−build]

If a file parameter is not passed, saves to the directory timed in catalog root, with the file name of the
current page. If the minutes parameter is not passed specifying how often the page should be rebuilt, then it
will not be rebuilt until the output file is removed.

Accepts the following parameters:

61.77.2.1. auto

Turns on automatic region processing. The text of the timed−build region is processed to determine a unique
checksum or digest (using MD5), and that file name is checked in the directory tmp/auto−timed (assuming
ScratchDir is set to tmp). If no number of minutes is supplied, 60 is assumed.

This is designed to automatically build regions of commonly used areas without having to manage the file
name yourself.

Implies login=1, but will still abort if no session ID cookie has been sent. Use force=1 to ignore cookie
status.

Interchange Documentation (Full)

61.77.2. Description 535



61.77.2.2. file

Name of the file to save the results in. Relative to catalog root. The directory must exist.

61.77.2.3. if

Allows you to to only display the cached region when the if parameter is true. For example, you can do:

        [timed−build if="[value timed]"]
        ITL tags....
        [/timed−build]

The cached region will only be displayed if the variable timed is set to a non−zero, non−blank value.
Otherwise, the ITL tags will be re−interpreted every time.

61.77.2.4. minutes

The number of minutes after which the timed build should be repeated. If set to 0, it will be built once and
then not rebuilt until the output file is removed.

61.77.2.5. period

Alternative way of expressing time. You can pass a string describing the rebuild time period:

        [timed−build period="4 hours"]
        ITL tags....
        [/timed−build]

This is really the same as minutes=240. Useful for passing seconds:

        [timed−build period="5 seconds"]
        ITL tags....
        [/timed−build]

The region will be rebuilt every 5 seconds.

Performance Tip: use minutes of .08 instead; avoids having to parse the period string.

If you have the StaticDir catalog.cfg parameter set to a writable path, you can build a cached static version of
your catalog over time. Simply place a [timed−build] tag at the top of pages you wish to build statically.
Assuming the catalog is not busy and write lock can be obtained, the StaticDBM database will be updated to
mark the page as static and the next time a link is made for that page the static version will be presented.

61.77.2.6. file

61.78. tmp

61.78.1. Summary

Parameters: name

Positional parameters in same order.

Interchange Documentation (Full)

 61.77.2.2. file 536



Pass attribute hash as last to subroutine: no

Interpolates container text by default>.

This is a container tag, i.e. [tmp] FOO [/tmp]. Nesting: NO

Invalidates cache: YES

Called Routine:

ASP−like Perl call:

    $Tag−>tmp(
        {
         name => VALUE,
        },
        BODY
    )

 OR

    $Tag−>tmp($name, $BODY);
    [tmp name]

Parameters Description Default

name DEFAULT_VALUE

Attributes Default

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache YES

Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [tmp name]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>tmp(  { name => VALUE_name
}, $body  );

or similarly with positional parameters,

    $Tag−>tmp(name, $attribute_hash_reference, $body);

Interchange Documentation (Full)

 61.77.2.2. file 537



61.78.2. Description

Sets a scratch variable to value, but at the end of the user session the Scratch key is deleted. This saves session
write time in many cases.

This tag interpolates automatically. (Interpolation can be turned off with interpolate=0.)

IMPORTANT NOTE: the [tmp ...][/tmp] tag is not appropriate for setting order profiles or mv_click
actions. If you want to avoid that, use a profile stored via the catalog.cfg directive OrderProfile.

61.78.2.1. name

61.79. total_cost

61.79.1. Summary

Parameters: name noformat

Positional parameters in same order.

Pass attribute hash as last to subroutine: no

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: YES

Called Routine:

ASP−like Perl call:

    $Tag−>total_cost(
        {
         name => VALUE,
         noformat => VALUE,
        }
    )

 OR

    $Tag−>total_cost($name, $noformat);

Attribute aliases

            cart ==> name
    [total_cost name noformat]

Parameters Description Default

cart Alias for name DEFAULT_VALUE

name DEFAULT_VALUE

noformat DEFAULT_VALUE

Attributes Default

Interchange Documentation (Full)

61.78.2. Description 538



interpolate (reparse)No

Other_Characteristics

Invalidates cache YES

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [total_cost name noformat]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>total_cost(  { name => VALUE_name
                         noformat => VALUE_noformat
}, $body  );

or similarly with positional parameters,

    $Tag−>total_cost(name,noformat, $attribute_hash_reference, $body);

61.79.2. Description

Expands into the total cost of all the items in the current shopping cart, including sales tax (if any).

61.79.2.1. name

61.79.2.2. noformat

61.80. tree

61.80.1. Summary

Parameters: table master subordinate start

The attribute hash reference is passed after the parameters but before the container text argument. This
may mean that there are parameters not shown here.

Must pass named parameter interpolate=1 to cause interpolation.

This is a container tag, i.e. [tree] FOO [/tree]. Nesting: NO

Invalidates cache: no

Called Routine:

ASP−like Perl call:

    $Tag−>tree(

Interchange Documentation (Full)

61.79.2. Description 539



        {
         table => VALUE,
         master => VALUE,
         subordinate => VALUE,
         start => VALUE,
        },
        BODY
    )

 OR

    $Tag−>tree($table, $master, $subordinate, $start, $ATTRHASH, $BODY);

Attribute aliases

            sub ==> subordinate
    [tree table master subordinate startother_named_attributes]

Parameters Description Default

master DEFAULT_VALUE

start DEFAULT_VALUE

sub Alias for subordinateDEFAULT_VALUE

subordinate DEFAULT_VALUE

table DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate No

reparse Yes

Other_Characteristics

Invalidates cache no

Container tag Yes

Has Subtags No

Nests No
Tag expansion example:

   [tree table master subordinate start]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>tree(  { master => VALUE_master
                   start => VALUE_start
                   subordinate => VALUE_subordinate
                   table => VALUE_table
}, $body  );

or similarly with positional parameters,

    $Tag−>tree(table,master,subordinate,start, $attribute_hash_reference, $body);

Interchange Documentation (Full)

61.79.2. Description 540



61.80.2. Description

Provides iterative list capability for binary trees. It produces hash−based rows use the same tags as
[item−list]; sets some additional hash key entries to describe the tree and provide display control.

Works on a data set with the structure:

    parent  child
    99      a
    a       b
    a       c
    a       d
    a       x
    x       y
    x       z
    99      m
    99      n
    99      o
    o       e
    o       f
    o       g

Sets several keys which assist in walking and displaying the tree.

61.80.2.1. mv_level

Level of the item. If it is in the first level, it is 0. Sublevels are infinite (except for performance).

61.80.2.2. mv_increment

Increment label for the item. Normally goes from 1...n, but can be changed to A...Z or a...z in outline mode.

61.80.2.3. mv_children

If in autodetect mode, set to the number of children this branch has. If a leaf, set to 0.

61.80.2.4. mv_spacing

A multiple of level times the spacing option. Useful for setting width of spacer images.

The above sample data placed in a table named "tree" would produce:

    a           mv_level=0, mv_increment=1, mv_children=4
        b       mv_level=1, mv_increment=1, mv_children=0
        c       mv_level=1, mv_increment=2, mv_children=0
        d       mv_level=1, mv_increment=3, mv_children=0
        x       mv_level=1, mv_increment=4, mv_children=2
            y   mv_level=2, mv_increment=1, mv_children=0
            z   mv_level=2, mv_increment=2, mv_children=0
    m           mv_level=0, mv_increment=1, mv_children=0
    n           mv_level=0, mv_increment=2, mv_children=0
    o           mv_level=0, mv_increment=3, mv_children=3
        e       mv_level=1, mv_increment=1, mv_children=0
        f       mv_level=1, mv_increment=2, mv_children=0
        g       mv_level=1, mv_increment=3, mv_children=0

Interchange Documentation (Full)

61.80.2. Description 541



from the tag call:

        <table>
    [tree   start=99
            table=tree
            master=parent
            subordinate=child
            autodetect=1
            spacing=4
            full=1]
        <tr>
        <td>
        [if−item−param mv_level]
                [item−calc]
                        return '&nbsp' x [item−param mv_spacing];
                [/item−calc]
        [/if−item−param]
        [item−param child]
        </td>
        <td>
                mv_level=[item−param mv_level],
                mv_increment=[item−param mv_increment],
                mv_children=[item−param mv_children]
        </td>
        </tr>
        [/tree]
        </table>

Accepts the following parameters:

61.80.2.5. table

Database table which contains the tree. Must be a valid Interchange table identifier.

61.80.2.6. master

The column which is used to determine the parent of the item.

61.80.2.7. subordinate

The child column, which determines which items are sub−items of the current one. Used to re−query for items
with its value in master.

61.80.2.8. start_item

The first item to be followed, i.e. the master value of all the top−level items.

61.80.2.9. autodetect

Specifies that the next level should be followed to detect the number of child items contained. Not recursive;
only follows far enough to determine the children of the current item.

Interchange Documentation (Full)

 61.80.2.5. table 542



61.80.2.10. full

Specifies that all items should be followed. Essentially the same as specifying memo and passing the
explode variable, but not dependent on them. Useful for building lists for inclusion in embedded Perl,
among other things.

61.80.2.11. stop

An optional stop field which, when the value is true, can stop the following of the branch.

61.80.2.12. continue

An optional continue field which, when the value is true, can force the branch to be followed.

61.80.2.13. sort

The column which should be used for ordering the items −− determines the order in which they will be
displayed under the current parent.

61.80.2.14. outline

Sets outline mode, where mv_increment will be displayed with letter values or numeral values. If set to
specifically 1, will produced outline increments like:

    1
        A
        B
            1
            2
        C
            1
            2
                a
                b
                    1
                    2
                        a
                        b
    2

61.80.2.15. memo

Indicates that the collapse/explode/toggle features are to be used, and names a Scratch variable where the
values should be stored.

61.80.2.16. collapse

The name of a variable in the user's session which will determine that the tree should be "collapsed". When
collapsed, the child items will not be followed unless they are set to be followed with toggle. Zeros all
toggles.

Requires memo to be set if values are to be retained.

Interchange Documentation (Full)

 61.80.2.10. full 543



61.80.2.17. toggle

The name of a variable in the user's session which will determine that the current item should be either
followed or not followed. The first time the toggle variable corresponding to its primary key is passed, the
item will be expanded. The next call will "collapse" the item.

Requires memo to be set if values are to be retained.

61.80.2.18. explode

The name of a variable in the user's session which will determine that the tree should be "exploded". When
exploded, all child items are followed and the full tree can be displayed.

Requires memo to be set if values are to be retained.

61.80.2.19. pedantic

When set to a true value, and an endless tree is detected (i.e. the child branch contains a parent) then the error
will be logged to the catalog error log and the tree call will return with an error.

If pedantic is not set (the default), the current leaf will be shown but never followed. This allows partial
display of the tree.

61.80.2.20. log_error

When set to a true value, and an endless tree is detected (i.e. the child branch contains a parent) then the error
will be logged to the catalog error log. No logging done by default.

61.80.2.21. show_error

When set to a true value, and an endless tree is detected (i.e. the child branch contains a parent) then the error
will be returned in the page. Errors are NOT shown by default.

In addition to the above values, all valid options for a list tag are in force. For example, you can set a
"SELECTED" value on an option list with option=1, set the tag prefix with prefix, etc.

61.80.2.22. master

61.80.2.23. start

61.80.2.24. subordinate

61.80.2.25. table

61.81. try

Allows you to trap errors. Interchange processes the body text of the [try][/try] block and returns it
normally if it does not generate an error. If it does generate an error, interchange executes the
[catch][/catch] block.

Interchange Documentation (Full)

 61.80.2.17. toggle 544



See also 'catch'.

61.81.1. Summary

    [try label=my_label other_named_attributes]
Body text to return if no error

    [/try]
    .
    .
    .
    [catch my_label]

Body text to return if try block caused an error
    [/catch]

Parameters Description Default

label The label shared by the paired try and catch blocks 'default'

Attributes Description Default

status Returns 0 (failed) or 1 (succeeded) instead of page outputnone

hide Suppresses page output No

clean Suppress try block output if it has an error No

interpolate See Interpolating Parameters No

reparse See Interpolating Parameters Yes

Other_Characteristics

Invalidates cache No

Container tag Yes
Tag expansion example:

   [set divisor]0[/set]
   [try label=div]
      [calc] 1 / [scratch divisor] [/calc]
   [/try]
   [catch div]Division error[/catch]
−−−
   Division Error

ASP−like Perl call:

    $Tag−>try(    { label  => I<'try_catch_label'>,
                    status => 1, },
                  $try_body  );

    $Tag−>catch(  { label  => I<'try_catch_label'>, },
                  $catch_body )

or similarly with positional parameters,

    $Tag−>try($label, $attribute_hash_reference, $try_body);
    $Tag−>catch($label, $attribute_hash_reference, $catch_body);

Interchange Documentation (Full)

61.81.1. Summary 545



61.81.1.1. See Also

catch

61.81.2. Description

Allows you to trap errors. Interchange processes the body text of the [try][/try] block and returns it
normally if it does not generate an error. If it does generate an error, interchange executes the
[catch][/catch] block. The catch block executes where it is on the page (i.e., it does not replace the output
of the try block).

Note that the catch block must occur after the [try] block in the document.

61.81.2.1. label

The try and catch blocks are matched by this label.

Technical note:

The try tag will also place a result in the $Session object. For example, the following returns the 'Illegal
division by zero...' error message if it occurs:

   [try label=divide][calc] 1 / [scratch divisor] [/calc][/try]

   [catch divide]
      [calc]$Session−>{try}{divide}[/calc]
   [/catch]

The $Session−>{try}{divide} object will be set to the empty string ('') if there was no error, or it will contain
the error message if there was an error.

The [perl] and [calc] tags also set $Session−>{try}−>{active_label} on errors.

61.81.2.2. status

Suppresses try block output and returns 1 if no error or 0 if an error occurred instead. Executes the catch
block as usual in case of an error.

61.81.2.3. hide

Suppresses try block output (regardless of success or failure). Executes the catch block as usual in case of
an error.

61.81.2.4. clean

Setting 'clean=1' will cause the try block to suppress its output only if it has an error. Otherwise
(clean=0 or not set), the try block will return whatever partial output it has completed before the error.
The catch block will work as usual.

Interchange Documentation (Full)

61.81.1.1. See Also 546



61.82. update

Forces an update of the specified interchange function. Function may be one of the following:

cart (updates current or named cart)• 
process (updates order or search)• 
values (updates user−entered fields)• 
data (updates database, using current mv_ CGI form variables)• 

61.82.1. Summary

    [update function]

Parameters Description Default

function
cart

Updates current or named cart (see name attribute)♦ 
• 

process
Updates an order or a search page♦ 

• 

values
Updates user−entered fields♦ 

• 

data
Updates database, using current mv_ CGI form
variables, for example:

mv_data_table Table to update◊ 
mv_data_key Key into table◊ 
mv_data_fields Fields to update (space or null
delimited)

◊ 

mv_data_function One of the following:
delete⋅ 
update⋅ 
insert⋅ 
delete⋅ 

◊ 

etc.◊ 

♦ 
• 

DEFAULT_VALUE

name Cart name to update (if 'function=cart')

Default: current cart• 

DEFAULT_VALUE

Attributes Default

interpolate (reparse)No

Other_Characteristics

Invalidates cache YES

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [update function]
−−−
   TODO: (tag result)

Interchange Documentation (Full)

61.82. update 547



ASP−like Perl call:

   $Tag−>update(  { function => VALUE_function
}, $body  );

or similarly with positional parameters,

    $Tag−>update(function, $attribute_hash_reference, $body);

61.82.2. Description

Forces an update of the specified interchange function. Function may be one of the following:

cart (updates current or named cart)• 
process (updates order or search)• 
values (updates user−entered fields)• 
data (updates database, using current mv_ CGI form variables)• 

61.82.2.1. function

cart
Updates current or named cart (see name attribute)♦ 

• 

process
Updates an order or a search page♦ 

• 

values
Updates user−entered fields♦ 

• 

data
Updates database, using current mv_ CGI form variables, for example:

mv_data_table Table to update◊ 
mv_data_key Key into table◊ 
mv_data_fields Fields to update (space or null delimited)◊ 
mv_data_function One of the following:

delete⋅ 
update⋅ 
insert⋅ 
delete⋅ 

◊ 

etc.◊ 

♦ 
• 

61.82.2.2. name

Cart name to update (if 'function=cart')

Default: current cart• 

61.83. userdb

61.83.1. Summary

Parameters: function

Interchange Documentation (Full)

61.82.2. Description 548



Positional parameters in same order.

The attribute hash reference is passed to the subroutine after the parameters as the last argument. This may
mean that there are parameters not shown here.

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: YES

Called Routine:

ASP−like Perl call:

    $Tag−>userdb(
        {
         function => VALUE,
        }
    )

 OR

    $Tag−>userdb($function, $ATTRHASH);

Attribute aliases

            name ==> nickname
            table ==> db
    [userdb functionother_named_attributes]

Parameters Description Default

function DEFAULT_VALUE

name Alias for nickname DEFAULT_VALUE

table Alias for db DEFAULT_VALUE

Attributes Default

ATT1 none

interpolate (reparse)No

Other_Characteristics

Invalidates cache YES

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

   [userdb function]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>userdb(  { function => VALUE_function
}, $body  );

Interchange Documentation (Full)

61.82.2. Description 549



or similarly with positional parameters,

    $Tag−>userdb(function, $attribute_hash_reference, $body);

61.83.2. Description

Interchange provides a [userdb ...] tag to access the UserDB functions.

 [userdb
        function=function_name
        username="username"*
        password="password"*
        verify="password"*
        oldpass="old password"*
        shipping="fields for shipping save"
        billing="fields for billing save"
        preferences="fields for preferences save"
        force_lower=1
        param1=value*
        param2=value*
        ...
        ]

* Optional

It is normally called in an mv_click or mv_check setting, as in:

    [set Login]
    mv_todo=return
    mv_nextpage=welcome
    [userdb function=login]
    [/set]

    <FORM ACTION="[process]" METHOD=POST>
    <INPUT TYPE=hidden NAME=mv_click VALUE=Login>
    Username <INPUT NAME=mv_username SIZE=10>
    Password <INPUT NAME=mv_password SIZE=10>
    </FORM>

There are several global parameters that apply to any use of the userdb functions. Most importantly, by
default the database table is set to be userdb. If you must use another table name, then you should include a
database=table parameter with any call to userdb. The global parameters (default in parentheses):

    database     Sets user database table (userdb)
    show         Show the return value of certain functions
                 or the error message, if any (0)
    force_lower  Force possibly upper−case database fields
                 to lower case session variable names (0)
    billing      Set the billing fields (see Accounts)
    shipping     Set the shipping fields (see Address Book)
    preferences  Set the preferences fields (see Preferences)
    bill_field   Set field name for accounts (accounts)
    addr_field   Set field name for address book (address_book)
    pref_field   Set field name for preferences (preferences)
    cart_field   Set field name for cart storage (carts)
    pass_field   Set field name for password (password)
    time_field   Set field for storing last login time (time)
    expire_field Set field for expiration date (expire_date)

Interchange Documentation (Full)

61.83.2. Description 550



    acl          Set field for simple access control storage (acl)
    file_acl     Set field for file access control storage (file_acl)
    db_acl       Set field for database access control storage (db_acl)

61.83.2.1. function

61.84. value

Returns the the current value of the named form input field. HTML−escapes Interchange tags in the result for
security.

Can also set a new value within the current page.

61.84.1. Summary

    [value name]
    [value name=form_var_name other_named_attributes]

Parameters Description Default

name This is the name of the form variable whose value you want.None

Attributes Default

set none

hide No

filter none

keep (with filter) No

scratch No

default none

enable_html No

interpolate (reparse)No

Other_Characteristics

Invalidates cache Yes
Tag expansion example:

Assuming form variable 'foo' = 'bar',

   [value foo]
−−−
   bar

ASP−like Perl call:

    $Tag−>value( { name => var_name } );

# or if you simply want the value:
    $Values−>{var_name};

or similarly with positional parameters,

    $Tag−>value($name, $attribute_hash_reference);

Interchange Documentation (Full)

 61.83.2.1. function 551



61.84.2. Description

Usage example:

   <INPUT TYPE="text" NAME="name" VALUE="[value name]">
   <INPUT TYPE="text" NAME="name" VALUE="[value name=name]">

Expands into the current value of the named customer/form input field. When the value is returned, any
Interchange tags present in the value will be escaped. This prevents users from entering Interchange tags in
form values, which would be a serious security risk.

61.84.2.1. name

This is the name of the form variable whose value you want.

61.84.2.2. set

You can change a value with 'set=new_value'. The tag will return the value you set unless you also set the
hide=1 attribute.

Use this to "uncheck" a checkbox or set other form variable values to defaults. If you simply want a place to
store your own data, use the set and scratch tags instead.

Note that this is only available in new−style tags, for safety reasons.

61.84.2.3. hide

Setting hide=1 suppresses the tag's return value, which can be useful with the set attribute.

61.84.2.4. filter

See the filter tag for a list of filters.

Setting 'filter="filter"' modifies the named value with the specified filter.

61.84.2.5. keep (with filter)

Set keep=1 if you want the tag to return a filtered result but do not want the filter to modify the form value
itself in the $::Values hash.

61.84.2.6. scratch

Setting 'scratch=1' places a copy of the value in the $::Scratch hash. An illustrative example:

   foo is [value name=foo scratch=1] in the Values hash
   foo is now also [scratch foo] in the Scratch hash

61.84.2.7. default

This sets a return value in case the named value is missing or otherwise false. The following will expand to
"Using default":

Interchange Documentation (Full)

61.84.2. Description 552



   [value name=myname set=0 hide=1]
   [value name=myname default="Using default"]

61.84.2.8. enable_html

Any '<' characters will normally be converted into '&lt;' for safety reasons. This conversion can be disabled
using 'enable_html=1'.

61.85. value_extended

61.85.1. Summary

Parameters: name

Positional parameters in same order.

The attribute hash reference is passed to the subroutine after the parameters as the last argument. This may
mean that there are parameters not shown here.

Must pass named parameter interpolate=1 to cause interpolation.

Invalidates cache: YES

Called Routine:

ASP−like Perl call:

    $Tag−>value_extended(
        {
         name => VALUE,
        }
    )

 OR

    $Tag−>value_extended($name, $ATTRHASH);
    [value_extended nameother_named_attributes]

Parameters Description Default

name DEFAULT_VALUE

Attributes Default

umask none

interpolate (reparse)No

Other_Characteristics

Invalidates cache YES

Container tag No

Has Subtags No

Nests Yes
Tag expansion example:

Interchange Documentation (Full)

 61.84.2.8. enable_html 553



   [value_extended name]
−−−
   TODO: (tag result)

ASP−like Perl call:

   $Tag−>value_extended(  { name => VALUE_name
}, $body  );

or similarly with positional parameters,

    $Tag−>value_extended(name, $attribute_hash_reference, $body);

61.85.2. Description

Named call example:

   [value−extended
            name=formfield
            outfile=filename*
            umask=octal*
            ascii=1*
            yes="Yes"*
            no="No"*
            joiner="char|string"*
            test="isfile|length|defined"*
            index="N|N..N|*"
            file_contents=1*
            elements=1*
   ]

Expands into the current value of the customer/form input field named by field. If there are multiple elements
of that variable, it will return the value at index; by default all joined together with a space.

If the variable is a file variable coming from a multipart/form−data file upload, then the contents of that
upload can be returned to the page or optionally written to the outfile.

61.85.2.1. name

The form variable NAME. If no other parameters are present, then the value of the variable will be returned. If
there are multiple elements, then by default they will all be returned joined by a space. If joiner is present,
then they will be joined by its value.

In the special case of a file upload, the value returned is the name of the file as passed for upload.

61.85.2.2. joiner

The character or string that will join the elements of the array. Will accept string literals such as "\n" or "\r".

61.85.2.3. test

Three tests −− isfile returns true if the variable is a file upload. length returns the length. defined
returns whether the value has ever been set at all on a form.

Interchange Documentation (Full)

61.85.2. Description 554



61.85.2.4. index

The index of the element to return if not all are wanted. This is useful especially for pre−setting multiple
search variables. If set to *, will return all (joined by joiner). If a range, such as 0 .. 2, will return
multiple elements.

61.85.2.5. file_contents

Returns the contents of a file upload if set to a non−blank, non−zero value. If the variable is not a file, returns
nothing.

61.85.2.6. outfile

Names a file to write the contents of a file upload to. It will not accept an absolute file name; the name must
be relative to the catalog directory. If you wish to write images or other files that would go to HTML space,
you must use the HTTP server's Alias facilities or make a symbolic link.

61.85.2.7. umask

Permission mask (in octal) to apply to the uploaded file's permission bits. You may want to set this to make a
file world−readable, or to keep it from being group−readable. See the UNIX chmod(1) manpage for details.

61.85.2.8. ascii

To do an auto−ASCII translation before writing the outfile, set the ascii parameter to a non−blank,
non−zero value. Default is no translation.

61.85.2.9. yes

The value that will be returned if a test is true or a file is written successfully. Defaults to 1 for tests and the
empty string for uploads.

61.85.2.10. no

The value that will be returned if a test is false or a file write fails. Defaults to the empty string.

61.85.2.11. name

Interchange Documentation (Full)

 61.85.2.4. index 555



62. User−defined Tags
To define a tag that is catalog−specific, place UserTag directives in your catalog.cfg file. For server−wide
tags, define them in interchange.cfg. Catalog−specific tags take precedence if both are defined −− in fact, you
can override the base Interchange tag set with them. The directive takes the form:

   UserTag  tagname  property  value

where tagname is the name of the tag, property is the attribute (described below), and value is the
value of the property for that tagname.

The user tags can either be based on Perl subroutines or just be aliases for existing tags. Some quick examples
are below.

An alias:

    UserTag product_name Alias     data products title

This will change [product_name 99−102] into [data products title 99−102], which will output the title
database field for product code 99−102. Don't use this with [item−data ...] and [item−field
...], as they are parsed separately. You can do [product−name [item−code]], though.

A simple subroutine:

    UserTag company_name Routine   sub { "Your company name" }

When you place a [company−name] tag in an Interchange page, the text Your company name will be
substituted.

A subroutine with a passed text as an argument:

    UserTag caps   Routine   sub { return "\U@_" }
    UserTag caps   HasEndTag

The tag [caps]This text should be all upper case[/caps] will become THIS TEXT SHOULD BE ALL
UPPER CASE.

Here is a useful one you might wish to use:

    UserTag quick_table HasEndTag
    UserTag quick_table Interpolate
    UserTag quick_table Order   border
    UserTag quick_table Routine <<EOF
    sub {
        my ($border,$input) = @_;
        $border = " BORDER=$border" if $border;
        my $out = "<TABLE ALIGN=LEFT$border>";
        my @rows = split /\n+/, $input;
        my ($left, $right);
        for(@rows) {
            $out .= '<TR><TD ALIGN=RIGHT VALIGN=TOP>';
            ($left, $right) = split /\s*:\s*/, $_, 2;
            $out .= '<B>' unless $left =~ /</;
            $out .= $left;

62. User−defined Tags 556



            $out .= '</B>' unless $left =~ /</;
            $out .= '</TD><TD VALIGN=TOP>';
            $out .= $right;
            $out .= '</TD></TR>';
            $out .= "\n";
        }
        $out .= '</TABLE>';
    }
    EOF

Called with:

    [quick−table border=2]
    Name: [value name]
    City: [value city][if value state], [value state][/if] [value country]
    [/quick_table]

As is the case with [perl] tag, user tags run under the Perl Safe.pm module with warnings disabled. Unlike
[perl] tags, however, user tags use Perl's 'strict' pragma.

The properties for UserTag are:

62.1. Alias

An alias for an existing (or other user−defined) tag. It takes the form:

    UserTag tagname Alias    tag to insert

An Alias is the only property that does not require a Routine to process the tag.

62.2. attrAlias

An alias for an existing attribute for defined tag. It takes the form:

    UserTag tagname attrAlias   alias attr

As an example, the standard Interchange value tag takes a named attribute of name for the variable name,
meaning that [value name=var] will display the value of form field var. If you put this line in catalog.cfg:

    UserTag value attrAlias   identifier name

then [value identifier=var] will be an equivalent tag.

62.3. CanNest

Notifies Interchange that this tag must be checked for nesting. Only applies to tags that have HasEndTag
defined, of course. NOTE: Your routine must handle the subtleties of nesting, so don't use this unless you are
quite conversant with parsing routines. See the routines tag_loop_list and tag_if in
lib/Vend/Interpolate.pm for an example of a nesting tag.

    UserTag tagname CanNest

Interchange Documentation (Full)

62.1. Alias 557

http://www.perl.com/pub/doc/manual/html/lib/Safe.html


62.4. HasEndTag

Defines an ending [/tag] to encapsulate your text −− the text in between the beginning [tagname] and
ending [/tagname] will be the last argument sent to the defined subroutine.

    UserTag tagname HasEndTag

62.5. Implicit

This defines a tag as implicit, meaning it can just be an attribute instead of an attribute=value
pair. It must be a recognized attribute in the tag definition, or there will be big problems. Use this with
caution!

    UserTag tagname Implicit attribute value

If you want to set a standard include file to a fixed value by default, but don't want to have to specify
[include file="/long/path/to/file"] every time, you can just put:

    UserTag include Implicit file file=/long/path/to/file

and [include file] will be the equivalent. You can still specify another value with [include
file="/another/path/to/file"].

62.6. Interpolate

The behavior for this attribute depends on whether the tag is a container (i.e. HasEndTag is defined). If it is
not a container, the Interpolate attribute causes the the resulting HTML from the UserTag to be
re−parsed for more Interchange tags. If it is a container, Interpolate causes the contents of the tag to be
parsed before the tag routine is run.

    UserTag tagname Interpolate

62.7. InvalidateCache

If this is defined, the presence of the tag on a page will prevent search cache, page cache, and static builds
from operating on the page.

    UserTag tagname InvalidateCache

It does not override [tag flag build][/tag], though.

62.8. Order

The optional arguments that can be sent to the tag. This defines not only the order in which they will be
passed to Routine, but the name of the tags. If encapsulated text is appropriate (HasEndTag is set), it will be
the last argument.

    UserTag tagname Order param1 param2

Interchange Documentation (Full)

62.4. HasEndTag 558



62.9. PosRoutine

Identical to the Routine argument −− a subroutine that will be called when the new syntax is not used for the
call, i.e. [usertag argument] instead of [usertag ARG=argument]. If not defined, Routine is
used, and Interchange will usually do the right thing.

62.10. Routine

An inline subroutine that will be used to process the arguments of the tag. It must not be named, and will be
allowed to access unsafe elements only if the interchange.cfg parameter AllowGlobal is set for the
catalog.

    UserTag tagname Routine  sub { "your perl code here!" }

The routine may use a "here" document for readability:

    UserTag tagname Routine <<EOF
    sub {
        my ($param1, $param2, $text) = @_;
        return "Parameter 1 is $param1, Parameter 2 is $param2";
    }
    EOF

The usual here documents caveats apply.

Parameters defined with the Order property will be sent to the routine first, followed by any encapsulated text
(HasEndTag is set).

Note that the UserTag facility, combined with AllowGlobal, allows the user to define tags just as powerful as
the standard Interchange tags. This is not recommended for the novice, though −− keep it simple. 8−)

Interchange Documentation (Full)

62.9. PosRoutine 559



63. Standard Usertags
The distribution includes a number of prebuilt usertags in the usertag directory in the Interchange software
directory. Some of these are used by the foundation catalog or its administrative interface.

63.1. bar_button

Displays content based on current page. Could be used for building e.g. menu bars.

63.1.1. Summary

    [bar−button page current]...[selected]...[/selected][/bar−button]
    [bar−button page=page current=current−page]...[selected]...[/selected][/bar−button]

Positional parameters: The first line shows the usage with positional parameters (given in order). The second
line shows usage with named parameters.

Parameters Description Default

page Name of page for which this bar−button is definednone

current Name of the current page Current page: MV_PAGE

Other_Characteristics

Invalidates cache No

Macro No

Has end tag [/bar−button]
Tag expansion example:

To build a simple '3−button' menu bar one could put the following on each of the pages. The results of this
code for page2 are shown below.

        <table><tr>
        [bar−button page=page1]
        <TD><A HREF="[area page1]">PAGE−1</A></TD>
        [selected]
        <TD bgcolor="red"><A HREF="[area page1]"><B>PAGE−1−selected</B></A></TD>
        [/selected]
        [/bar−button]
        [bar−button page=page2]
        <TD><A HREF="[area page2]">PAGE−2</A></TD>
        [selected]
        <TD bgcolor="red"><A HREF="[area page2]"><B>PAGE−2−selected</B></A></TD>
        [/selected]
        [/bar−button]
        [bar−button page=page3]
        <TD><A HREF="[area page3]">PAGE−3</A></TD>
        [selected]
        <TD bgcolor="red"><A HREF="[area page3]"><B>PAGE−3−selected</B></A></TD>
        [/selected]
        [/bar−button]
        </tr></table>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
        PAGE−1    PAGE−2−selected    PAGE−3

63. Standard Usertags 560



ASP−like Perl call:

    $Tag−>button_bar(  { page => $page,
                     current  => $current,
                         body => $body}  );

or similarly,

    $Tag−>area($page, $current, $body);

63.1.1.1. See Also

bar_link routine

63.1.2. Description

Displays content based on current page. The content between the [selected][/selected] tags will be displayed
only if the name of the current page matches the name that was passed to the page parameter
(page=page−name). The default content will be displayed when there is no match.

63.1.2.1. page

The name of the page for which this definition of the bar−button is defined.

63.1.2.2. current

The name of the current page. Defaults to current page MV_PAGE.

63.2. button

63.3. convert_date

This tag converts a given date format into another format.

63.3.1. Summary

    [convert_date day* other_named_attributes>[/convert_date]
    [convert_date day=n* other_named_attributes[/convert_date]

Positional parameters: The first line shows the usage with positional parameters (given in order). The second
line shows usage with named parameters.

Parameters Description Default

days The number of days from or before todaynone

Attributes Default

format '%d−%b−%Y %I:%M%p' or '%d−%b−%Y'

fmt − Alias for format none

raw none

Interchange Documentation (Full)

63.1.1.1. See Also 561



zerofix none

Other_Characteristics

Invalidates cache No

Macro No

Has end tag [/convert_date]
Tag expansion example:

  a. [convert−date][/convert−date]
  b. [convert−date 1][/convert−date]
  c. [convert−date −1][/convert−date]
  d. [convert−date]2001−5−1[/convert−date]
  e. [convert−date]2001−05−01[/convert−date]
  f. [convert−date]20010515[/convert−date]
  g. [convert−date raw=1]2001−05−18[/convert−date]
  h. [convert−date fmt="%d−%m−%Y"]2001−05−18[/convert−date]
  i. [convert−date]200 1 −  −−051 =9[/convert−date]
  j. [convert−date]2001 −  −−05 −20 11 1 5[/convert−date]
  k. [convert−date raw=1]2001−05−21 11:15[/convert−date]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  a. 18−May−2001 03:15AM (todays day and time)
  b. 19−May−2001 03:15AM (today + 1 day)
  c. 17−May−2001 03:15AM (today − 1 day)
  d. 01−May−2001
  e. 01−May−2001
  f. 15−May−2001
  g. 20010518
  h. 18−05−2001
  i. 19−May−2001
  j. 20−May−2001 11:15AM
  k. 200105211115

ASP−like Perl call:

    $Tag−>convert_date( { day => 1 } );

    $Tag−>convert_date( { body => "2001−05−19 15:35",
format => "%d−%m−%Y %H:%M", } );

or similarly with positional parameters,

    $Tag−>convert_date( 1 );

63.3.2. Description

This tag converts almost any given date format into another, possibly user defined, format.

63.3.2.1. days

Number of days from or before today's date and time. Will only be used if nothing is supplied between the
tags.

Interchange Documentation (Full)

63.3.2. Description 562



63.3.2.2. format

POSIX time format string of your choice. See Unix strftime(3) manpage for complete details.

63.3.2.3. raw

If this option is set to true, will display given date in raw format, e.g. yyyymmdd or yyyymmddHHMM.

63.3.2.4. zerofix

Strips leading zeroes from numbers.

63.4. db_date

This tag returns the time of last access of the database source file.

63.4.1. Summary

    [db_date table* format*]

Positional parameters: The first line shows the usage with positional parameters (given in order). The second
line shows usage with named parameters.

Parameters Description Default

table Table name. products

format POSIX time format string %A %d %b %Y

Other_Characteristics

Invalidates cache No

Macro No

Has end tag No
Tag expansion example:

   [db−date]
   [db−date cat]
   [db−date table=cat format="%d %b %Y"]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
   Wednesday 02 May 2001 (products.txt)
   Wednesday 03 May 2001 (cat.txt)
   03 May 2001 (cat.txt)

ASP−like Perl call:

    $Tag−>db_date( { table => cat,
format => "%d %b %Y", } );

or similarly with positional parameters,

    $Tag−>db_date( "cat", "%d %b %Y" );

Interchange Documentation (Full)

 63.3.2.2. format 563



63.4.2. Description

This tag returns the time of last access of the database source file.

63.4.2.1. table

Table name. Defaults to products if not specified.

63.4.2.2. format

POSIX time format string. See Unix strftime(3) manpage for details. Defaults to '%A %d %b %Y' when not
specified.

63.5. delete_cart

This tag deletes a cart from the userdb.

63.5.1. Summary

    [delete_cart nickname]
    [delete_cart nickname="cart−name"]

Positional parameters: The first line shows the usage with positional parameters (given in order). The second
line shows usage with named parameters.

Parameters Description Default

nickname Must be an existing nicknamenone

Other_Characteristics

Invalidates cache No

Macro No

Has end tag No
Tag expansion example:

   [delete_cart mycart]
   [delete_cart nickname="mycart"]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ASP−like Perl call:

    $Tag−>delete_cart( { nickname => "mycart", } );

or similarly with positional parameters,

    $Tag−>delete_cart( "mycart" );

63.5.1.1. See Also

userdb, load_cart, save_cart and pages templates/components/saved_carts_list_small, pages/saved_carts.html
for more examples.

Interchange Documentation (Full)

63.4.2. Description 564



63.5.2. Description

Deletes a cart with name nickname from the user database. Basically the same as [userdb function=delete_cart
nickname=mycart].

63.5.2.1. nickname

Nickname of cart to be deleted.

63.6. email

This tag takes a recipient address and a body text and uses the SendmailProgram with −t option to send email.

63.6.1. Summary

    [email to subject* reply* from* extra*]Your message[/email]
    [email to=to_address subject=subject reply=reply_address
        from=from_address extra=extra_headers]Your message[/email]

Positional parameters: The first line shows the usage with positional parameters (given in order). The second
line shows usage with named parameters.

Parameters Description Default

to Email address of recipient none

subject Subject line String: <no subject>

reply Email address to be used for the reply−to headernone

from Senders email address First address in MailOrderTo
configuration variable

extra Additional headers to be included none

Other_Characteristics

Invalidates cache No

Macro No

Has end tag [/email]
Tag expansion example:

   [email
          to="foo@bar.com"
     subject="Greetings"
        from="bar@foo.com"
   ]
   Hello World
   [/email]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ASP−like Perl call:

    $Tag−>email(  { to => $to,
                  from => $from,
               subject => $subject,
                 reply => $reply,

Interchange Documentation (Full)

63.5.2. Description 565



                 extra => $extra,
                  body => $body }  );

or similarly,

    $Tag−>email($to, $subject, $reply, $from, $extra, $body);

63.6.1.1. See Also

email_raw and etc/mail_receipt, pages/process_return.html, pages/stock−alert−added.html for examples.

63.6.2. Description

Will send the content between the [email][/email] tags as an email to the recipient (to) using the
SendmailProgram with −t option.

63.6.2.1. extra

Extra headers to be included. Example: Errors−To: errors@yourdomain.com

63.6.2.2. from

Email address identifying the sender of the message. Will use the first email address of the MailOrderTo
configuration variable if it is not supplied.

63.6.2.3. reply

Email address to be used for the Reply−to header. No Reply−to header will be present if this parameter is
omitted.

63.6.2.4. subject

Short text describing the content of the message. The Subject line of an email message. The string <no
subject> will be substituted if this parameter is omitted.

63.6.2.5. to

Valid email address(es) of the recipient(s). This parameter is required.

63.7. email_raw

This tag takes a raw email message, including headers, and uses the SendmailProgram with −t option.

63.7.1. Summary

    [email_raw]Your message including headers[/email_raw]

Other_Characteristics

Invalidates cache No

Macro No

Interchange Documentation (Full)

63.6.1.1. See Also 566



Has end tag [/email_raw]
Tag expansion example:

   [email_raw]
From: foo@bar.com
To: bar@foo.com
Subject: baz

The text of the message.
   [/email_raw]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The headers must be at the beginning of the line, and the header must have a valid To: or it will not be
delivered.

ASP−like Perl call:

    $Tag−>email_raw(  { body => $body }  );

or similarly,

    $Tag−>email_raw($body);

63.7.1.1. See Also

email

63.7.2. Description

Will send the content between the [email_raw][/email_raw] tags as a raw email message to the recipient
specified in the supplied headers using the SendmailProgram with −t option.

63.8. fcounter

63.9. fedex_query

63.10. formel

63.11. get−url

Fetch a URL and return the contents.

63.11.1. Summary

    [get−url url]
    [get−url url="valid−url" strip=1*]

Positional parameters: The first line shows the usage with positional parameters (given in order). The second
line shows usage with named parameters.

Interchange Documentation (Full)

63.7.1.1. See Also 567



Parameters Description Default

url Must be a valid URL. Meaning, you have to supply the protocol.

Example

http://demo.akopia.com/♦ 
ftp://ftp.akopia.com/♦ 

none

Attributes Default

strip none

Other_Characteristics

Invalidates cache No

Macro No

Has end tag No
Tag expansion example:

   [get−url http://demo.akopia.com/]
   [get−url url="http://demo.akopia.com/" strip=1]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ASP−like Perl call:

    $Tag−>get_url( { url => "http://demo.akopia.com/", } );

    $Tag−>get_url( { url => "http://demo.akopia.com/",
                   strip => 1, } );

or similarly with positional parameters,

    $Tag−>get_url( "http://demo.akopia.com/" );

63.11.2. Description

Uses the LWP libraries (LWP::Simple) to fetch a URL and returns the contents.

63.11.2.1. strip

If the strip option is set, strips everything up to <body> and everything after </body>.

63.11.2.2. url

Must be a valid URL (including protocol).

63.12. load_cart

This tag loads a cart by name from the userdb.

63.12.1. Summary

    [load_cart nickname]
    [load_cart nickname="cart−name"]

Interchange Documentation (Full)

63.11.2. Description 568



Positional parameters: The first line shows the usage with positional parameters (given in order). The second
line shows usage with named parameters.

Parameters Description Default

nickname Must be an existing nickname.

Nickname is constructed from:

a name part♦ 
time modified (time the cart was saved by
save_cart tag)

♦ 

type (c for cart, r for recurring)♦ 

none

Other_Characteristics

Invalidates cache No

Macro No

Has end tag No
Tag expansion example:

   [load_cart mycart:990102732:c]
   [load_cart nickname="mycart:990102732:c"]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ASP−like Perl call:

    $Tag−>load_cart( { nickname => "mycart:990102732:c", } );

or similarly with positional parameters,

    $Tag−>load_cart( "mycart:990102732:c" );

63.12.1.1. See Also

userdb, delete_cart, save_cart and pages templates/components/saved_carts_list_small,
pages/saved_carts.html for more examples.

63.12.2. Description

Loads a cart with name nickname from the user database. It will be merged with the current cart. Basically the
same as [userdb function=get_cart nickname=cartname merge=1].

63.12.2.1. nickname

Nickname of cart to be loaded. See above.

63.13. loc

Interchange Documentation (Full)

63.12.1.1. See Also 569



63.14. rand

63.15. reconfig

63.16. reconfig_time

63.17. reconfig_wait

63.18. save_cart

This tag saves the current cart or recurring order in the userdb under a given name.

63.18.1. Summary

    [save_cart nickname recurring]
    [save_cart nickname="cart−name" recurring=1]

Positional parameters: The first line shows the usage with positional parameters (given in order). The second
line shows usage with named parameters.

Parameters Description Default

nickname Label for the cart. none

recurring Set to true if recurring. Set to false, or omit if cart.none

Other_Characteristics

Invalidates cache No

Macro No

Has end tag No
Tag expansion example:

   [save_cart mycart]
   [save_cart nickname=mycart recurring=1]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ASP−like Perl call:

    $Tag−>save_cart( { nickname => mycart,
                      recurring => 1, } );

or similarly with positional parameters,

    $Tag−>save_cart( "mycart", "1" );

63.18.1.1. See Also

userdb, delete_cart, load_cart and pages templates/components/saved_carts_list_small,
pages/saved_carts.html for more examples.

Interchange Documentation (Full)

63.14. rand 570



63.18.2. Description

Saves the current cart with name nickname in the user database. Basically the same as [userdb
function=set_cart nickname=cartname]

63.18.2.1. nickname

Nickname for the current cart to be saved. You can use same nickname for different carts. An index will be
added if there are more carts with the same nickname.

63.18.2.2. recurring

Set to true if recurring. Set to false, or simply omit it, if it is a cart.

63.19. summary

This tag calculates column totals.

63.19.1. Summary

    [summary amount]
    [summary amount=n.nn other_named_attributes]

Positional parameters: The first line shows the usage with positional parameters (given in order). The second
line shows usage with named parameters.

Parameters Description Default

amount Numerical value to be added to previous totalnone

Attributes Default

currency none

format none

hide none, no hiding

name ONLY0000, internal use only

reset none

total none

Other_Characteristics

Invalidates cache No

Macro No

Has end tag No
Tag expansion example:

   [loop list="10 20 30.5"]
   [summary amount="[loop−code]" hide=1]
   [/loop]
   [summary total=1 format="%.3f"]
   [summary total=1 currency=1]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
   60.500

Interchange Documentation (Full)

63.18.2. Description 571



   $60.50

ASP−like Perl call:

    $Tag−>summary( { amount => 10.5,
                       hide => 1, } );

    $Tag−>summary( { amount => 25,
                       name => mytotal,
                   currency => 1, } );

or similarly with positional parameters,

    $Tag−>summary( 10.5, $attribute_hash_reference );

63.19.1.1. See Also

templates/components/cart, pages/ord/checkout.html for more examples.

63.19.2. Description

The summary tag provides you with an easy way to calculate and display totals. The display of the amounts is
fully customizable. You can hide display, or you can show the amounts with the proper currency formatting
according to the locale, or you can define your own formatting. Any number of summaries can be kept on a
page.

63.19.2.1. currency

The amount or total will be displayed according to the currency formatting of the current locale if this
attribute is set to true (non blank or zero).

63.19.2.2. format

You can choose any formatting of the amount you like. Just set the format attribute to the desired formatting
string (%s, %.2f etc.). When both, currency and format attributes are set, the format attribute will take
precedence. So it doesn't make much sense to set them both at the same time.

63.19.2.3. hide

Will suppress the display of amount when set to true.

63.19.2.4. name

You can calculate as many totals as you like on the same page. Just supply a different label for each summary.

63.19.2.5. reset

Will erase the total(s) if set to true. Be careful tough. It will reset ALL totals when you have no name attribute
supplied. If you have provided a label for the name attribute then it will only reset the total for that particular
label. All others won't be touched.

Interchange Documentation (Full)

63.19.1.1. See Also 572



63.19.2.6. total

Will show the total instead of the amount if set to true.

63.20. table_organize

Takes an unorganized set of table cells and organizes them into rows based on the number of columns.

63.20.1. Summary

    [table−organize cols* other_named_attributes]
             [loop ....] <td> [loop−tags] </td> [/loop]
        [/table−organize]

    [table−organize cols=n* other_named_attributes]
             [loop ....] <td> [loop−tags] </td> [/loop]
        [/table−organize]

Positional parameters: The first line shows the usage with positional parameters (given in order). The second
line shows usage with named parameters.

Parameters Description Default

cols Number of columns.2

columns Alias for cols. 2

Attributes Default

caption none

columnize none

embed none

filler &nbsp;

limit none

pretty none

rows none

table none

td none

tr none

Other_Characteristics

Invalidates cache No

Macro No

Has end tag [/table−organize]
Tag expansion example:

This example produces a table that (1) alternates rows with background colors "#EEEEEE" and "#FFFFFF",
and (2) aligns the columns right, center, left:

        [table−organize
            cols=3
            pretty=1
            tr.0='bgcolor="#EEEEEE"'

Interchange Documentation (Full)

 63.19.2.6. total 573



            tr.1='bgcolor="#FFFFFF"'
            td.0='align=right'
            td.1='align=center'
            td.2='align=left'
            ]
            [loop list="1 2 3 1a 2a 3a 1b"] <td> [loop−code] </td> [/loop]
        [/table−organize]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
        <tr bgcolor="#EEEEEE">
                <td align=right>1</td>
                <td align=center>2</td>
                <td align=left>3</td>
        </tr>
        <tr bgcolor="#FFFFFF">
                <td align=right>1a</td>
                <td align=center>2a</td>
                <td align=left>3a</td>
        </tr>
        <tr bgcolor="#EEEEEE">
                <td align=right>1b</td>
                <td align=center>&nbsp;</td>
                <td align=left>&nbsp;</td>
        </tr>

If the attribute columnize=1 is present, the result will look like:

            <tr bgcolor="#EEEEEE">
                    <td align=right>1</td>
                    <td align=center>1a</td>
                    <td align=left>1b</td>
            </tr>
            <tr bgcolor="#FFFFFF">
                    <td align=right>2</td>
                    <td align=center>2a</td>
                    <td align=left>&nbsp;</td>
            </tr>
            <tr bgcolor="#EEEEEE">
                    <td align=right>3</td>
                    <td align=center>3a</td>
                    <td align=left>&nbsp;</td>
            </tr>

See the source for more ideas on how to extend this tag.

ASP−like Perl call:

    $Tag−>table_organize( { cols => 3,
                            pretty => 1, }, $BODY );

or similarly with positional parameters:

    $Tag−>table_organize( $cols, $attribute_hash_reference, $BODY );

63.20.1.1. See Also

pages/flypage.html, pages/quantity.html, templates/components/best_horizontal, templates/components/cart,
templates/components/cross_horizontal, templates/components/random,
templates/components/random_vertical, templates/components/upsell

Interchange Documentation (Full)

63.20.1.1. See Also 574



63.20.2. Description

Takes an unorganized set of table cells and organizes them into rows based on the number of columns; it will
also break them into separate tables.

If the number of cells are not on an even modulus of the number of columns, then "filler" cells are pushed on.

63.20.2.1. cols (or columns)

Number of columns. This argument defaults to 2 if not present.

63.20.2.2. rows

Optional number of rows. Implies "table" parameter.

63.20.2.3. table

If present, will cause a surrounding <TABLE> </TABLE> pair with the attributes specified in this option.

63.20.2.4. caption

Table <CAPTION> container text, if any. Can be an array.

63.20.2.5. td

Attributes for table cells. Can be an array.

63.20.2.6. tr

Attributes for table rows. Can be an array.

63.20.2.7. columnize

Will display cells in (newspaper) column order, i.e. rotated.

63.20.2.8. pretty

Adds newline and tab characters to provide some reasonable indenting.

63.20.2.9. filler

Contents to place in empty cells put on as filler. Defaults to "&nbsp;".

63.20.2.10. limit

Maximum number of cells to use. Truncates extra cells silently.

Interchange Documentation (Full)

63.20.2. Description 575



63.20.2.11. embed

If you want to embed other tables inside, make sure they are called with lower case <td> elements, then set
the embed tag and make the cells you wish to organize be <TD> elements. To switch that sense, and make the
upper−case or mixed case be the ignored cells, set the embed parameter to "lc".

    [table−organize embed=lc]
                <td>
                        <TABLE>
                                <TR>
                                <TD> something
                                </TD>
                                </TR>
                        </TABLE>
                </td>
    [/table−organize]

or

    [table−organize embed=uc]
                <TD>
                        <table>
                                <tr>
                                <td> something
                                </td>
                                </tr>
                        </table>
                </TD>
    [/table−organize]

The "tr", "td", and "caption" attributes can be specified with indexes; if they are, then they will alternate
according to the modulus.

The "td" option array size should probably always equal the number of columns; if it is bigger, then trailing
elements are ignored. If it is smaller, no attribute is used.

63.21. title_bar

Creates a quick title bar.

63.21.1. Summary

    [title−bar width size color]My title[/title−bar]
    [title−bar width=600 size=5 color="#ff0000"]My title[/title−bar]

Positional parameters: The first line shows the usage with positional parameters (given in order). The second
line shows usage with named parameters.

Parameters Description Default

color Background color the bar.

Defaults to

HEADERBG or #444444

Interchange Documentation (Full)

 63.20.2.11. embed 576



variable HEADERBG
or

♦ 

#444444♦ 
size Font size 6

width Width of the title bar 500

Other_Characteristics

Invalidates cache No

Macro No

Has end tag [/title−bar]
Tag expansion example:

   [title−bar 600 5 red]My title[/title−bar]
   [title−bar width=600 size=5 color="#ff0000"]My title[/title−bar]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ASP−like Perl call:

    $Tag−>title_bar( { body => "My Title", } );

    $Tag−>title_bar( { width => 400,
                       color => "#0000ff",
                        body => "My title", } );

or similarly with positional parameters,

    $Tag−>title_bar( 600, 5, "red", "My title" );

63.21.2. Description

Quickly adds a title bar to your pages without having to type the html each time. Background color, width of
the bar and size of the text can be customized by setting the appropriate parameter. The text color defaults to
variable HEADERTEXT or when its not present to white.

63.21.2.1. color

Sets the background color of the bar. You can set the color as 'red', '#ff0000', or 'bgcolor="#ff0000"'.

63.21.2.2. size

Determines the size of the text. Parameter should be set to a value accepted by the HTML <font> tag size
attribute.

63.21.2.3. width

Sets the width of the bar.

63.22. ups_query

Interchange Documentation (Full)

63.21.2. Description 577



63.23. usertrack

63.24. var

63.25. xml_generator

This is a quick and dirty tag that generates XML tags based upon one of two types of data (delimited and
session).

63.25.1. Summary

    [xml−generator type* other_named_attributes][/xml−generator]
    [xml−generator type=value* other_named_attributes][/xml−generator]
    [xml−generator type=value* other_named_attributes][][/xml−generator]

*Optional

Positional parameters: The first line shows the usage with positional parameters (given in order). The second
line shows usage with named parameters.

Parameters Description Default

type Data type. Delimited or sessiondelimited

Attributes Default

attributes none

dbdump none

delimiter \t

field_names &nbsp;

separator \n

toplevel_tag 'table' for delimited type and 'session' for other type

record_tag record

field_tag field

key_name none

spacer [\s,]+

no_second none

skip_empty none

Other_Characteristics

Invalidates cache No

Macro No

Has end tag [/xml−generator]
Tag expansion example:

[xml−generator
    type=delimited
    attributes="date"
    date="[tag time]%d−%b−%Y[/tag]"
    toplevel_tag=products]code  description     price
[query list=1 sql="select sku, description, price from products" prefix=xml][xml−code]  [xml−param description] [xml−param price]

Interchange Documentation (Full)

63.23. usertrack 578



[/query][/xml−generator]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
<products date="18−May−2001">
        <record key="os28113">
                <code>os28113</code>
                <description>The Claw Hand Rake</description>
                <price>14.99</price>
        </record>
        <record key="os28006">
                <code>os28006</code>
                <description>Painters Brush Set</description>
                <price>29.99</price>
        </record>
        ...
</products>

ASP−like Perl call:

    $Tag−>xml_generator( {type => delimited,
                      toplevel_tag => apex,  }, $BODY );

or similarly with positional parameters,

    $Tag−>xml_generator( $type, $attribute_hash_reference, $BODY );

63.25.2. Description

63.25.2.1. type

delimited

Accepts a delimited and separated (default is TAB delimiter and newline separator) list of records such as that
generated by an '[item−list]', '[sql]', or '[loop search=""]' ITL tag.

session

When the type is not delimited, it can contain any hash reference into the Interchange session. Examples are:

        values       The form values
        scratch      Scratch values
        errors       Error values
        other        Any other Session key, for example "source" for
                     [data session source]

If the value is a hash, then it will be sent as an XML record with the top level equal to "session", and a
second_level tag equal to the hash name, and keys as separate XML container tags. If the parameter "that is
equal to the type" is given, only those fields will be shown. Otherwise the entire hash will be shown. For
example, this tag:

        [xml−generator type="values" values="fname lname"][/xml−generator]

will generate:

        <session>
                <values>

Interchange Documentation (Full)

63.25.2. Description 579



                        <fname>First</fname>
                        <lname>Last</lname>
                </values>
        </session>

if it is a scalar, then only the second level will be done:

        [xml−generator type="cybercash_id"][/xml−generator]

will do the equivalent of:

        <session>
                <cybercash_id>[data session cybercash_id]</cybercash_id>
        </session>

So bringing it all together, the following:

        [xml−generator type="values scratch source"
                       values="fname lname"
                       scratch="downloads"][/xml−generator]
will generate:

        <session>
                <values>
                        <fname>First</fname>
                        <lname>Last</lname>
                </values>
                <scratch>
                        <downloads>0</downloads>
                </scratch>
                <source>Partner1</source>
        </session>

63.25.2.2. no_second

Prevents the second−level tags from being generated. Extending the last example in the "session" type above,
this

        [xml−generator  type="values scratch source"
                        no_second=1
                        values="fname lname"
                        scratch="downloads"][/xml−generator]
will generate:

        <session>
                <fname>First</fname>
                <lname>Last</lname>
                <downloads>0</downloads>
                <source>Partner1</source>
        </session>

63.25.2.3. attributes

The attributes (if any) to pass on to the top level tag. For instance,

        [xml−generator
              attributes="date"
              date="[tag time]%d−%b−%Y[/tag]"
              toplevel_tag=order
        ][/xml−generator]

Interchange Documentation (Full)

 63.25.2.2. no_second 580



will generate a toplevel tag pair of:

        <order date="18−Mar−2001">
        </order>

63.25.2.4. dbdump

Will dump all tables in the catalog when this attribute is set true. Used attributes are "toplevel_tag",
"record_tag", "field_tag", and "skip_empty" or default values ('table', 'record', 'field' respectively).

Output format:
    <database name="catalogname">
        <toplevel_tag name="tablename1">
            <record_tag key="value of first field−1">
                <field_tag name="fieldname1">fieldvalue1</field_tag>
                <field_tag name="fieldname2">fieldvalue2</field_tag>
                        </record_tag>
            <record_tag key="value of first field−2">
                <field_tag name="fieldname1">fieldvalue1</field_tag>
                <field_tag name="fieldname2">fieldvalue2</field_tag>
                        </record_tag>
                </toplevel_tag>
        <toplevel_tag name="tablename2">
            <record_tag key="value of first field−1">
                <field_tag name="fieldname1">fieldvalue1</field_tag>
                <field_tag name="fieldname2">fieldvalue2</field_tag>
                        </record_tag>
                </toplevel_tag>
        </database>

Important note: All tables are read into memory. So be warned, this could be a real memory hog.

Ton Verhagen's proposal:

Add option to select tables. E.g. dump_tables="products cat area" and/or1. 
Add option to select an output file. E.g. dump_file="tabledump.XML". Send output to file line by
line.

2. 

63.25.2.5. delimiter

Character used as delimiter of fields in delimited data type. Defaults to a tab character.

63.25.2.6. field_names

Space or comma−delimited list of field names to be used for delimited data type. Should be in the same order
as in the data list provided (between the tags).

Another way of providing the field names would be:

    [xml−generator .....]fieldname−1    fieldname−2     fieldname−3
        [field value list
         delimited by option delimiter and
         separated by option separator][/xml−generator]

Note: Field name list must be tab delimited.

Interchange Documentation (Full)

 63.25.2.4. dbdump 581



Ton Verhagen's humble opinion: This should change in future versions! Use option delimiter instead.

63.25.2.7. separator

Character used as line separator in list between [xml−separator][xml−separator] tags and in output 'session'
data type. Defaults to a newline, "\n".

63.25.2.8. toplevel_tag

The toplevel tag name to use. Defaults to "table" for the 'dbdump mode' and delimited type, and "session" for
the other.

63.25.2.9. record_tag

Defines the tag name for the record tag. Defaults to 'record'. Used for 'dbdump mode' and delimited type.

63.25.2.10. field_tag

Defines the tag name for the field tag. Defaults to 'field'. Only used in 'dbdump mode'.

63.25.2.11. key_name

Only used in delimited data type. Defines fieldname to determine key value in "record_tag".

    <record_tag key="value of field with name defined by key_name"> ....

63.25.2.12. spacer

Character used as delimiter in type parameter definition and corresponding attributes. Defaults to '[\s,]+' (one
or more whitespace or comma).

    [xml−generator type="values|scratch"
                       values="value1|value2"
                                   scratch="scratch1|scratch2"
                                   spacer="|"
                                   ][/xml−generator]

63.25.2.13. skip_empty

Only used in dbdump mode (dbdump=1). Will skip empty fields if this attribute is set true.

Interchange Documentation (Full)

 63.25.2.7. separator 582



C. Template Parsing Order

C.1. Standard Parsing

Under normal circumstances, the template page containing tags and HTML is parsed in the following order:

Any content in MV_AUTOLOAD is prepended to the template page.1. 

Any [pragma] tags anywhere in the text are processed, and the specified pragmas are set.
Since [pragma] tags are preprocessed before any other content, reparse will not catch
them, nor will they work if included in variables. Also, the specified pragma will apply to the
entire template (not just the section after the tag).

♦ 

If you want to apply a pragma with a variable or only to part of a document, you must use
[tag pragma="..."] instead.

♦ 

2. 

Variables (macros) are processed in the following order:
@@VARNAME@@ global variables1. 
@_VARNAME_@ local or global variables2. 
__VARNAME__ local variables3. 

3. 

Interchange comments are stripped.4. 

False−endtag macros are expanded (e.g., [/page] and [/order]).5. 

'<!−−[tagname]−−>' escapes are converted to [tagname]
This can be a convenience for your HTML editor if it has trouble with tags using the standard
[tagname] syntax.

♦ 

However, if you want to HTML−comment out an Interchange tag in content that will be fed
raw to a browser, you must include whitespace between the HTML comment delimiters and
the tag, like this, '<!−−  [tagname]  −−>'.

♦ 

6. 

The main tag parser is called.
Some tags parse recursively (depending on reparse and interpolate settings, of
course).

♦ 

Some tags (e.g., [loop]) process prefix−tags in their contained body text. Hence, the
prefix−tags are not handled recursively.

♦ 

Some tags are interpreted in the lib/Vend/Parse.pm:start routine. You cannot call them with
the '$Tag−>tagname' syntax. They are:

The [goto] tag. Note also that the goto tag handles the [label] tag.◊ 
The [bounce] tag.◊ 

♦ 

7. 

Image paths substitution on the HTML output occurs.8. 

C.2. Nonstandard parsing within the admin interface

Parsing of content via the specialized regenerate usertag included with the administrative interface does
not obey the above order. The MV_AUTOLOAD and '<!−−[tagname]−−>' escapes are skipped. There are
some other more subtle differences as well; in the very unlikely event that you need to check this in the source

C. Template Parsing Order 583



code, compare the 'interpolate_html' and 'cache_html' routines in Interpolate.pm.

C.3. Nonstandard parsing of Subtags

Subtags are parsed within the containing array−list or hash−list context created by the containing tag (see
Looping tags and Sub−tags).

All subtags at an earlier precedence level are treated before any in the next level.• 
Within the same level, tags are processed in the order the appear on the page.• 
Any standard tags are processed during 'interpolate' (before) or 'reparse' (after) phases of processing
the containing tag.

• 

Technical note

Processing within a hash− or array−list is actually done as a series of global regular expression substitutions
on the page. Each substitution replaces one tag with the output of the subroutine(s) associated with it.

In array−list context, subtags are processed in the following order:

Check for prefix_line and prepare for it if present (does not process prefix−line at this time)1. 
prefix−sub definitions processed2. 
if−prefix−etc. nesting resolved3. 
prefix−alternate processed4. 
if−prefix−param processed5. 
if−prefix−pos processed6. 
prefix−pos processed7. 
if−prefix−field processed8. 
prefix−line processed9. 
prefix−increment processed10. 
prefix−accessories processed11. 
prefix−options processed12. 
prefix−code processed13. 
prefix−description processed14. 
prefix−field processed15. 
prefix−price processed16. 
prefix−change processed17. 
prefix−calc processed18. 
prefix−exec processed19. 
prefix−filter processed20. 
prefix−last processed21. 
prefix−next processed22. 
User's previous HTML widget SELECTED settings restored23. 
Reparse standard tags in output of above (if reparse enabled for the containing tag)24. 

In hash−list context, subtags are processed in the following order:

prefix−sub definitions processed1. 
if−prefix−etc. nesting resolved2. 
prefix−alternate processed3. 
prefix−line processed4. 

Interchange Documentation (Full)

C.3. Nonstandard parsing of Subtags 584



if−prefix−param processed5. 
if−prefix−field processed6. 
if−prefix−modifier processed (if−prefix−param and if−prefix−modifier are functionally identical
except for parse order)

7. 

prefix−increment processed8. 
prefix−accessories processed9. 
prefix−options processed10. 
prefix−sku processed11. 
prefix−code processed12. 
prefix−quantity processed13. 
prefix−modifier processed14. 
prefix−param processed15. 
prefix−quantity−name processed16. 
prefix−modifier−name processed17. 
prefix−subtotal processed18. 
prefix−discount−subtotal processed19. 
prefix−code processed again differently (operating on new instances of prefix−code in output of
above?)

20. 

prefix−field processed21. 
prefix−description processed22. 
prefix−price processed23. 
prefix−discount−price processed24. 
prefix−difference processed25. 
prefix−discount processed26. 
prefix−change processed27. 
prefix−tag processed (*** CHECK THIS TAG NAME ***)28. 
prefix−calc processed29. 
prefix−exec processed30. 
prefix−filter processed31. 
prefix−last processed32. 
prefix−next processed33. 
User's previous HTML widget SELECTED settings restored34. 
Reparse standard tags in output of above (if reparse enabled for the containing tag)35. 

Interchange Documentation (Full)

C.3. Nonstandard parsing of Subtags 585



D. Search and Form Variables

D.1. Variable Names

D.1..1. other

Name scan Type Description

mv_all_chars ac S Turns on punctuation matching

mv_arg[0−9]+ A Parameters for mv_subroutine (mv_arg0,mv_arg1,...)

mv_base_directory bd S Sets base directory for search file names

mv_begin_string bs S Pattern must match beginning of field

mv_case cs S Turns on case sensitivity

mv_cartname O Sets the shopping cart name

mv_check A Any form, sets multiple user variables after update

mv_click A Any form, sets multiple form variables before update

mv_click XA Default mv_click routine, click is mv_click_arg

mv_click name XA Routine for a click name, sends click as arg

mv_click_arg XA Argument name in scratch space

mv_coordinate co S Enables field/spec matching coordination

mv_column_op op S Operation for coordinated search

mv_credit_card* O Discussed in order security (some are read−only)

mv_dict_end de S Upper bound for binary search

mv_dict_fold df S Non−case sensitive binary search

mv_dict_limit di S Sets upper bound based on character position

mv_dict_look dl S Search specification for binary search

mv_dict_order do S Sets dictionary order mode

mv_doit A Sets default action

mv_email O Reply−to address for orders

mv_exact_match em S Sets word−matching mode

mv_failpage fp O,S Sets page to display on failed order check/search

mv_field_file ff S Sets file to find field names for Glimpse

mv_field_names fn S Sets field names for search, starting at 1

mv_first_match fm S Start displaying search at specified match

mv_head_skip hs S Sets skipping of header line(s) in index

mv_index_delim id S Delimiter for search fields (TAB default)

mv_matchlimit ml S Sets match page size

mv_max_matches mm S Sets maximum match return (only for Glimpse)

mv_min_string ms S Sets minimum search spec size

mv_negate ne S Records NOT matching will be found

mv_nextpage np A Sets next page user will go to

mv_numeric nu S Comparison numeric in coordinated search

mv_order_group O Allows grouping of master item/sub item

D. Search and Form Variables 586



mv_order_item O Causes the order of an item

mv_order_number O Order number of the last order (read−only)

mv_order_quantity O Sets the quantity of an ordered item

mv_order_profile O Selects the order check profile

mv_order_receipt O Sets the receipt displayed

mv_order_report O Sets the order report sent

mv_order_subject O Sets the subject line of order email

mv_orsearch os S Selects AND/OR of search words

mv_profile mp S Selects search profile

mv_range_alpha rg S Sets alphanumeric range searching

mv_range_look rl S Sets the field to do a range check on

mv_range_max rx S Upper bound of range check

mv_range_min rm S Lower bound of range check

mv_record_delim dr S Search index record delimiter

mv_return_all ra S Return all lines found (subject to range search)

mv_return_delim rd S Return record delimiter

mv_return_fields rf S Fields to return on a search

mv_return_file_name rn S Set return of file name for searches

mv_return_spec rs S Return the search string as the only result

mv_save_session C Set to non−zero to prevent expiration of user session

mv_search_field sf S Sets the fields to be searched

mv_search_file fi S Sets the file(s) to be searched

mv_search_line_return lr S Each line is a return code (loop search)

mv_search_match_count S Returns the number of matches found (read−only)

mv_search_page sp S Sets the page for search display

mv_searchspec se S Search specification

mv_searchtype st S Sets search type (text, glimpse, db or sql)

mv_separate_items O Sets separate order lines (one per item ordered)

mv_session_id id A Suggests user session id (overridden by cookie)

mv_shipmode O Sets shipping mode for custom shipping

mv_sort_field tf S Field(s) to sort on

mv_sort_option to S Options for sort

mv_spelling_errors er S Number of spelling errors for Glimpse

mv_substring_match su S Turns off word−matching mode

mv_successpage O Page to display on successful order check

mv_todo A Common to all forms, sets form action

mv_todo.map A Contains form imagemap

mv_todo.checkout.x O Causes checkout action on click of image

mv_todo.return.x O Causes return action on click of image

mv_todo.submit.x O Causes submit action on click of image

mv_todo.x A Set by form imagemap

mv_todo.y A Set by form imagemap

Interchange Documentation (Full)

D. Search and Form Variables 587



mv_unique un S Return unique search results only

mv_value va S Sets value on one−click search (va=var=value)

D.2. Abbreviations

The two−letter abbreviations are mapped with these letters:

Abbr Long name

DL mv_raw_dict_look

MM mv_more_matches

ac mv_all_chars

ar mv_arg

bd mv_base_directory

bs mv_begin_string

ck mv_cache_key

co mv_coordinate

cs mv_case

cv mv_verbatim_columns

de mv_dict_end

df mv_dict_fold

di mv_dict_limit

dl mv_dict_look

do mv_dict_order

dr mv_record_delim

em mv_exact_match

er mv_spelling_errors

fi mv_search_file

fm mv_first_match

fn mv_field_names

hs mv_head_skip

id mv_session_id

il mv_index_delim

ix mv_index_delim

lb mv_search_label

lo mv_list_only

lr mv_line_return

lr mv_search_line_return

ml mv_matchlimit

mm mv_max_matches

mp mv_profile

ms mv_min_string

ne mv_negate

np mv_nextpage

Interchange Documentation (Full)

D.2. Abbreviations 588



nu mv_numeric

op mv_column_op

os mv_orsearch

pc mv_pc

ra mv_return_all

rd mv_return_delim

rf mv_return_fields

rg mv_range_alpha

rl mv_range_look

rm mv_range_min

rn mv_return_file_name

rr mv_return_reference

rs mv_return_spec

rx mv_range_max

se mv_searchspec

sf mv_search_field

si mv_search_immediate

sp mv_search_page

sq mv_sql_query

st mv_searchtype

su mv_substring_match

tf mv_sort_field

to mv_sort_option

un mv_unique

va mv_value

Copyright 2001−2002 Red Hat, Inc. Freely redistributable under terms of the GNU General Public License.
line:

Interchange Documentation (Full)

D.2. Abbreviations 589



Frequently Asked Questions

Frequently Asked Questions 590



64. How does Interchange work?

64.1. Where are the pages?

Interchange pages are not kept in normal HTML space. Look in the catalog subdirectory pages. The pages are
always filtered through the Interchange daemon before being delivered.

64.2. Where are the images?

Interchange is a CGI program, and if relative image paths are used, IMG tags like the following will occur:

<IMG SRC="/cgi−bin/simple/../whatever.jpg">

Interchange, by default, uses an ImageDir for a prefix. In the demo, image specs that have no absolute path
information are prefixed with /simple/images/.

In an Interchange page, this tag:

       <IMG SRC="ordernow.gif">

will become this:

       <IMG SRC="/simple/images/ordernow.gif">

This tag:

       <IMG SRC="items/00−0011.jpg">

will become this:

       <IMG SRC="/simple/images/items/00−0011.jpg">

Absolute image paths are not affected. An image such as /other/images/whatever.gif will not be
changed.

64. How does Interchange work? 591



65. INSTALLATION

65.1. Configuration Problems

Most Interchange configuration and setup problems are due to one of the following:

Wrong information given to makecat program.

This is by far the most common problem. To install a working demo, Interchange needs to know what the
DocumentRoot is and how to run CGI programs. Details of this setup are server− and site−specific, which
may require some research.
Re−run the configuration again, and pay close attention to the prompts given. There are examples given which
apply to most systems.
If the web server is Apache or NCSA, Interchange will try and parse its httpd.conf file to help you along,
but many ISPs don't allow users to read these and it may fail.

Too−low version of Perl.

If you have a Perl earlier than 5.005, Interchange will not work. Don't even try an earlier version.

Perl compiled with USE_THREADS.

Run perl −V. If you see −DUSE_THREADS in the compilation definition, you might run into problems
with Interchange.
NOTE: You cannot run the Interchange software as root.

If you are setting Interchange up for the entire machine, and not just as a virtual host user, it is usual to create
a special interch user to run the daemon and the link program. This means the directory listing for your
cgi−bin should be something like:

−rwsr−xr−x   1 interchange users        6312 Dec 30 11:39 cgi−bin/simple

and for the socket file it should be:

srw−−−−−−−   1 interchange users           0 Dec 30 11:41 etc/socket

Once you have set up the software, you can easily install catalogs as root as long as your umask is set to 2
or 22.

(The following assumes you have made the Interchange software owned and run by the special user
interchange and that each user has a Interchange catalogs directory /home/user/catalogs).

The best way to set permissions on a multi−user system is to make all files group readable and writable (660
or 664 mode). If you have a system setup that places each user in their own group, make interchange a
member of each user's group and set ownership and permissions with:

       find /home/user/catalogs −print | xargs chown user
       find /home/user/catalogs −print | xargs chgrp user
       find /home/user/catalogs −print | xargs chmod g+rw

65. INSTALLATION 592



For best results, set the user's default umask to 2, so that they will, by default, create files that have the proper
permissions. If you have all users in the same group, the above is not secure. You should put interchange
in a group of which no user is a member (perhaps interchange would be a good choice) and set all files owned
by the group interchange and all directories to mode 2770:

This will make files default to the proper group when created (on most UNIX versions, anyway).

       find /home/user/catalogs −print | xargs chown user
       find /home/user/catalogs −print | xargs chgrp interchange
       find /home/user/catalogs −print | xargs chmod g+rw
       find /home/user/catalogs −type d −print | xargs chmod g+s

If you are on a virtual hosting system, the procedure varies. Making the program setuid should work for most
systems. If your setup uses CGI−WRAP or another setuid scheme, it should still work. However, you may
have to unset the setuid bit with chmod u−s cgi−bin/simple or the like. If you have a non−standard
CGI setup, as some virtual host systems do, you will need to know something about UNIX and the web or
engage a consultant to properly set up the paths. Usually switching to TLINK/INET mode is the easiest thing
to do, though with Iserver and a few others it may take more than that.

If you used the makecat program to build the catalog, it should have warned you if it was not able to make
the link program setuid. To set the program (in the file cgi−bin/simple in this example) to be setuid, use
the command:

   chmod u+s cgi−bin/simple

65.2. Error −− the Interchange server was not running...

This indicates that the link CGI is not communicating with the Interchange server. Important note: The
server should always be started by the same user ID which owns the suid vlink program. (This does not apply
to TLINK/INET mode.)

The server must be running, first of all. If you didn't start it, you can do so by going to the Interchange home
directory and typing:

   bin/interchange −restart

You can check to see if your server is running by typing:

   Linux, BSD:           ps −ax | grep interchange
   Most other systems:   ps −elf | grep interchange

Note: Solaris and IRIX truncate the string, and don't allow setting of the $0 parameter. You may have to grep
for 'perl' instead.

If the server is not running, it may have failed due to another process occupying the TCP socket 7786. If using
VLINK, try starting Interchange with start −u, which will not monitor the internet−domain socket.

If VLINK is not communicating with the server, there are a number of possible reasons. First, if you are trying
to run Interchange on an ISP, go to the section about ISP problems. It is probably one of those. If you are
running Interchange on a single machine, it is probably one of:

   1. Permissions problems

Interchange Documentation (Full)

65.2. Error −− the Interchange server was not running... 593



   2. Interchange on NFS−mounted file system

Check the error_log file for your HTTP server −− it will almost always tell you what the problem is, unless
there is a simple permissions problem.

Permissions are easy. If starting Interchange like this works:

        interchange −r SocketPerms=666

then you have a socket permission problem. Try restarting interchange without the above adjustment of
SocketPerms=666, and then try accessing it again with each of these mode changes:

        chmod u+s cgi−bin/storename
        chmod u−s cgi−bin/storename

           cgi−bin/storename = path to your executable

If neither of those work, either the UID the program is owned by is wrong, or your HTTP server is interfering
in some fashion. If you are running Interchange on an NFS−mounted file system, it cannot run in server mode
because UNIX−domain sockets don't work on NFS. You will need to change to static mode from server mode,
or better yet, put Interchange on a file system that is directly mounted.

You can use Interchange in INET mode along with the tlink.c program to allow running across NFS
boundaries. If you have not changed the configured defaults, and still it will not communicate, you should try
setting the LINK_HOST and LINK_PORT directives in tlink.c and recompiling.

65.3. I get messages like 'Config.pm not found.' What does
it mean?

This means your Perl is not properly installed, or that Interchange is not using the proper Perl binary. On
UNIX, try reinstalling Interchange and using the standard Perl installation sequence:

   /complete/path/to/proper/perl Makefile.PL
   make
   make test
   make install

Otherwise, contact your system administrator.

65.4. Can't locate lib.pm in @INC. BEGIN
failed−−compilation aborted.

Again, your Perl is not properly installed. Someone has put a Perl up on your system, then either moved or
removed the library directory. Contact your system administrator and request that Perl be re−installed.

65.5. Segmentation fault or other core dump.

If this happens when you run the Interchange test or server, it is always Perl that has a problem. Not
sometimes, always. A proper Perl should never have a segmentation violation, period. And it should not dump
core (unless you passed it a −u option somehow).

Interchange Documentation (Full)

65.3. I get messages like 'Config.pm not found.' What does it mean? 594



You will need to either update Perl or report the bug to the proper personnel. Depending on your situation and
technical ability, this may be your system admin, ISP, or the Perl porters.

65.6. Configuring catalog whatever...Use of uninitialized
value at Config.pm line 1614, <CONFIG> chunk 322.

This is a warning from Perl indicating that an empty value was found where one is expected. The warning is
left in so that you know that something is missing. Whatever it is, it can be found at the specified "chunk," or
line, of catalog.cfg. If you use the include capability, it would have to be factored in as well.

The usual reason is that a file is specified in one of the directives (usually one of Help, SearchProfile,
OrderProfile, Buttonbars, or UpsZoneFile) and does not exist. See the documentation for the directive on how
the file name should be specified.

65.7. Why isn't the above error more enlightening?

Because Perl won't tell us what exactly went wrong. See its FAQ for why.

65.8. XXXXXX.pm does not match executable version.

This is a Perl which does not have the right Perl library installed. It usually results from a naive system
administrator who thinks they can bypass the 'make install' for Perl and just copy the Perl binary or
directories.

If you installed Bundle::Interchange locally in your Interchange directory, it may mean that your system
administrator updated Perl and failed to select the binary compatibility option.

65.9. Can I run Interchange on the Macintosh or Windows?

Interchange will not run on a MacOS 7, 8, or 9 operating system. It will run on Mac OS X and other PowerPC
Unix variants.

Interchange's *files* can be manipulated by any computer. As long as uploads/downloads of database source,
pages, and configuration files are done in ASCII mode, there is no reason why they can't be edited on a Mac.
And with MySQL or other ODBC databases on your UNIX−based ISP, you can even directly interface to the
database you use with Interchange provided you have the scarce ODBC middleware needed for the Mac.

Interchange can be run on Windows with the Cygwin tool set (1.3.2 or higher) available from Red Hat, but
there are numerous anomalies and it may be difficult to get operating reliably. It is never recommended that
you run a production catalog on a Windows system; if you do get it working you should only use for catalog
development.

Interchange Documentation (Full)

65.6. Configuring catalog whatever...Use of uninitialized value at Config.pm line 1614, <CONFIG> chunk 322.595



66. SSL problems

66.1. Shopping cart is dropped when using SSL.

If you are using a separate secure and non−secure domain, this is due to the cookies from the user not
matching as well as the session ID not being able to be transferred due to differing source IP addresses.

NOTE: Interchange does not support this configuration. You may be able to get it to work in some
circumstances, but it is not supported. See the next set of questions for help on how you may be able to get it
to work to some extent in your configuration. It will not work in every circumstance with every feature.

This is sometimes due to the HostnameLookups (Stronghold/Apache parameter) not matching for the two
servers, secure and non−secure. It can also be caused by the user having different web proxy addresses for
HTTP and HTTPS. If it still does not work, try changing some of the appropriate configuration parameters in
interchange.cfg:

   DomainTail   No
   IpHead       Yes

If you still are having problems, try this combination in catalog.cfg, the catalog configuration file:

   SessionExpire  10 minutes
   WideOpen       Yes

The above setting will typically make Interchange work when it is possible to work. Sometimes when you
have multiple Interchange servers sharing the same secure server, you will have problems after accessing the
second one. (The first one issues a session ID cookie, and that causes problems).

66.2. I have a different secure server domain. Why does the
shopping cart get dropped?

First of all, it is questionable business practice to not certify your secure server. Besides violating the terms of
use of many certificate issuers, customers notice the changed domain and it is proven by user surveys and
long experience that you will receive fewer orders as a result. Certs can be obtained for $125 US per year, less
than the typical cost of one hour of a top consultant's time. Do your business a favor −− spend the money to
get a cert.

If you insist on doing it anyway, probably driven by the fact that you need a dedicated IP address for a secure
server, you can use the solutions in the previous FAQ question and get some relief.

But by far the best way is to have all orders and shopping cart calls go only to the secure domain. Your users
may get a different session when browsing the non−secure catalog pages, but it will matter little.

To do this on the Foundation demo, place in catalog.cfg:

AlwaysSecure order ord/basket ord/checkout

A more complete list might be:

66. SSL problems 596



AlwaysSecure <<EOF
         account
         change_password
         customerservice
         login
         logout
         new_account
         ord/basket
         ord/checkout
         order
         process
         query/check_orders
         query/order_detail
         query/order_return
         returns
         saved_carts
         ship_addresses
EOF

Add pages of your own that need to be sure of coherent session information.

For all *forms* to be secure, make sure "process" is on that list. (Your search forms will still be non−secure if
you use "[process−search]" to produce the form ACTION.)

To make individual order links secure, use this instead of "[order]":

<A HREF="[area href=order secure=1 form='mv_order_item=SKU_OF_ITEM' ]">Order it</A>

To make a form−based order button secure, use "[process secure=1]" as the ACTION.

66.3. My images aren't there on the secure server!!!

You have a different document root, or the permissions are not such that you can access them. You can set a
different base URL for images with:

        ImageDirSecure   https://your.secure.server/somewhere/images

Don't try to set it to an http:// URL −− images will be broken anyway.

66.4. My secure pages fail when the browser is MSIE.

MSIE has several SSL bugs, particularly in V5.01. See the Apache−SSL or mod_ssl FAQ. You can
sometimes fix this with an httpd.conf change:

SetEnvIf User−Agent ".*MSIE.*" nokeepalive ssl−unclean−shutdown

Interchange Documentation (Full)

66.3. My images aren't there on the secure server!!! 597



67. ISP Problems
The great majority of ISPs provide some CGI service, and more and more run systems that are compatible
with Interchange. The new catalog configurator for Interchange makes setup much easier. A word of warning:
if you chose your ISP mostly on price, you can expect problems. The low−cost providers typically have
heavily−loaded machines and many domains. The more domains and the more load the unhappier you will be
with Interchange. Interchange works best on a fast machine with plenty of memory.

A few Internet Service Provider (ISP) systems still have difficulty with one or the other aspect of running
Interchange. A few cannot (or will not) run Interchange at all. On top of that, many times ISP personnel are
too busy to help, won't help, or don't know enough to help. Some are secretive about details of the setup of
their systems.

All in all, you can have a fair amount of confidence that your ISP can run Interchange. Or, you can get one
who will. 8−)

67.1. No shell access allowed on my ISP.

Generally it is a waste of time to try to use Interchange without shell access.

67.2. We're sorry, the Interchange server is unavailable...

(The following assumes that you were able to start the Interchange server.)

This could be almost anything, but with a properly configured Interchange it is almost undoubtedly due to
your cgi−bin and/or your Interchange directory being located on a different filesystem than the actua machine
that is executing the program. VLINK uses UNIX−domain sockets, which don't work on NFS−mounted
filesystems.

Iserver.com and other systems which use chroot HTTP servers require quite a bit of extra configuration to get
going. If you have not been careful to set permissions properly when running in VLINK/UNIX mode, the link
CGI will not be able to communicate with the Interchange server. Please read the documentation that covers
this in detail.

You can run in INET mode with the tlink link program to prevent those problems.

67.3. Document contains no data or premature end of script
headers (especially on BSDI or FreeBSD).

This usually means that your HTTP server ran out of resources during the execution of the link program. It
couldn't create more sockets, is unable to create a process, or can't open any more files.

This usually happens in frames catalogs, when Interchange is sending more than one page simultaneously.
And even more especially on FreeBSD and BSDI, which are often distributed with the kernel parameters
SOMAXCONN and CHILD_MAX set to levels unsuitable for serving the web.

Go to <http://www.deja.com> and try searching for MAXUSERS. This should give you plenty of pointers on
how to set these parameters properly.

67. ISP Problems 598



67.4. Interchange server only runs for a while, then dies.

Many ISPs don't allow your user ID to run a program unless it is logged in! The moment a watchdog program
notices a daemon running with a non−logged−in UID, it terminates the program. Or, it terminates programs
that haven't been active for XX minutes. Contact your ISP about this. They may be able to do something for
you.

67.5. My entire home directory is in HTML document space.

If working with an ISP where all of the files are in HTML document space, disable all access to the
Interchange catalog directory with the proper HTTP access restrictions. Normally that is done by creating a
.htaccess file like this:

        <Limit GET POST>
        order allow,deny
        deny from all
        </Limit>

If unable to do this, do not run Interchange unless file permissions can be set such that files will not be served.
However, security will be a problem and customers' personal information could be placed at risk.

Interchange Documentation (Full)

67.4. Interchange server only runs for a while, then dies. 599



68. SYSTEM CONFIGURATION

68.1. Can I run multiple catalogs on one server?

Yes. Interchange supports multiple independent catalogs. There are users who run more than 500 catalogs on
a single machine. The capacity is usually a function of how busy the catalogs are and how much memory and
processor speed your system has.

68.2. How do I start Interchange when I reboot?

Use the standard facility on your operating system. For BSD−style systems, the file is usually called rc.local
(in the /etc directory).

On SVR4 systems, it is quite a bit more complex. Look for the /etc/rc.d directory and see what other programs
do. Often the file is called S99startup or something similar.

Important note: Interchange must not run as root, which is the user identity that the startup file executes.
(Interchange will refuse to start if executed as root.) The technique to start up depends on the facility of your
su(1) command. This should work on most operating systems:

   su interchange <<EOF
   /your/interchange/dir/bin/restart
   EOF

The EOF must be the only thing on the line (no leading or trailing whitespace). If your su(1) command has a
−c option (as most System 5 UNIXes do), you can just set:

   su −c /your/interchange/dir/bin/restart interchange

Interchange supplies a restart script which tries to do the above portably. It works on many operating
systems.

68.3. I installed the Interchange RPM, and I can't restart.

This usually means that you tried to run /usr/lib/interchange/bin/interchange, which fails to take into account
the Linux Standard Base (LSB) file setup. Instead, run

/etc/rc.d/init.d/interchange restart

or

/usr/sbin/interchange −r

68.4. How do I set up a mall?

Interchange can share product databases, session files, and any other databases. It has many features which
support mall building. You can easily build separate and mostly identical catalogs which you link to via
HTML. But building a mall is as much an exercise in data and process as in software. Consider the following

68. SYSTEM CONFIGURATION 600



questions:

Who will be clearing payment?1. 
What happens if everyone doesn't have the same tax rate?2. 
How will you clear orders to multiple vendors?3. 
How will you bring together multiple types of shipping?4. 
How will the vendors get product data (including images) to you?5. 

If you cannot answer those questions and visualize how to build a mall, you probably should not try.

Interchange Documentation (Full)

68. SYSTEM CONFIGURATION 601



69. PRODUCT OPTIONS

69.1. Can I attach a size or color to a product?

Interchange has product modifiers, or attributes, which can be carried around with the product. Inside an item
list or the product page (flypage), the [item−options] tag will automatically place suitable widgets on an
HTML form, and "remember" what should be selected. See the Interchange documentation for Item Options.

You can use the SeparateItems directive or set the mv_separate_items variable on the order form
to cause ordered items to be put on separate lines in the shopping basket. (This is the default in the demo
catalogs.)

69.2. Can I change the price based on size or color (or other
attribute)?

Yes. Use the Interchange UI to set up your product options. It operates on the options database table to set
up options that can effect price. Or see the next question.

69.3. How are simple product options structured?

Interchange has three types of options; simple, matrix, and modular. They are based on the options
database table.

To enable options for a product, it needs to have a master record in "options" with the SKU as the key. The
only fields that matter in the master record are:

code        The SKU of the item

o_master    Indicates not a product, but an option for a product in another database

o_enable    Options enabled for that item

o_matrix    Set to 1 for all−in−one widgets, 2 for separate widgets

o_modular   Modular options (alpha)

If o_enable is set, but neither o_matrix or o_modular are, the item is using simple options.

For the option itself in simple mode, the following fields apply:

code        Arbitrary key
sku         SKU this option applies to
o_group     The attribute name of the option
o_label     The label the widget for the option will bear
o_value     The options, in IC option format
o_widget    The widget type used to display
o_height    The widget height (if any)
o_width     The widget width (if any)
price       Price adjustment

Here are the fields for an item with a simple size option:

69. PRODUCT OPTIONS 602



code:os28009
o_master:1
o_enable:1
o_matrix:0
o_modular:0
#
code:os28009−size
sku:os28009
o_group:size
o_label:Size
o_value:S=Small,M=Medium,L=Large,XL=Extra Large
o_widget:select
o_height:
o_width:
price:S=−1.00,XL=1.00
#

The price field accepts option modifiers based on the option value; for example, to adjust the price of an S
down 1.00 and the price of an XL up 1.00, you use the values shown above. This works in conjunction with
the special ==:options atom in CommonAdjust. To activate the pricing adjustment, you must have something
like this for your CommonAdjust setting:

 CommonAdjust    :sale_price, ;:price, ==:options

The actual names of the fields used for these can be changed with the Variable MV_OPTION_TABLE_MAP,
i.e.

Variable MV_OPTION_TABLE_MAP <<EOM
        o_widget  widget
        o_value   value
EOM

That would allow you to use "widget" and "value" in place of o_widget and o_value as field names.

69.4. But what do these options do? Where do they live?

If you know Perl, you know what a hash reference is. An Interchange shopping cart consists of an array of
hash references. If you dump the structure of the main shopping cart you would see something like:

        [
                {
                        mv_ip       => '0',
                        price_group => 'general',
                        mv_ib       => 'products',
                        code        => 'os28080',
                        quantity    => '1',
                },
                {
                        mv_ip       => '1',
                        price_group => 'general',
                        mv_ib       => 'products',
                        code        => 'os28080',
                        size        => 'L',
                        color       => 'black',
                        quantity    => '1',
                },
         ]

Interchange Documentation (Full)

69.4. But what do these options do? Where do they live? 603



Each key of the hash is an attribute. There are a number of special attributes:

code The item SKU sku The SKU of the base item (in the case of matrix options) mv_ip The line number of
the shopping cart (minus 1) mv_ib The database table the product was ordered from quantity The number on
order group The order group for a master item or subitem mv_si Subitem indicator mv_mi Master item code
mv_mp Modular item mv_price Price of the item (to directly set pricing) mv_order_route Special order route
for this item

Any attribute besides the above is a product option or modifier, and can be displayed with
[item−modifier attribute_name].

Interchange Documentation (Full)

69.4. But what do these options do? Where do they live? 604



70. ENCRYPTION

70.1. PGP encryption −− Server Error

As always, check the error log. The most common problem is something like:

   akopia.com 3Ex5lvta:akopia.com − [01/Sep/1997:09:08:43] simple /cgi−bin/simple
   > Encryption error:
   >

Also, check the ScratchDir (usually tmp/) for .err files; they will contain PGP or GPG's error output.

Probable causes:

Interchange user ID doesn't have keyring

You must have a .pgp or .gnupg directory in the home directory of the user running Interchange. It is also
possible to set an environment variable (variously PGPPATH or GNUPGHOME) to orient the program
correctly.

EncryptProgram directive set wrong

In Interchange 4.7.7 and above, you only need specify "gpg", "pgp", or "pgpe". The key is set in
EncryptKey. If you don't set a value for EncryptProgram, Interchange will look for gpg first, then pgpe,
then finally pgp, using the first it finds. If it can't find one of those, it is set to none and encryption can't be
done. You can specify a full path to the program in the directive, but no arguments need be set. NOTE: old
values in EncryptProgram will still work, just are not needed.

70.2. PGP encryption −− What do I do now that it is
working?

This depends on what you do with orders once you receive them by email. Some PC mail agents (notably
Eudora) will decrypt the PGP message embedded within the message text. In that case, you can simply embed
the [value mv_credit_card_info] call right in the message and be done with it.

If your mailer will not decrypt on the fly, the best way to read the credit card number is to set up MIME
encoding of the order email. To do this, find the order report you are using. In the standard demos it is
pages/ord/report.html or etc/report.

Set up two MIME regions in that file. First, at the top of the file:

   [tag mime type TEXT/PLAIN; CHARSET=US−ASCII][/tag]
   [tag mime Order Text]

   ORDER DATE: [calc]localtime[/calc]
   ORDER NUMBER: [value mv_order_number]

   Name: [value name]
   Company: [value company]

   (Rest of order text, including item list)

70. ENCRYPTION 605



   [/tag]

Then, at the bottom of the report.html file, put the credit card info:

   [if value mv_credit_card_info]
   [tag mime type application/pgp−encrypted][/tag]
   [tag mime Credit Card Information]

   [value mv_credit_card_info]

   [/tag]
   [/if]

Once this is done, you can read mail using your PGP client as a helper application to decode the MIME
attachment. This does not require a fancy setup −− you can use the standard MIT PGP 2.6.2 if desired. If you
are using UNIX, set up as the helper for the MIME type application/pgp−encrypted:

   xterm −e pgp −m %s

More automated or user−friendly setups are left as an exercise for the user.

Interchange Documentation (Full)

70. ENCRYPTION 606



71. How do I....

71.1. How do I get the number of items in a shopping cart?

If it is simply the total number, extended according to quantity, you can use the [nitems] tag. If you need this
number for use in an embedded Perl script, you can use:

   $number = $Tag−>nitems();

If it is the number of line items you need, then you can use a Perl script:

   [perl]
       return scalar @{$Carts−>{main}};
   [/perl]

(The 'main' refers to the main shopping cart.)

If you have SeparateItems in effect, and need the number of unique items, you could use:

   [perl]
       my $cart = $Carts−>{main};
       foreach my $item (@$cart) {
   @items = split /\|/, $items;
   $count = 0;
   for (@items) {
   $count++ unless $seen{$_}++;
   }
   $count;
   [/perl]

71.2. The demo doesn't do ... (pick one)

That is because it is a demo. It is not intended to be a finished catalog, just a starting point.

71.3. How can I trace the source of a purchase and run a
partners program?

Interchange has a facility that adds a parameter called source to the session database for that user. You should
give your partners a source code, which must contain at least one letter character (A−Za−z only). It is placed
in the sourcing URL as a query string of:

   mv_pc=Source1

If this is appended to the URL with which the user calls Interchange, it will then be placed in the session
identifier source.

This URL:

http://yourcatalog.com/cgi−in/yourcat/sp_offer?mv_pc=Source1

will yield Source1 from the Interchange tag [data session source].

71. How do I.... 607



The Minivend 3 idiom ?;;Source1 continues to be supported, so existing partner sites should work without
change.

71.4. How can I send an email copy of the receipt to a user?

There are several ways, but this is a more complex question than it may seem like it is. You will have to deal
with bad email addresses, deciding which information to send, showing delivery times, etc. You also have to
be very careful with credit card information. If you have not taken the proper security measures (by enabling
PGP credit card encryption or using CyberCash), you might just mail them their own unencrypted credit card
number!

This is supported in Interchange via a UserTag, [email ...]. See the "simple" and "basic" demos.

71.5. How do I display Euro pricing?

You can use Interchange's II8N facilty via the Locale directive. In catalog.cfg:

# to define the euro−Settings (PriceDivide is for converting from DM)
Locale eur_EUR PriceDivide         1.95583
Locale eur_EUR p_cs_precedes       0
# this is great − you can even use HTML−Tags to display an euro−image
Locale eur_EUR currency_symbol     "<IMG src="/path/to/image/euro.gif">"
Locale eur_EUR p_sep_by_space      2
Locale eur_EUR mon_decimal_point   ,

# and the DM
Locale de_DE
Locale de_DE p_cs_precedes  0
Locale de_DE p_sep_by_space 2

Note: Be sure to use the latest exchange rates when you establish your catalog.

On your pages (this is from a search results page, the [item−.... ...] notation may be different depending on
your context):

[item−price]<br><!−− german is default −−>
[setlocale eur_EUR]
  [currency convert=1][item−field price][/currency]<br><!−− the euro −−>
[setlocale]

Any questions? Read the docs about "Internationalization."

71.6. How do I empty the shopping cart?

Here are three examples of ways to empty/drop/clear the shopping cart contents.

71.6.1. Empty shopping cart

[calc]
        @{$Carts−>{$CGI−>{mv_cartname} || 'main'}} = ();
[/calc]

Interchange Documentation (Full)

71.4. How can I send an email copy of the receipt to a user? 608



71.6.2. Empty shopping cart

[set clear_basket]
        [calc]
                @{$Carts−>{$CGI−>{mv_cartname} || 'main'}} = ();
        [/calc]
[/set]

[button
        text="Clear Basket"
        src="clear_basket.gif"
        hidetext=1
        form=basket
        ]
                mv_todo=refresh
                mv_click=clear_basket
[/button]

71.6.3. Erase the user session (includes shopping cart)

[button
        text="Clear Basket"
        src="clear_basket.gif"
        hidetext=1
        form=basket
        ]
                mv_todo=cancel
                mv_nextpage=index
[/button]

Interchange Documentation (Full)

71.6.2. Empty shopping cart 609



72. Errors

72.1. Sorting doesn't work across multiple pages.

If you are using the [sort table:field] idiom, it cannot. It sorts data present in the list only.

72.2. I am searching for a string and it is not found. I know it
is there!

Set mv_substring_match to yes (su=yes in one−clicks). This most commonly happens when
searching for non−ISO−8859 (Cyrillic, or characters like umlaut and eacute) characters in word−match mode.
The problem is, that unless your locale is set up properly, Perl doesn't think a non−ISO−8859 and a space
character is a boundary.

Also, if you are searching for non−alpha characters, they will also not be interpreted as word characters and
the boundary problems will still exist.

72. Errors 610



73. Performance Issues
Interchange is not a lightweight program. If you are running it on a low−end ISP, whose major selling point is
low cost, you will frequently find that Interchange performance is very poor. This is due to either:

Not enough memory

If memory is low, the program will "swap" to disk. If lots of swap is used, you can expect very bad
performance. This is the most common speed problem.
If your ISP uses IDE hard disks, you can expect REALLY bad performance. IDE disks are very slow for
multi−user machines, which should have SCSI if ANY swapping is to be done.

Too many domains

If there is a huge amount of traffic on the system, then it can run at a very high "load average." If the
machine's load average is routinely above 2, you can expect problems.

Underpowered machine

If it is an old machine, it may be too slow for Interchange. A Pentium of less than 300MHz is probably not
good enough unless it is completely dedicated to Interchange. The faster the processor, the happier you will
be.

73.1. Interchange runs, but it's sooo sllooowww...

This is almost certainly due to a system that has inadequate memory or network bandwidth. On a moderately
fast ISP server with sufficient memory, pages should start displaying in less than 2 seconds. On a fast server,
pages should start loading almost instantaneously.

73.2. Interchange slows down over time.

There are many possible reasons for this, but most have to do with memory or session database size.

See the documentation on Interchange administration (icadmin) and learn how to expire your session
database. If it is megabytes in size, accessing a key will significantly slow down the session.

• 

Second, if your machine is memory−poor, you will find that Interchange gets swapped to disk. Unless
your system is very fast, this will greatly hurt performance. Interchange works best on a machine that
rarely if ever swaps to disk.

• 

Third, this often has nothing to do with Interchange at all but has to do with your HTTP server. Any
long−running daemon has the potential for a memory leak. Try stopping and starting your HTTP
server and seeing what happens to performance.

• 

73.3. I am using SQL, and Interchange is slow ...

It isn't Interchange. First of all, did you index your 'SKU' or other key fields? The reason Interchange doesn't
do it for you is that every SQL database seems to do that a bit differently. Even then, you can try Interchange's
COLUMN_DEF parameter:

73. Performance Issues 611



Database products COLUMN_DEF code=char(16) PRIMARY KEY

This will at least index the code field for MySQL. Other databases differ.

Interchange can return VERY fast SQL search results. But you need to at least give it something to work with.
The proper method for fast selection is:

[query sql="select code,category,title,price from products" ]

Category: [sql−param category]<BR>
Title:    <A HREF="[area [sql−code]]"> [sql−param title] </A><BR>
Price:    <A HREF="[area order [sql−param 0]]"> [sql−param price] </A><BR>

[/sql]

This is especially powerful when you consider a joined query like:

       SELECT code, price, title, extended.desc
       FROM   products, extended
       WHERE  products.category = 'Renaissance'

Note that the extended.desc field will be accessed as [sql−param desc]. Don't forget that you must index your
fields if you want fast searching with them as a criteria.

Interchange Documentation (Full)

73. Performance Issues 612



74. Using Interchange with Apache and SUEXEC
Apache with SUEXEC: VLINK/UNIX socket mode will not work well unless installed as a normal user. If
supporting multiple users, the TLINK/INET mode must be used.

74. Using Interchange with Apache and SUEXEC 613



75. A friendly reminder
When in doubt, restart the server. It won't take but a few seconds, and changes in configurable options don't
take effect until it is done. You may even change a page and not see the effect until the server is restarted.

75. A friendly reminder 614



76. Tips and tricks
These are slightly edited postings to the Interchange−users mail list made by Mike Heins, lead author of
Interchange.

76.1. Locking down your system

Interchange has lots of built−in protections to make developing your catalogs pretty care−free. But it will
definitely pass you the ammo to shoot yourself in the foot, as will any templating system that has power. So
you have to be careful, as you do in any scripting environment.

Most of the protections have to do with:

Tags like [cgi foo], [data ...] and such are not reparsed for tags.1. 
The [value foo] tag never allows a left square bracket to be output.2. 
Safe is used for Perl, which means that arbitrary perl code which reads/writes or uses IO is not
possible.

3. 

The Interchange files don't need to be readable or writable by any other user ID, so CGI/PHP
programs run by the web server can't get at them.

4. 

Dangerous operations are allowed only via global UserTag, and not by catalog UserTag.5. 

But there are ways that user−entered data could end up getting parsed for tags. The most common breach is to
take possibly tainted user data entered into a form and put it in a database without filtering it first. There are
several ways to do that:

For user−entered form fields like name, address, etc you should always use the [value ...] tag to
display them.

• 

You can filter lists of variables automatically with• 

        Filter  name     textarea_put
        Filter  address  textarea_put
        Filter  comments textarea_put
        Filter  email    textarea_put

in catalog.cfg.
You can prevent problems in some cases by using the data tag (i.e. [data table=foo col=bar
key="[item−param something]"]) which is not reparsed for tags as [item−data ....] is. This is not
foolproof unless you control the key in some fashion −− in most cases, you will use [data session
username] or something you control.

• 

You should never put user−entered data directly in a Scratch variable, which can be called with
mv_click and mv_check.

• 

Process all user−entered data before putting it in a database that could be displayed in a page later. Or
process it before it is displayed.

• 

When putting data inside a container tag, the output of which is reparsed for more tags by default,
consider setting reparse=0.

• 

There are other ways to nail down your system and make it more difficult to have a security problem.

Use the WRITE_CONTROL database settings.• 

76. Tips and tricks 615



      Database products WRITE_CONTROL 1

It is the default for MV DBM databases (i.e. you have to have a [flag type=write table=foo] to write)
but not for SQL.
The UI does the proper write flagging, so this should have no effect on it.
AUTHORS NOTE: I should have made WRITE_CONTROL the default for SQL in MV4, my bad.
As long as MV3 compatibility was as poor as it turned out to be, I should have gone for it.
Set "NoAbsolute Yes" in interchange.cfg, it prevents [file /some/dir] or [include /some/rogue/file]
from being used. NOTE: This is the default starting in IC 4.7.x.

• 

Split the admin server onto a different IC iteration from your production catalog, and disable the UI
for the production catalog. That allows you to set the pages/ directory to be read−only for the
production server, and to put WRITE_CONTROL in the production catalog_after.cfg or etc/<catalog
id>.after file.
You could also use a different username to access the SQL data, and make the production server
username have read−only access.
You can use a different UID for the admin server iteration, and make all directories except products/,
upload/, tmp/, session/, and logs/ read−only for the production server UID.

• 

Make as much stuff read−only as you can. Develop a script which sets things read−write while you
are admin−ing, and read−only otherwise.

• 

Always make ICDIR/*.cfg, ICDIR/bin/*, and ICDIR/lib/* read−only for the IC user.• 
Don't let the interchange daemon user ID have read or write permission on things it doesn't need.• 
Never use AllowGlobal in production if you have user−entered data going into a database.
(AllowGlobal is not the default, so many people won't know what it is −− see Interchange
Configuration.)

• 

All in all, Interchange has been proven to be securable over time. But we all have to do our part and think
about what we are doing with user−entered data.

76.2. Optimizing lists

Interchange has powerful search capabilities that allow you to produce lists of items for use in category lists,
product lists, indexes, and other navigation tools.

These are a two−edged sword, though. Lists of hundreds or thousands of entries can be returned, and
techniques that work well displaying only a few items may slow to a crawl when a large list is returned.

In general, when you are returning one item (i.e. a flypage) or a small list (i.e. a shopping cart) you can be
pretty carefree in your use of [if ...] and [calc] and [perl] tags. When there are hundreds of items, though, you
cannot; each complex test or embedded Perl snippet causes the Safe module to have to evaluate code, and
each ITL tag requires parsing and argument building.

The Safe module is pretty fast considering what it does, but it can only generate a few thousand instances per
second even on a fast system. And the ITL tag parser can likewise only parse thousands of tags per CPU
second.

What to do? You want to provide complex conditional tests but you don't want your system to slow to a crawl.
Luckily, there are techniques which can speed up complex lists by orders of magnitude.

Interchange Documentation (Full)

76.2. Optimizing lists 616



76.2.1. Benchmarking

A non−precise benchmark of different iteration options can be done with the following global UserTag. Place
this in a file in the usertag/ directory in the Interchange root:

UserTag benchmark Order start display
UserTag benchmark AddAttr
UserTag benchmark Routine <<EOR
my $bench_start;
my @bench_times;
sub {
    my ($start, $display, $opt) = @_;
    my @times = times();
    if($start or ! defined $bench_start) {
        $bench_start = 0;
        @bench_times = @times;
        for(@bench_times) {
            $bench_start += $_;
        }
    }
    my $current_total;
    if($display or ! $start) {
        for(@times) {
            $current_total += $_;
        }
        unless ($start) {
            $current_total = sprintf '%.3f', $current_total − $bench_start;
            for(my $i = 0; $i < 4; $i++) {
                $times[$i] = sprintf '%.3f', $times[$i] − $bench_times[$i];
            }
        }
        return $current_total if ! $opt−>{verbose};
        return "total=$current_total user=$times[0] sys=$times[1] cuser=$times[2] csys=$times[3]";
    }
    return;
}
EOR

Then at the beginning of the code to check, call

        [benchmark start=1]

to start the measurement. At the end

        [benchmark]

will display the time used. Bear in mind that it is not precise, and that there may be variation due to system
conditions. Also, the longer the times and the bigger the list, the better the comparison.

To see the system/user breakdown, do:

        [benchmark verbose=1]

In general, "user" time measures Interchange processing time and and the rest are indicative of the database
access overhead, which can vary widely from database to database.

Interchange Documentation (Full)

76.2.1. Benchmarking 617



76.2.2. Optimizations

[PREFIX−tag] is faster than [parsed−tag]• 

                [loop prefix=foo search="ra=yes"]

                        [foo−data products image]
                                is slightly faster than
                        [foo−field image]
                                which is MUCH faster than
                        [data products image [foo−code]]
                                which is faster than
                        [data table=products column=image key="[foo−code]"]

                [/loop]

The loop tags are interpreted by means of fast regular expression scans of the loop container text, and fetch an
entire row of data in one query. The [data ...] ITL tag interpretation is delayed until after the loop is finished,
whereby the ITL tag parser must find the tag, build a parameter list, then fetch the data with a separate query.
If there are repeated references to the same field in the loop, the speedup can be 10x or more.

Pre−fetch data with rf=field1,field2,field3 and access with [PREFIX−param field1].• 

mv_return_fields (otherwise known as "rf" in one−click terminology) sets the fields that are returned from a
search. Once they are returned, they can be accessed with [PREFIX−param field]. They can also be referenced
with [PREFIX−pos N], where N is a digit representing the ordinal position (i.e. starting with 0) in the list of
fields.

The following are equivalent:

        Benchmark loop−field list: [benchmark start=1]
        <!−− [loop search="ra=yes/st=db"]
                [loop−code] price: [loop−field price] [/loop] −−>
        TIME: [benchmark]

        Benchmark loop−param list: [benchmark start=1]
        <!−− [loop search="ra=yes/st=db/rf=sku,price"]
                [loop−code] price: [loop−param price] [/loop] −−>
        TIME: [benchmark]

but the second is much, much faster.

[PREFIX−alternate N] is available for row counting and display.• 

A common need when building tables is to conditionally close the table row or data containers. I see a lot of:

        [loop search="ra=yes"]
        [calc] return '<TR>' if [loop−increment] == 1; return[/calc]
        [calc] return '' if [loop−increment] % 3; return '</TR>' [/calc]
        [/loop]

Much faster, by a few orders of magnitude, is:

        [loop search="ra=yes"]
        [loop−change 1][condition]1[/condition]<TR>[/loop−change 1]

Interchange Documentation (Full)

76.2.2. Optimizations 618



        [loop−alternate 3]</TR>[/loop−alternate]
        [/loop]

        If you think you need to close the final row by checking the
        final count, look at this:

        [loop search="ra=yes"]
        [on−match]
                <TABLE>
                <TR>
        [/on−match]

        [list]
                        <TD>[loop−code]</TD>
                [loop−alternate 3]</TR><TR>[/loop−alternate]
        [/list]

        [on−match]
                </TR>
                </TABLE>
        [/on−match]

        [no−match]
                No match, sorry.
        [/no−match]

[/loop]

This is a hundred times faster than anything you can build with multiple [calc] tags.

Use simple go/nogo comparisons in [if ...]• 

Consider these two snippets:

        [if scratch|value|cgi key] THEN [/if]

and:

        [if scratch|value|cgi key == '1'] THEN [/if]

The first one doesn't require Perl evaluation. It simply checks to see if the value is blank or 0, and returns true
if it is anything but. Of course this requires setting your test values to blank or 0 instead of "No" or " " or
somesuch, but it is anywhere from 20−35% faster.

Try it on the foundation demo:

        −−−− begin test −−−

        Overhead:
        [benchmark start=1]
                <!−− [loop search="ra=yes"][set cert][loop−field gift_cert][/set][/loop] −−>
        [benchmark]
        <P>

        if scratch compare:
        [benchmark start=1]
                <!−−

Interchange Documentation (Full)

76.2.2. Optimizations 619



                [loop search="ra=yes"]
                [set cert][loop−field gift_cert][/set]
                [loop−code] [if scratch cert] YES [else] NO [/else][/if]
                [loop−code] [if scratch cert] YES [else] NO [/else][/if]
                [loop−code] [if scratch cert] YES [else] NO [/else][/if]
                [loop−code] [if scratch cert] YES [else] NO [/else][/if]
                [loop−code] [if scratch cert] YES [else] NO [/else][/if]
                [/loop]
                −−>

        [benchmark]
        <P>

        if scratch compare eq 1:
        [benchmark start=1]
                <!−−
                [loop search="ra=yes"]
                [set cert][loop−field gift_cert][/set]
                [loop−code] [if scratch cert == 1] YES [else] NO [/else][/if]
                [loop−code] [if scratch cert == 1] YES [else] NO [/else][/if]
                [loop−code] [if scratch cert == 1] YES [else] NO [/else][/if]
                [loop−code] [if scratch cert == 1] YES [else] NO [/else][/if]
                [loop−code] [if scratch cert == 1] YES [else] NO [/else][/if]
                [/loop]
                −−>
        [benchmark]
        <P>

        [page @@MV_PAGE@@]Again[/page]

        −−−− end test −−−

Use [PREFIX−calc] instead of [calc] or [perl]• 

You can execute the same code as [calc] with [PREFIX−calc], which has two benefits:

It doesn't require ITL parsing.1. 
It is executed during the loop instead of after it.2. 

The [PREFIX−calc] object has complete access to all normal embedded Perl objects like $Values, $Carts,
$Tag, and such. If you want to make a data table (i.e. "products" or "pricing") available for access inside of it,
just do:

        [perl tables="products pricing"] [/perl]

prior to list start. Now you can do something like:

    [loop search="ra=yes"]
        [loop−calc]
            $desc = $Tag−>data('products', 'description', '[loop−code]');
            $link = $Tag−>page('[loop−code]');
            return "$link $desc </A>";
        [/loop−calc] <BR>
    [/loop]

ADVANCED: Precompile and execute with [PREFIX−sub] and [PREFIX−exec]• 

Interchange Documentation (Full)

76.2.2. Optimizations 620



For repetitive routines, you can achieve a considerable savings in CPU by pre−compiling your embedded Perl
code.

In the "Construct Something" demo, the bar_link() routine in catalog_before.cfg is an example of compiling
the subroutine once at catalog configuration time.

You can also compile routines at the time of the list execution with [item−sub routine] CODE [/item−sub].
This means only one Safe evaluation is done −− every time the [loop−exec routine] is called, it is done fast as
a call to the routine. This can be 10 times or more faster than separate [calc] calls, or 5 times faster than
separate [PREFIX−calc] calls.

Example:

        [benchmark start=1]
        loop−calc:
          <!−−
                [loop search="st=db/fi=country/ra=yes/ml=1000"]
                [loop−calc]
                        my $code = q{[loop−code]};
                        return "code '$code' reversed is " . reverse($code);
                [/loop−calc]
                [/loop]
          −−>

        [benchmark]

        <P>

        [benchmark start=1]
        loop−sub and loop−exec:
          <!−−
                [loop search="st=db/fi=country/ra=yes/ml=1000"]
                [loop−sub country_compare]
                        my $code = shift;
                        return "code '$code' reversed is " . reverse($code);
                [/loop−sub]
                [loop−exec country_compare][loop−code][/loop−exec]
                [/loop]
          −−>

        [benchmark]

ADVANCED: Execute and save with [query ...], then use an embedded Perl routine.• 

You can run [query arrayref=myref sql="query"], which saves the results of the search/query in a Perl
reference. It is then available in $Tmp−>{myref}. (Of course, "myref" can be any arbitrary name.)

This is the fastest possible method to display a list.

Observe:

        −−− begin test code −−−
        [set waiting_for]os28004[/set]

        [benchmark start=1] Embedded Perl
        <!−−
        [query arrayref=myref sql="select sku, price, description from products"]

Interchange Documentation (Full)

76.2.2. Optimizations 621



                <!−− make query, this container text is not used. −−>
        [/query]

        [perl]
                # Get the query results, has multiple fields
                my $ary = $Tmp−>{myref};
                my $out = '';
                foreach $line (@$ary) {
                        my ($sku, $price, $desc) = @$line;
                        if($sku eq $Scratch−>{waiting_for}) {
                                $out .= "We were waiting for this one!!!!\n";
                        }
                        $out .= "sku: $sku price: $price description: $desc\n";
                }
                return $out;
        [/perl]
        −−>
        TIME: [benchmark]

        [benchmark start=1] All loop
        <!−−
        [query list=1 sql="select sku, price, description from products"]
                [if scratch waiting_for eq '[sql−code]']We were waiting for this one!!!!
                [/if] sku: [sql−code]price: [sql−param price] desc: [sql−param description]
        [/query]
        −−>

        TIME: [benchmark]

        −−− end test code −−−

Other things that help:
Avoid interpolate=1 when possible. A separate tag parser must be spawned every time you do
this. Many times people use this without needing it.

♦ 

Avoid saving large values to Scratch, as these have to be written to the users session. If you
need them only for the current page, clear at the end by using [tmp scratch_var] contents
[/tmp], which is the same as [seti scratch_var] contents [/seti] except clears the value before
the session is written. You can also use [scratchd scratch_var] to return the contents and
delete them from the session at the same time.

♦ 

Use the [more−list] facility to break up your large searches. You can use them in [query ....]
and [loop ...] searches as well −− see the docs.

♦ 

• 

Interchange Documentation (Full)

76.2.2. Optimizations 622



77. Using Interchange with Oracle
Question: should we be using the DBI ChopBlanks setting for Oracle or is Interchange trimming trailing
space from CHAR fields itself?

IC daemon user should have environment variables ORACLE_HOME and possibly NLS_LANG set.

Mark Johnson (Red Hat Professional Services) wrote this trigger on TABLE_NAME to update the
MOD_TIME column on insert or update. The user must have been granted the RESOURCE role to create
triggers. Here it is:

CREATE TRIGGER tr_modtime_for_TABLE_NAME BEFORE INSERT OR UPDATE ON
TABLE_NAME FOR EACH ROW BEGIN

new.MOD_TIME := SYSDATE; END; /

77. Using Interchange with Oracle 623



78. Using Interchange with PostgreSQL
Make sure you have DBD::Pg installed and tested. Make sure POSTGRES_INCLUDE and POSTGRES_LIB
environment variables are set.

78. Using Interchange with PostgreSQL 624



79. Using Interchange with MySQL
Permissions. test_ databases usually special.

79. Using Interchange with MySQL 625



80. Using Interchange with Apache
Slightly modified article posted to the old minivend−users mail list. Minivend−users is now
interchange−users.

Date: Thu, 7 Sep 2000 12:08:37 −0700
From: Bill Randle <billr@exgate.tek.com>
To: minivend−users@minivend.com
Subject: Re: [mv] no /cgi−bin/storename/

On Sep 6,  5:13am, Victor Nolton wrote:
} Subject: [mv] no /cgi−bin/storename/
} ******    message to minivend−users from Victor Nolton <ven@pragakhan.com> ******
}
} I've noticed some of the catalogs I've done are not indexed well with
} the search engine, though most pages have meta tags, there is a
} robot.txt file and so on and so forth.I assume it's due to the
} cgi−bin in the url (not sure).
}
} I'd like to start having stores be like
}
} http://www.yourdomain.com/index.html
} http://www.yourdomain.com/ord/basket.html
} instead of
} http://www.yourdomain.com/cgi−bin/yourstore/index.html
} http://www.yourdomain.com/cgi−bin/yourstore/ord/basket.html
}
} how do you accomplish this? I assume it can be done somehow.

In addition to using mod_minivend, previosuly suggested, you can do this
with Apache rewrite rules in the VirtualHost directive for yourdomain.com:

<VirtualHost a.b.c.d>
    ServerAdmin support@mainhost.com
    DocumentRoot /home/httpd/html/yourstore
    ServerName www.yourdomain.com
    ErrorLog logs/yourdomain−error_log
    CustomLog logs/yourdomain−access_log common
    ScriptAlias /cgi−bin/ "/home/httpd/cgi−bin/"
    RewriteEngine On
    RewriteRule ^$  /cgi−bin/yourstore/index.html            [PT,L]
    RewriteRule ^/$ /cgi−bin/yourstore/index.html            [PT,L]
    RewriteRule ^/index\.html$ /cgi−bin/yourstore/index.html [PT,L]
    RewriteRule ^/cgi−bin/yourstore/.* −                     [PT,L]
    RewriteRule ^/.*images/.* −                              [PT,L]
    RewriteRule ^/(.*) /cgi−bin/yourstore/$1                 [PT,L]
</VirtualHost>

I just did this for a client and it works quite well (as long as you're
using a fairly recent version of Apache as your webserver).

        −Bill

80. Using Interchange with Apache 626



81. Perl/Interchange FAQ

81.1. Cameron Prince's local Perl installation how−to

Login as user. In this example, we'll call the user bob. Bob's home directory is /home/bob.1. 
Get the perl tarball and extract it in /home/bob. (tar −xzvf perl−5.6.0.tar.gz)2. 
Create a directory for the local perl. (mkdir /home/bob/local−perl)3. 
Compile perl.

cd perl−5.6.01. 
sh Configure2. 
Choose all the defaults until you get to: "Directories to use for library searches?" Here you
want to enter the new local perl path, as well as the defaults. So you should enter something
like: /home/bob/local−perl/lib /usr/local/lib /lib /usr/lib

3. 

Continue choosing defaults till you get to: "Any additional ld flags (NOT including
libraries)?" This should be: −L/home/bob/local−perl/lib

4. 

Continue choosing defaults till you get to: "Installation prefix to use? (~name ok)" This
should be: /home/bob/local−perl

5. 

Choose all defaults till you get to: "Directory /home/bob/local−perl/bin doesn't exist. Use that
name anyway?" Enter y.

6. 

Continue choosing defaults till you get to: "Do you want to install perl as /usr/bin/perl?" Enter
n.

7. 

Continue choosing defaults till you get to: "Directory /home/bob/local−perl/bin doesn't exist.
Use that name anyway?" Enter y.

8. 

Directory /home/bob/local−perl/bin doesn't exist. Use that name anyway? Enter y.9. 
Continue taking defaults till you return to a prompt.10. 
make11. 
make test12. 
make install13. 

4. 

/home/bob/local−perl/bin/perl −v
You should see: This is perl, v5.6.0

5. 

edit /home/bob/.bash_rc
Change: PATH=$PATH:$HOME/bin
To: PATH=/home/bob/local−perl/bin:$PATH:$HOME/bin

6. 

Logout and log back in.7. 
which perl
You should see: ~/local−perl/bin/perl or /home/bob/local−perl/bin/perl

8. 

perl −MCPAN −e 'install Bundle::Interchange'
Keep running this until you see:

9. 

MD5 is up to date.
MIME::Base64 is up to date.
URI is up to date.
Net::FTP is up to date.
MIME::Base64 is up to date.
Digest::MD5 is up to date.
HTML::Tagset is up to date.
HTML::Parser is up to date.
HTML::HeadParser is up to date.
LWP is up to date.
Term::ReadKey is up to date.
Term::ReadLine::Perl is up to date.
Business::UPS is up to date.

81. Perl/Interchange FAQ 627



SQL::Statement is up to date.
Storable is up to date.
DBI is up to date.
Safe::Hole is up to date.

You may need to get the modules via ftp and install them by hand. For instance, during the test used to create
this document, I had to get URI and LWP and install by hand before everything reported that it was up to date.
To do this, follow these steps:

ftp ftp.cpan.org1. 
cd /CPAN/modules/by−module/URI2. 
bin3. 
get URI−1.10.tar.gz4. 
quit5. 
tar −xzvf URI−1.10.tar.gz6. 
cd URI−1.107. 
perl Makefile.pl8. 
make9. 
make test10. 
make install11. 

Use the same basic steps for any module not properly installed by using perl −MCPAN −e 'install
Bundle::Interchange'

Now, install Interchange as normal.

Copyright 2001−2002 Red Hat, Inc. Freely redistributable under terms of the GNU General Public License.
line:

Interchange Documentation (Full)

81. Perl/Interchange FAQ 628



Interchange Upgrade Guide

Interchange Upgrade Guide 629



82. Introduction
This document contains, in rough form, notes on upgrading from Minivend 3 to Minivend 4, and Minivend 4
to Interchange.

82. Introduction 630



83. Interchange 4.8 Deprecated Features
This document describes features of Interchange 4.8 that have been deprecated. Any use of these features
should be discontinued. In most cases we have provided an alternative mechanism to accomplish the same
results. These deprecated features may be removed at some point in the future. You should change to the new
mechanism to avoid breakage.

83.1. Deprecated Features Previous to Interchange 4

This section needs some serious work.

cart/page from path

interchange.PL 308,313

            if($path =~ s:/(.*)::) {
                    $cart = $1;
                    if($cart =~ s:/(.*)::) {
                            $page = $1;
                    }
            }

mv_orderpage

interchange.PL 321,323

            $CGI::values{mv_nextpage} = $CGI::values{mv_orderpage}
                                                                    || find_special_page('order')
                    if ! $CGI::values{mv_nextpage};

$decode

interchange.PL 493

                            HTML::Entities::decode($value) if $decode;

mv_orderpage

interchange.PL 854,855

                                            $CGI::values{mv_nextpage} = $CGI::values{mv_orderpage}
                                                    if $CGI::values{mv_orderpage};

ROUTINES and LANG

interchange.PL 1552,1579

            ROUTINES: {
                    last ROUTINES unless index($Vend::FinalPath, '/process/') == 0;
                    while ($Vend::FinalPath =~ s:/process/(locale|language|currency)/([^/]*)/:/process/:) {
                            $::Scratch−>{"mv_$1"} = $2;
                    }
                    $Vend::FinalPath =~ s:/process/page/:/:;

83. Interchange 4.8 Deprecated Features 631



            }
            my $locale;
            if($locale = $::Scratch−>{mv_language}) {
                    $Global::Variable−>{LANG}
                            = $::Variable−>{LANG} = $locale;
            }

            if ($Vend::Cfg−>{Locale}                                                                and
                    $locale = $::Scratch−>{mv_locale}       and
                    defined $Vend::Cfg−>{Locale_repository}−>{$locale}
                    )
            {
                    $Global::Variable−>{LANG}
                                    = $::Variable−>{LANG}
                                    = $::Scratch−>{mv_language}
                                    = $locale
                             if ! $::Scratch−>{mv_language};
                    Vend::Util::setlocale(  $locale,
                                                                    ($::Scratch−>{mv_currency} || undef),
                                                                    { persist => 1 }                                                        );
            }

list_compat

lib/Vend/Interpolate.pm 2808

            list_compat($opt−>{prefix}, \$text);

lib/Vend/Interpolate.pm 3538

            list_compat($opt−>{prefix}, \$text);

lib/Vend/Interpolate.pm 3874

            list_compat($opt−>{prefix}, \$page);

find_sort

lib/Vend/Interpolate.pm 3270,3271

            $text =~ /^\s*\[sort\s+.*/si
                    and $opt−>{sort} = find_sort(\$text);

mv_order_report

lib/Vend/Order.pm 867,868

        $body = readin($::Values−>{mv_order_report})
                    if $::Values−>{mv_order_report};

mv_error_$var

lib/Vend/Order.pm 1030

                            $::Values−>{"mv_error_$var"} = $message;

Interchange Documentation (Full)

83. Interchange 4.8 Deprecated Features 632



83.2. Interchange 4 Deprecated Features

Vend::Util::send_mail Vend::Order::send_mail send_mail

The send_mail routine has been replaced by the Vend::Mail::send routine.

Interchange Documentation (Full)

83.2. Interchange 4 Deprecated Features 633



84. Upgrading from Minivend 4.0 to Interchange 4.6
if [item−price] suddenly turns 0, check PriceField in the catalog.cfg

84.1. minivend.cfg

Remove references to MiniMate.• 
Add this line to minivend.cfg:
#include lib/UI/ui.cfg
Make sure the files catalog_before.cfg and catalog_after.cfg are there, or add their contents to
etc/your_cat_name.before and etc/your_cat_name.after to it only for some catalogs.

• 

84.2. Access Manager

You need to get the minimate.asc file renamed to access.asc and add the following fields to the first line:

    groups
    last_login
    name
    password

Remove these catalog.cfg lines:

            Variable            MINIMATE_META   mv_metadata
            Variable            MINIMATE_TABLE  minimate
            Database            minimate        minimate.asc      TAB

Add this one:

            Database            affiliate    affiliate.txt     TAB

Authentication for admin users is now done from a separate table than customers, and passwords are
encrypted.

84.3. Database Editing

Update the mv_metadata.asc file as appropriate.

84.4. Order Manager

Some things that are needed for the order manager:
Add these fields to transactions:• 

        affiliate  approx. char(32)
        archived   char(1)
        campaign   approx. char(32)
        comments   blob/text
        complete   char(1)
        deleted    char(1)
        order_wday char(10)
        order_ymd  char(8)

84. Upgrading from Minivend 4.0 to Interchange 4.6 634



        po_number  approx. char(32)

Add these fields to transactions:• 

        affiliate  approx. char(32)
        campaign   approx. char(32)

Remove this field from userdb:• 

    mv_credit_card_info

Add these fields to userdb:• 

    inactive     char(1)
    credit_limit char(14) or decimal(12,2)
    dealer       char(3)

Create the directory 'logs'.• 
Create the directory 'orders' if it doesn't already exist.• 
Update your order routes to those in the Interchange distribution. Note that the route log_entry is
necessary if you want to enter orders from the Interchange UI.

• 

Update the etc/log_transaction file.• 
Add the etc/log_entry file.• 
Add this to catalog.cfg:• 

        ## Don't want people setting their credit_limit directly
        UserDB default scratch "credit_limit dealer"

84.5. Affiliates

Add a tab−delimited affiliate table:

    affiliate name    campaigns   join_date   url timeout active  password

You can find a recommended database configuration in foundation/dbconf/*/affiliate.*.

84.6. Page Editor

Add the directories 'templates' and 'backup'. Copy the contents of the Interchange simple/templates to
templates.

84.7. Item Editor

Add a merchandising table with the following fields:

    Database  merchandising  merchandising.txt __SQLDSN__
    Database  merchandising  DEFAULT_TYPE text

    sku                 char(32)
    featured            char(32)
    banner_text
    banner_image

Interchange Documentation (Full)

84.5. Affiliates 635



    blurb_begin
    blurb_end
    timed_promotion     char(16)
    start_date          char(24)
    finish_date         char(24)
    upsell_to
    cross_sell
    cross_category      char(64)
    others_bought
    times_ordered

Index the fields with char(*) types. You can find the recommended database configuration in
foundation/dbconf/*/merchandising.*

84.8. Preferences Editor (KNAR)

Create the tab−delimited file variable.txt with these fields:

    code  Variable  pref_group

Add this as the *first* line of catalog.cfg:

    VariableDatabase variable

84.9. Route Editor

Create the file route.txt with these fields:

            code
            report
            receipt
            encrypt_program
            encrypt
            pgp_key
            pgp_cc_key
            cyber_mode
            credit_card
            profile
            inline_profile
            email
            attach
            counter
            increment
            continue
            partial
            supplant
            track
            errors_to

Add this line in catalog.cfg:

    RouteDatabase route

Interchange Documentation (Full)

84.8. Preferences Editor (KNAR) 636



84.10. Transactions database

The back office UI should work fine for editing database tables. Obviously the things which are specific to the
order transaction setup will break unless you have the right fields, but even these can be controlled by
configuring the UI.
Add a new field to transaction.txt called 'archived'.

Interchange Documentation (Full)

84.10. Transactions database 637



85. Upgrading from Minivend 3 to Minivend 4
There were big changes from Minivend 3 to Minivend 4, some of which were incompatible.
Many things were removed as redundant, deprecated, or just plain crufty:

85.1. Nested [loop]s

MV3 used a different scheme for creating nested loop lists:
[loop with="−a"* arg="item item item" search="se=whatever"]
allowed you to refer to the nested values with a [loop−code−a] construct. In Minivend 4, the form is:

            [loop prefix=size list="Small Medium Large"]
                    [loop prefix=color list="Red White Blue"]
                            [color−code]−[size−code]<BR>
                    [/loop]
                    <P>
            [/loop]

85.2. All frame features removed

Frames are now managed by the user in HTML.

85.3. Tags removed

85.3.1. buttonbar

Replace with Variable defined in catalog.cfg. buttonbar was previously used as an SSI−like command for
catalog−wide standardized features like navigation bars. In the 3.x catalog.cfg the ButtonBars parameter
defines a list of html snippets, like

    ButtonBars header.html footer.html copyright.html

So [buttonbar 0] substitutes 'header.html', [buttonbar 1] substitutes 'footer.html', etc.
In 4.x catalog.cfg, define variables, like

    Variable HEADER    <pages/header
    Variable FOOTER    <pages/footer
    Variable COPYRIGHT <pages/copyright

Then replace all occurrences of [buttonbar 0] with __HEADER__, [buttonbar 1] with __FOOTER__, etc.
Note that the old header.html, footer.html, etc. contained html code, but were not actually html pages with
<html><body> etc, tags. Thus the current practice is to use filenames with no extension or perhaps '.txt' to
differentiate them from pages.

85.3.2. random

Replace with [ad random=1] or custom code. See the [ad] tag docs. Random and rotate were used to place
random or rotating regions on pages, such as banner ads.
The Random directive in catalog.cfg defines the numbered HTML snippet files, similar to buttonbars above.

85. Upgrading from Minivend 3 to Minivend 4 638



85.3.3. rotate

Replace with [ad ...]. See [random] above.

85.3.4. help

No replacement. Use data functions or variables.

85.3.5. body

Replace with templates. Again the body tag [body 1] etc. defines numbered body definitions that could be
applied site−wide. However, in this case minivend actually built up the <body ....> substitution using the
Mv_* directives in catalog.cfg.

85.3.6. finish_order

[finish_order] was a conditional tag; if the basket contained anything a 'checkout' graphic would be displayed.
No replacement; use [if items]Message[/if].

85.3.7. last_page

No replacement − this can be emulated by setting a scratch variable on one page, then using it to build the
return URL.

85.3.8. item−link

No replacement, just use [page [item−code]].

85.3.9. loop−link

No replacement, just use [page [loop−code]].

85.3.10. sql−link

No replacement, just use [page [sql−code]].

85.3.11. accessories

Replace with normal data functions.

85.3.12. Compatibility routines

Compatibility routines for many popular tags like [random], [rotate], etc. are provided in the appendix of this
document. To use one, copy it to a file and put it in your usertag directory. (Tags in the usertag directory are
read in by interchange.cfg by default).

Interchange Documentation (Full)

85.3.3. rotate 639



85.4. Directives removed

        ActionMap
        AdminDatabase
        AdminPage
        AsciiBackend
        BackendOrder
        ButtonBars
        CheckoutFrame
        CheckoutPage
        CollectData
        DataDir
        Delimiter
        DescriptionTrim
        FieldDelimiter
        FrameFlyPage
        FrameLinkDir
        FrameOrderPage
        FrameSearchPage
        ItemLinkDir
        ItemLinkValue
        MsqlDB
        MsqlProducts
        Mv_AlinkColor
        Mv_Background
        Mv_BgColor
        Mv_LinkColor
        Mv_TextColor
        Mv_VlinkColor
        NewReport
        NewTags
        OldShipping
        OrderFrame
        PageCache
        PriceDatabase
        Random
        ReceiptPage
        RecordDelimiter
        ReportIgnore
        Rotate
        SearchFrame
        SearchOverMsg
        SecureOrderMsg
        SpecialFile
        SubArgs
        Tracking

85.5. Minor operations removed

auto−substitution of mp= on [loop search=profile], [search−region arg=profile]• 
[tag scan]...• 
[tag sql]...
Many of these are related to one of:

• 

Removal of frames logic• 
Removed tags• 
Obsolete methods• 
Old routines for 2.0x compatibility• 

Interchange Documentation (Full)

85.4. Directives removed 640



85.6. Search lists

Search tags must now be surrounded by [search−region] [/search−region]. This is because multiple searches
can be done in a page, with multiple [more−list] entries, multiple [no−match] areas, etc. It was not really
possible to avoid this and add the feature.
To find all files containing the search list, do:

    find pages −type f | xargs grep −l '\[search.list'

That will yield a set of files that need to be updated. You should surround all parts of the search area, i.e.:

        [search−region]

        [search−list]
            your search iteration stuff, [item−code], etc.
        [/search−list]

        [more−list]
            [more]
        [/more−list]

        [/search−region]

85.7. Search conditionals

Search conditionals should now say [if−item−field field] [/if−item−field] and [if−item−data table column]
[/if−item−data]. This allows mixing and nesting of lists. You may find that the old works in some situations,
but it will not work in all situations.

85.8. Form data updates

Added Scratch variable mv_data_enable to gate the update_data function. You must set it before doing a form
update. Prior to this it was possible to update a SQL database willy−nilly.
A quick fix like this will allow the update on a single page:

        [set update_database]
        [set mv_data_enable]1[/set]
        [/set]
        <INPUT TYPE=hidden NAME=mv_click VALUE=update_database>

It will ensure at least that the user loads one form from you for each update. For best security, gate with a
userdb entry like this:

        [set update_database]
        [if type=data term="userdb::trusted::[data session username]"]
            [set mv_data_enable]1[/set]
        [else]
            [set mv_data_enable]0[/set]
        [/else]
        [/if]
        [/set]

Interchange Documentation (Full)

85.6. Search lists 641



85.9. Checkout changes

Minivend 4 uses in−page error−flagging on the checkout page. Simplest way to convert is probably to use the
checkout.html from the simple demo as a start, and move in any customization from the existing site's
catalog.html (headers, footers, logos, etc.) A line−by−line comparison of the data fields in the checkout page
should be performed, adding any custom fields as needed. Custom error checking in etc/order.profiles may
have to be re−worked, or can be added into checkout.html using the in−page order profile capability. (Note
that etc/order.profiles is called etc/profiles.order in newly−built Interchange catalogs.)
Remember to update receipt.html and report/report.html with any custom fields, as well.

85.10. [if−field] etc.

The least−compatible things in the tag area are [if−field] (needs to be [if−PREFIX−field], where prefix might
be item|loop by default depending on the tag. Likewise:

        [if−data table col]  −−> [if−PREFIX−data table col]
        [on−change mark]     −−> [PREFIX−change mark]
        [if−param param]     −−> [if−PREFIX−param param]
        [PREFIX−param N]     −−> [PREFIX−pos N] (where N is a digit)

85.11. [search−list]

You must always surround [search−list] with [search−region] [/search−region].
Embedded Perl changes quite a bit. While there are the $Safe{values} and other variable settings, they are
automatically shared (no arg="values") and move to:

        $Safe{values}   −−>  $Values
        $Safe{cgi}      −−>  $CGI
        $Safe{carts}    −−>  $Carts
        $Safe{items}    −−>  $Items
        $Safe{config}   −−>  $Config
        $Safe{scratch}  −−>  $Scratch

There are a number of other objects, see the docs.
Most other issues have more to do with the catalog skeleton (i.e. simple or barry or basic or art) than they do
the core. For instance, the "basic" catalog produced for MV3 ran unchanged except for the issues discussed
above.

85.12. Global subs

Accessing globalsubs from [perl] tags is done slightly differently.
Minivend 3 method:

    [perl sub]
    myfunsub();
    [/perl]

Minivend 4/IC method:

    [perl subs=1]
    myfunsub();
    [/perl]

Interchange Documentation (Full)

85.9. Checkout changes 642



If you do this wrong, you'll get an error that looks like this:

    115.202.115.237 H8gbq6oK:115.202.115.237 − [28/February/2001:18:58:50 −0500] testcat /cgi−bin/testcat.cgi Safe: Undefined subroutine &MVSAFE::myfunsub called at (eval 283) line 2.

Interchange Documentation (Full)

85.9. Checkout changes 643



E. Minivend 3 compatibility usertags and
globalsubs
These files were originally distributed with Minivend 4 in the compat/ directory. They replace Minivend 3
functionality that was removed or greatly altered in Minivend 4.

E.1. body

    UserTag body PosNumber 2
    UserTag body Order type extra
    UserTag body Routine <<EOR

use vars qw($C);
sub parse_color {

my ($var, $value) = @_;
return '' unless $value;

        $var = lc $var;
        $C−>{Color}−>{$var} = [];
        @{$C−>{'Color'}−>{$var}} = split /\s+/, $value;

return $value;
    }

sub {
my($scheme, $extra) = @_;
my $r = '<BODY';
my ($var,$tag);
#return '<BODY>' unless (int($scheme) < 16 and int($scheme) > 1);

my %color = qw( mv_bgcolor BGCOLOR mv_textcolor TEXT
                        mv_linkcolor LINK mv_vlinkcolor VLINK
                        mv_alinkcolor ALINK mv_background BACKGROUND );

if (defined $::Values−>{mv_resetcolors}
and $::Values−>{mv_resetcolors}) {

delete $::Values−>{mv_customcolors};
undef $::Values−>{mv_resetcolors};

        }
if (defined $::Values−>{mv_customcolors}) {

foreach $var (keys %color) {
                $r .= qq| $color{$var}="| . $::Values−>{$var} . '"'

if $::Values−>{$var};
}

}
else {

foreach $var (keys %color) {
$r .= qq| $color{$var}="| . ${$Vend::Cfg−>{Color}−>{$var}}[$scheme] . '"'

if defined ${$Vend::Cfg−>{Color}−>{$var}}[$scheme]
&&  ${$Vend::Cfg−>{Color}−>{$var}}[$scheme] !~ /\bnone\b/;

}
}
$r =~ s#(BACKGROUND="(?!http:))([^/])#$1$Vend::Cfg−>{ImageDir}$2#;

        $r .= " $extra" if defined $extra;
        $r .= '>';
    }
    EOR

    AddDirective Mv_Background   color
    AddDirective Mv_BgColor      color
    AddDirective Mv_TextColor    color
    AddDirective Mv_LinkColor    color

E. Minivend 3 compatibility usertags and globalsubs 644



    AddDirective Mv_AlinkColor   color
    AddDirective Mv_VlinkColor   color

E.2. buttonbar

    # Returns a buttonbar by number
    UserTag buttonbar Order type
    UserTag buttonbar PosNumber 1
    UserTag buttonbar Interpolate 1
    UserTag buttonbar Routine <<EOR

sub get_files {
my($dir, @files) = @_;
my(@out);
my($file, $contents);
foreach $file (@files) {

            config_error(
"No leading ../.. allowed if NoAbsolute set. Contact administrator.\n")

if $file =~ m#^\.\./.*\.\.# and $Global::NoAbsolute;
push(@out,"\n") unless

push(@out,readfile("$dir/$file.html"));
        }

        @out;
    }

sub parse_buttonbar {
my ($var, $value) = @_;
return [] unless $value;
my @c;
my @vals = grep /\S/, split /\s+/, $value;
for(@vals) {

push @c, Vend::Util::readfile("pages/$_.html");
        }

return \@c;
    }

sub {
my($buttonbar) = @_;
if (defined $Vend::Cfg−>{'ButtonBars'}−>[$buttonbar]) {

return $Vend::Cfg−>{'ButtonBars'}−>[$buttonbar];
        }

else {
return '';

        }
    }
    EOR

    AddDirective ButtonBars  buttonbar

E.3. form_mail.cfg

    GlobalSub <<EndOfSub
sub form_mail {

my($to, $subject, $reply, $body) = @_;
my($ok);

        $subject = '<no subject>' unless defined $subject && $subject;

        $reply = '' unless defined $reply;
        $reply = "Reply−to: $reply\n" if $reply;

Interchange Documentation (Full)

E.2. buttonbar 645



        $ok = 0;
        SEND: {

open(Vend::MAIL,"|$Vend::Cfg−>{'SendMailProgram'} −t") or last SEND;
print Vend::MAIL

"To: $to\n",
                $reply,

"Subject: $subject\n",
"Errors−To: $Vend::Cfg−>{MailOrderTo}\n\n",

                $body
or last SEND;

close Vend::MAIL or last SEND;
            $ok = ($? == 0);
        }

if (!$ok) {
            logError("Unable to send mail using $Vend::Cfg−>{'SendMailProgram'}\n" .

"To '$to'\n" .
"With subject '$subject'\n" .
"With reply−to '$reply'\n" .
"And body:\n$body");

        }
        $ok;
    }
    EndOfSub

E.4. help

    UserTag help PosNumber 1
    UserTag help Order name
    UserTag help Routine <<EOR

sub parse_help {
my ($var, $value) = @_;
my (@files);
my (@items);
my ($c, $chunk, $item, $help, $key);
unless (defined $value && $value) {

            $c = {};
return $c;

        }
        $c = $C−>{'Help'};
        $var = lc $var;
        $C−>{'Source'}−>{'Help'} = $value;
        @files = get_files($C−>{'PageDir'}, split /\s+/, $value);

foreach $chunk (@files) {
            @items = split /\r?\n\r?\n/, $chunk;

foreach $item (@items) {
                ($key,$help) = split /\s*\n/, $item, 2;

if(defined $c−>{$key}) {
                    $c−>{$key} .= $help;
                }

else {
                    $c−>{$key} = $help;
                }

            }
        }

return $c;
    }

sub {

Interchange Documentation (Full)

E.4. help 646



my($help) = shift;
# Move this to control section?
if ($::Values−>{mv_helpon}) {

delete $::Values−>{mv_helpoff};
undef $::Values−>{mv_helpon};

        }
return '' if defined $::Values−>{'mv_helpoff'};
if (defined $Vend::Cfg−>{'Help'}{$help}) {

return $Vend::Cfg−>{'Help'}{$help};
        }

else {
return '';

        }
    }
    EOR

    AddDirective Help help

E.5. random_rotate

    UserTag random PosNumber 0
    UserTag random Interpolate 1
    UserTag random Routine <<EOR

package Vend::Config;
sub parse_random {

my ($var, $value) = @_;
return '' unless (defined $value && $value);
my $c = [];

        $var = lc $var;
my @files = grep /\S/, split /\s+/, $value;
local ($Vend::Cfg) = $C;
for (@files) { push @$c, Vend::Util::readin($_) }
return $c;

    }

package Vend::Interpolate;
sub {

my $random = int rand(scalar(@{$Vend::Cfg−>{'Random'}}));
if (defined $Vend::Cfg−>{'Random'}−>[$random]) {

return $Vend::Cfg−>{'Random'}−>[$random];
        }

else {
return '';

        }
    }
    EOR

    UserTag rotate PosNumber 2
    UserTag rotate Order ceiling floor
    UserTag rotate Interpolate 1
    UserTag rotate Routine <<EOR

sub {
return '' unless $Vend::Cfg−>{Rotate};
my $ceiling = $_[0] || @{$Vend::Cfg−>{'Rotate'}} || return '';
my $floor   = $_[1] || 1;

        $ceiling−−;
        $floor−−;

my $marker = "rotate$floor$ceiling";

Interchange Documentation (Full)

E.5. random_rotate 647



if($ceiling < 0 or $floor < 0) {
            $floor = 0;
            $ceiling = scalar  @{$Vend::Cfg−>{'Rotate'}} − 1;
            logError "Bad ceiling or floor for rotate";
        }

my $rotate;
        $rotate = $Vend::Session−>{$marker} || $floor;

if($rotate > $ceiling or $rotate < $floor ) {
            $rotate = $floor;
        }

        $Vend::Session−>{$marker} = $rotate + 1;
return $Vend::Cfg−>{'Rotate'}−>[$rotate];

    }
    EOR

    AddDirective Random random
    AddDirective Rotate random

E.6. AsciiBackend

    GlobalSub <<EOS
sub AsciiBackend {

package Vend::Order;
        $Vend::Order::override_track_order = \&track_order;

sub track_order_backend {
my ($order_no,$order_report) = @_;
my ($c,$i);
my (@backend);

            @backend = split /\s*,\s*/, $Vend::Cfg−>{BackendOrder};

if(@backend and $Vend::Cfg−>{AsciiBackend}) {
my(@ary);
push @ary, $order_no;
for(@backend) {

push @ary, $::Values−>{$_};
                }

foreach $i (0 .. $#$Vend::Items) {
push @ary, $Vend::Items−>[$i]{'code'};
push @ary, $Vend::Items−>[$i]{'quantity'};
if ($Vend::Cfg−>{UseModifier}) {

foreach $j (@{$Vend::Cfg−>{UseModifier}}) {
push @ary, $Vend::Items−>[$i]−>{$j}

                        }
                    }
                }
                logData ($Vend::Cfg−>{AsciiBackend}, @ary);
            }
            $Vend::Order::override_track_order−>($order_no, $order_report);
        }
        *track_order = \&Vend::Order::override_track_order;
    }
    EOS

    AddDirective BackendOrder
    AddDirective AsciiBackend

Interchange Documentation (Full)

E.6. AsciiBackend 648



86. History of Interchange
Interchange is a descendent of Vend, an e−commerce solution originally developed by Andrew Wilcox in
early 1995. Mike Heins took the first publicly−released version, Vend 0.2, and added searching and DBM
catalog storage to create MiniVend. Mike released MiniVend 0.2m7 on December 28, 1995. Subsequent
versions of MiniVend took parts from Vend 0.3, especially the vlink and Server.pm modules, which were
adapted to run with MiniVend. In the four years that followed, Mike Heins expanded and enhanced
MiniVend, creating a powerful and versatile e−commerce development platform. MiniVend grew to support
thousands of businesses and their e−commerce sites.
Separately, an experienced e−commerce development team founded Akopia. Their goal was to create a
sophisticated open source e−commerce platform that was both feature−rich and easy to use. Their product,
Tallyman, was intuitive, and had great content−management features, but lacked many of MiniVend's
capabilities.
Akopia acquired MiniVend in June 2000. Mike Heins and the Tallyman developers combined MiniVend with
Tallyman's features to create Interchange. Interchange replaces both MiniVend and Tallyman. In order to
preserve compatibility, the name "minivend" and prefixes like "mv_" and "MVC_" will still appear in source
code and configuration files.
In January 2001, Red Hat acquired Akopia and created its new E−Business Solutions Division. Interchange
development is going forward and the user community continues to grow.

Copyright 2001−2002 Red Hat, Inc. Freely redistributable under terms of the GNU General Public License.
line:

86. History of Interchange 649



Interchange + CVS HOWTO

Interchange + CVS HOWTO 650



87. Introduction

87.1. Preamble

Copyright 2001 Dan Browning <danpb@mail.com>. This document is freely redistributable under terms of
the GNU General Public License.

87.2. Purpose

The purpose of this document is to help others take advantage of CVS and Interchange together to increase the
quality of their programming, whether they are sole developers or part of a large team of programmers,
graphic artists, and HTML design gurus. Portions of it apply to general CVS setup and use, but it is geared
toward the average developer using Interchange to implement an e−commerce website.

87.3. Audience

I intend for this document to be useful to those who are not yet familiar with CVS as well as those who are. If
you already know how to setup a pserver then you might just skim chapter 2 ("Setup CVS"), or skip it all
together.
In addition, I have tried to write at a technical level that would be on par with what I perceive to be the
average Interchange user that participates on the interchange−users mailing list. It is assumed that the reader
can and already has setup Interchange and the template catalog (such as foundation or construct) is working
correctly.

87.4. Contact the author

If you find any spelling errors, technical slip−ups, mistakes, subliminal messages, or if you wish to send
feedback, critique, remarks, comments, or if you wish to contribute examples, instructions for alternative
platforms, chapters, or other material, please do so.
The preferred method of submitting changes is in the form of a context diff against the SDF source file
(ic_cvs.sdf). Please address your correspondence to:
Dan Browning danpb@mail.com

87.5. The advantages of using CVS

CVS is a very useful tool and can help you in your development, no matter if you are one developer
or are part of a team of developers.
What is CVS all about?• 
What are its advantages?
The official CVS website (http://www.cvshome.org/new_users.html) has more detailed answers to
these questions, but here are some brief points of interest.

• 

Checkout "historic" points in time or milestones in a project, for example when an e−commerce site
went "live" or before a major branch in the code.

• 

Revert to older versions of a file, directory, or an entire website.• 
Branching releases. Concurrently develop an unstable development version as well as fix bugs in the
stable production version.

• 

87. Introduction 651

mailto:danpb@mail.com
http://www.cvshome.org/new_users.html


Multiple developers can work on the same catalog and even the same file at the same time. (For more
information about how multiple simultaneous writes are merged and conflicts resolved, see the CVS
docs in the Resources Appendix).

• 

CVS is better than ftp for file transfer, because it automatically downloads only changed files, and
even then, only the portion of the file that has changed (using patches).

• 

CVS can automatically merge two simultaneous writes to the same file by different developers.• 
Allows one to keep track of the changes that have been made over time (many release managers
repackage CVS commit logs into WHATSNEW, HISTORY, and/or NEWS files).

• 

87.6. How to use this document

There are many potential uses of CVS as it applies to Interchange. In fact, there are as many unique
ways to use CVS as there are unique developers. This document only covers some of the ways,
including basic and useful techniques to get started using CVS. For the intents of the average web
developer using IC for a B2C e−commerce site, I've identified a few of the possible uses:
Simple
One server• 
One catalog• 
One CVS module• 
One branch
Medium

• 

One server• 
Two catalogs (e.g., one is live, one is development)• 
Two CVS modules• 
Separate development and live branches
Complex/Custom

• 

Multiple servers (e.g., developers' servers, staging servers, and live servers)• 
Multiple catalogs• 
Multiple CVS modules• 
Multiple branches• 
Custom setup
This document attempts to cover the simple well, and explain many aspects of the medium. Which
will hopefully give you the background you need if you decide to setup your own complex
development environment.

• 

Interchange Documentation (Full)

87.6. How to use this document 652



88. Setup CVS

88.1. Assumptions

Here are some of the assumptions that I make that apply to various parts of the rest of this document:
Red Hat Linux 7.x• 
Interchange installed (RPM or tarball)• 
Default Interchange tarball installation directory paths (adjust for your environment)• 
Template catalog setup and working• 

Note: I will assume "foundation" for the catalog name and directory paths, but it should be just as easy to use
this document with the construct catalog or your own catalog by mentally transposing the names and paths.

There shouldn't be any reason why you could not do everything I mention here on other Linux distributions,
Unices or Windows (using cygwin). However, my statements will reflect Red Hat Linux 7.x. Additionally,
Red Hat Linux 6.x is for the most part the same as 7.x, except for the difference of using inetd instead of
xinetd to setup pserver.

88.2. Install CVS

This is the easy part. For Red Hat Linux systems, download the CVS rpms and install them. The following
RPM command will download and install the Red Hat 7.1 version of CVS from rpmfind.net.

Note: You need to be root to complete the following tasks

    su − root
    rpm −Uvh ftp://speakeasy.rpmfind.net/linux/redhat/7.1/en/os/i386/RedHat/RPMS/cvs−1.11−3.i386.rpm

Create the user and group that will administrate the Interchange repository. For this document, it will be the
interch user, (which was setup during the installation of Interchange). But if you understand the mechanics of
Unix users/groups, then you can use whatever username and group scheme you prefer. For example, some
create a cvs user and cvs group, then add the Interchange user and catalog owner to its group or vice−versa.
The integration of Interchange and CVS in the latter portion of this document will require that the CVS user
can write to the catalog directory.

88.3. Create the CVS repository directory

You will need to create a repository directory such as /rep, which is used here and in the rest of the
document, but it can be any directory you desire, and must be owned by the cvs user. Many use /var/rep
or /home/cvs/rep.

            su − root
            mkdir /rep
            chown interch.interch /rep

88. Setup CVS 653



88.4. Setup environment variables

The CVSROOT and EDITOR environment variables should be setup for all users in /etc/profile. Of course,
EDITOR can be whatever Unix text editor you prefer, such as vi, emacs, pico, or joe.

/etc/profile:

    export CVSROOT=/rep
    export EDITOR=vi

Note: You will need to logout/login for the profile changes to take effect.

88.5. Initialize the repository

Initialize the repository as the CVS user, which is interch for this document.

            su − interch
            cvs −d /rep init

88.6. CVS Authentication

88.6.1. Background

Authentication is done in CVS through the $CVSROOT/CVSROOT/passwd file. It can be easily
manipulated through some of the CVS administration tools that are available.

88.6.2. CVS administration tools

http://freshmeat.net/projects/cvsadmin/• 
http://freshmeat.net/projects/cvspadm/
I recommend cvsadmin, but there are also a variety of manual methods that can be used in the absence
of such tools, one of which involves copying the system shadow file and modifying it for use by CVS.
For more information on this manual method, see the Red Hat CVS pserver setup guide by Michael
Amorose (http://www.michael−amorose.com/cvs/).

• 

88.6.3. Setup authentication using the cvsadmin tool

You can find a tarball to install on your system using the above address, but here is the address of a
recent RPM package of the version. This package is intended for Mandrake systems, but is
compatible with Red Hat Linux 7.1:
ftp://speakeasy.rpmfind.net/linux/Mandrake−devel/contrib/RPMS/cvsadmin−1.0.1−1mdk.i586.rpm
After installing, create a password file (touch $CVSROOT/CVSROOT/passwd), and execute
cvsadmin add <usernames>.

• 

88.7. Setup CVS modules

Note: From this point on, assume that all commands are executed as the CVS user (e.g. interch), unless
otherwise specified.

Interchange Documentation (Full)

88.4. Setup environment variables 654

http://freshmeat.net/projects/cvsadmin/
http://freshmeat.net/projects/cvspadm/
http://www.michael-amorose.com/cvs/
ftp://speakeasy.rpmfind.net/linux/Mandrake-devel/contrib/RPMS/cvsadmin-1.0.1-1mdk.i586.rpm


A module is CVS is like the concept of a "project", where each module has its own branches, trees, and other
features.

88.7.1. Add your project to the modules configuration file

The format of the modules file is explained in detail in the CVS documentation, here is the simplest way to
use it:

/rep/CVSROOT/modules:

    <Module name><TAB><Module Directory>

The module name can be whatever you want, and the module directory is what we will create later under /rep.
We'll want a module for the template catalog (foundation). For example:

    foundation      foundation

88.7.2. Create the module directory

This is the directory that is referred to in the CVSROOT/modules file we just modified.

    mkdir /rep/foundation

88.8. Setup binary file types

This isn't necessary if you aren't going to manage any binary files (e.g. if you plan on excluding your /images/
directory). But I recommend including it. The following is an example including many binary file types (by
extension) used in web development.

/rep/CVSROOT/cvswrappers:

    *.avi   −k 'b' −m 'COPY'
    *.doc   −k 'b' −m 'COPY'
    *.exe   −k 'b' −m 'COPY'
    *.gif   −k 'b' −m 'COPY'
    *.gz    −k 'b' −m 'COPY'
    *.hqx   −k 'b' −m 'COPY'
    *.jar   −k 'b' −m 'COPY'
    *.jpeg  −k 'b' −m 'COPY'
    *.jpg   −k 'b' −m 'COPY'
    *.mov   −k 'b' −m 'COPY'
    *.mpg   −k 'b' −m 'COPY'
    *.pdf   −k 'b' −m 'COPY'
    *.png   −k 'b' −m 'COPY'
    *.ppt   −k 'b' −m 'COPY'
    *.sit   −k 'b' −m 'COPY'
    *.swf   −k 'b' −m 'COPY'
    *.tar   −k 'b' −m 'COPY'
    *.tgz   −k 'b' −m 'COPY'
    *.tif   −k 'b' −m 'COPY'
    *.tiff  −k 'b' −m 'COPY'
    *.xbm   −k 'b' −m 'COPY'
    *.xls   −k 'b' −m 'COPY'

Interchange Documentation (Full)

88.7.1. Add your project to the modules configuration file 655



    *.zip   −k 'b' −m 'COPY'

88.9. Testing your repository

At this point, you should have a working (though empty) CVS repository. Before we continue with setting up
the pserver or importing source code, try logging in as one of the CVS users listed in your CVSROOT/passwd
and test the checkout.

    #test checkout in home directory of any cvs user
    mkdir ~/src
    cd ~/src
    cvs co foundation

This should create foundation/ and foundation/CVS.

88.10. Setup the CVS pserver

You will likely need to be root to do this, and there are lots of guides on the Internet for setting up a CVS
pserver, hopefully you wont have any trouble doing it on your particular operating system. See the Resources
Appendix for more information.

88.10.1. Setup pserver in Red Hat Linux 7.1 using xinetd.

For Red Hat Linux 7.x, edit /etc/xinetd.d/cvspserver (create a new one if none exists). The
following works for me, but customization may be required for your environment (see the next section below
for an inetd−based system example). This also must be done as root.

    su − root
/etc/xinetd.d/cvspserver:

    # default: on
    service cvspserver
    {
            disable = no
            socket_type  = stream
            protocol  = tcp
            wait   = no
            user    = root
            server   = /usr/bin/cvs
            server_args  = −f −−allow−root=/rep pserver

    }

Also unset the HOME variable in xinetd. This was required for my repository to work correctly, but if anyone
has a better suggestion, I would appreciate a note.

/etc/xinetd.d/cvspserver:

    unset HOME

Now, restart xinetd for the changes to take effect.

    service xinetd restart

Interchange Documentation (Full)

88.9. Testing your repository 656



88.10.2. Setup pserver in inetd−based systems.

For inetd−based systems such as Red Hat Linux 6.2, make sure that the following files are setup accordingly.

/etc/services:

    cvspserver      2401/tcp
    N:/etc/inetd.conf:

    cvspserver stream tcp nowait root /usr/sbin/tcpd /usr/local/bin/cvs −−allow−root=/usr/local/newrepos pserver

88.10.3. Testing your pserver

At this point, you should be able to use a CVS client to use your pserver and execute all the same commands
that you can locally (which we tested before). You may wish to take advantage of a graphical CVS client,
which can be particularly helpful in leveling the learning curve.
See the Resources Appendix for links to some graphical CVS tools.

Interchange Documentation (Full)

88.10.2. Setup pserver in inetd−based systems. 657



89. Import your Interchange catalog into CVS

89.1. Configuring your catalog

Eventually, we will import your catalog into the CVS repository, but first we need to do some work with a
temporary copy of the catalog so we can get it into shape for importing.

Note: From here on, assume the use of the Interchange user, such as interch, unless otherwise noted.

    su − interch

If you installed via RPM:

    service interchange stop

If you installed via tarball (default path):

    /usr/local/interchange/bin/interchange −−stop

89.2. Remove old CVS folders

If, for any reason, you already have CVS/ directories in your catalog, they must be removed because they
might interfere with the new CVS setup. For example, maybe you moved servers and you are setting up CVS
again. You might use the following find command, which will find any folders named CVS in the current
directory and remove them. There is probably a better way to deal with old CVS/ folders, but the following
works for me (again, suggestions welcome).

Note: You should make a backup of the catalog directory before you do this.

    #Become Interchange catalog user
    su − interch

    #backup catalog folder first
    tar czf ~/foundation_backup.tgz /var/lib/interchange/foundation

    #get rid of any old CVS folders −− (BE CAREFUL!)
    cd /var/lib/interchange/foundation
    find . −name CVS −exec rm −Rf {} \;

89.3. Create a working copy of your catalog

A working copy of your catalog is necessary to get it into shape for use with CVS. The following command
creates a copy in the /tmp directory.

    cp −a /var/lib/interchange/foundation /tmp/import_foundation
    cd /tmp/import_foundation

89. Import your Interchange catalog into CVS 658



89.4. Streamline your catalog for CVS

89.4.1. Considerations about what to import into CVS

From your working directory (/tmp/import_foundation), decide which files will be in the
CVS repository, and which will not. While it is entirely possible to import the entire catalog into the
repository unchanged, I usually prefer to doctor my directories up before letting them into my
repository because of several reasons:
Will the file be modified by another source?
For example, /etc/order.number is modified by Interchange when run. But not everyone will
use a local development model that includes running Interchange on a directly checked−out copy of
their source. Which means this specific issue is avoided if you upload every edit before viewing your
changes on a server.

• 

The likelihood that you will modify the file.
For example, if I am certain that I wont every want to modify the session/ files directly, then I
probably wouldn't need to manage that through CVS, but I do import the empty session/ directory to
make it easier when setting up new catalogs.

• 

Speed.
Managing less files in the repository takes away from the amount of time required for CVS checkout,
update, branching, and other CVS actions. For most, this amount of time is small already, but it is a
consideration for some.

• 

Ease of use.
Ease of use is one reason not to remove anything from your catalog before importing it, because it
creates the ability to have a completely working catalog from just one checkout (much like the CVS
tree at interchange.redhat.com). Whereas if you leave out other directories like etc/ session/ orders/,
etc., then you must first combine your checkout with the other working parts of a catalog before the
catalog is viable. But this is slower and will bring up lots of harmless notification and warning
messages (about changed local versions) if you run Interchange on your local source copy (because
Interchange will touch etc/ session/ orders/, etc. directly, and then warn that your local copy has
changed from the CVS copy). You may be able to manage some of these notifications and warnings
with CVSROOT/cvsignore or $CVSIGNORE, see the Resources appendix for more details.

• 

89.4.2. Remove files that aren't needed in CVS

Here is an example of some directories to remove. If you do move more directories, be sure to move them to a
directory that you can later use to re−unite with a checked−out copy for a working catalog. But here I chose
just to move files that are not needed for a template "skeleton" catalog.
The images directory is typically symlinked to /var/www/html/foundation/images, so I remove this symlink
from the working copy, and replace it with an exact copy which will go into the CVS repository.

    cd /tmp/import_foundation
    mkdir /tmp/import_foundation_nonCVS

    #Setup images directory
    rm images
    cp −a /var/www/html/foundation/images .

    #Remove
    mv error.log logs/* orders/* session/* tmp/* upload/*  \
            /tmp/import_foundation_nonCVS

Interchange Documentation (Full)

89.4. Streamline your catalog for CVS 659



89.5. Import the streamlined catalog

Import the remaining portion of the catalog using the cvs import command, with "foundation" as the
module name and repository directory name. See the CVS documentation resources mentioned in Appendix
Resources for more information.
When you run the import command, it will launch $EDITOR (set to 'vi' earlier), and ask for a message to
go along with the import action. Whatever you see fit to write (e.g. "starting new CVS module with my
foundation catalog...") is fine.
This example import command includes renaming the foundation "working" directory back to "foundation"
for the import.

    su − interch
    cd /tmp/import_foundation
    cvs import foundation foundation start

89.6. Testing the new CVS module

Now you should be able to do another test checkout or update using any CVS client, which should now
download all the files that you have just imported into CVS. Additionally, you might test your newly imported
code by making a change to one of your checked−out source files, saving it, then committing it.

index.html:
    <!−−this is a test comment at the top of index.html−−>

Now commit the change
cvs commit index.html
Your changed version will now be resident in the repository. There are a lot of good CVS documentation and
resources for discovering more about the checkout/update/commit cycle and other CVS aspects in the
Resources Appendix.
You'll also notice that even if you start your interchange server, the change you made did not take effect. The
next section will detail the process of tying CVS and Interchange together in a way that this will happen
automatically.

Interchange Documentation (Full)

89.5. Import the streamlined catalog 660



90. Integrate CVS and Interchange
The next step is to allow CVS to update the directory that Interchange uses to serve pages.

90.1. CVS checkout into the catalog directory

Now it is the time to replace the directories in your catalog that have counterparts in CVS with fresh
checkouts from CVS (this is a preliminary action to allow CVS to update your catalog directory when a
change is made to CVS).

Note: Make sure interchange daemon is stopped and you have a good backup before continuing.

tar czf ~/foundation.backup2.tgz /var/lib/interchange/foundation
Checkout a copy from CVS into a different directory (such as foundation_CVS).

    cd /var/lib/interchange/
    cvs co −d foundation_CVS foundation

This should create the foundation_CVS/ directory for you, so that it wont conflict with your existing
foundation/ directory.

90.1.1. Add any needed files to checked−out catalog

Note that empty directories are pruned, so they will need something in them for them to show up with a −P
checkout. Often a zero−byte file called '.empty' is used.
If you removed any directories during the streamlining step, we must first add those back so that the catalog is
usable to Interchange. In this document, we only removed unneeded files and left empty directories.
This can also be the time to copy any "data" files such as orders/ logs/, etc. that might be needed if it is a live
catalog.

    cd /var/lib/interchange/foundation
    cp −a <NEEDED_FILES> \
            /var/lib/interchange/foundation_CVS

90.1.2. Install and test the new catalog

Now lets move the old foundation out of the way and put the new foundation_CVS in its place.

    cd /var/lib/interchange/
    mv foundation foundation_old
    mv foundation_CVS foundation

Now, link up the CVS images for use by Apache.

    cd /var/www/html/foundation/
    mv images images_old
    ln −s /var/lib/interchange/foundation/images images

Now, you should have a working catalog again. To make sure, start up Interchange and test the site with your

90. Integrate CVS and Interchange 661



browser.

90.2. Testing manual CVS updates on Interchange catalogs

Next, lets again update the checkout we made a while back before importing our catalog. (Alternatively, one
could use a visual CVS client detailed above).

    cd ~/src
    cvs −q up −d foundation # −q for quiet, −d for directory prune/update

Additionally, you might test making a change to one of your checked−out source files, saving it, then
committing it.

index.html:
    <!−−this is a test comment at the top of index.html−−>

Now commit the change

    cvs commit index.html

Your changed version will now be resident in the repository. Again, CVS documentation is in the Resources
Appendix.
This time, we can allow the changes to take effect on the code being used by Interchange to serve pages. To
do so, one must run a cvs update on the catalog directory:

    cd /var/lib/interchange/foundation
    cvs −q up −d    #up is the shortened version of "update"

That should notify you of the new version it downloaded with something like:
U pages/index.html
You may also get something like the following:

    M catalog.cfg
    M etc/status.foundation
    M ...
    ? orders/000001
    ? ...

The ? lines in the above example mean that the CVS server has never heard of the listed directories or files
(they are in your local source dir but not in the CVS source dir). It is harmless, but sometimes annoying.
The M means that the file has been modified on your local copy, and is out of sync with the remote CVS
version (e.g. when Interchange runs it updates etc/status.foundation). Normally this is corrected by
uploading your "modified" version to the server, but in this case, the modification was done by Interchange
instead of the programmer, and wasn't meant to be committed back to the CVS repository. These types of
messages can be handled with $CVSIGNORE and $CVSROOT/CVSROOT/cvsignore.
Now, check to make sure that your change has taken effect by refreshing the homepage on the site. To see the
comment, use View−>Page Source or whatever the relevant command for your browser is.
At this point, its obvious that it would be time consuming to manually run 'cvs up' every time you make a
change to the source code, so the next step is to setup CVS to automatically update the catalog whenever you
commit something to CVS.

Interchange Documentation (Full)

90.2. Testing manual CVS updates on Interchange catalogs 662



90.3. Automatic updates on commit

Start by modifying $CVSROOT/CVSROOT/loginfo

    ^foundation     (date; cat; (sleep 1; cd /var/lib/interchange/foundation; cvs −q update −d) &) >> $CVSROOT/CVSROOT/updatelog 2>&1

The first line tells CVS that for every commit on modules that start with "foundation" (notice the regular
expression "^foundation"), it will run cvs update on the given catalog directory in the background. It
is important that it is executed in a forked shell (notice the "&") after sleep'ing for 1 second, because
otherwise you may run into contention issues that can cause file locking problems. The 1 second timing used
above works fine for me, but a longer pause may be necessary for slower computers (you'll know if you get
errors about "file locked by user"). See the CVS documentation in the Resources Appendix for more details.

90.4. Automatic e−mail on commit

Often it is very helpful to have a commit mailing list that keeps developers up−to−date on every commit
happening to the CVS. To setup automatic e−mails on every commit, put the following in

/rep/CVSROOT/loginfo:

    ALL     /usr/bin/cvs−log     $CVSROOT/CVSROOT/commitlog $USER "%{sVv}"

This tells CVS to pipe the commit output to a shell script, which in turn updates a log file and e−mails an
update (typically to a mailing list address). Create the shell script at /usr/bin/cvs−log that is executable
by the cvs user (using "chmod 755 /usr/bin/cvs−log").

/usr/bin/cvs−log:

    #!/bin/sh
    (echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−";
     echo −n $2"  ";
     date;
     echo;
     cat) | tee −a $1 | /usr/bin/Mail −s "[foundation−cvs] $3" foundation−cvs@example.com

Your commit logs will now be archived in the CVSROOT/commitlog file and e−mailed to the
foundation−cvs@example.com address (which is especially useful when you have a Mailserver for CVS
updates). Here is what a sample e−mail looks like:

    Subject: [foundation−cvs] 'directory/subdirectory filename.c,1.7,1.8'

    −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    cvs Fri Mar 16 21:14:09 PST 2001
    Update of directory/subdirectory
    In directory cvs.foundationsomething.com:/tmp/cvs−serv7721
    Modified Files:
    filename.c
    Log Message:
    test

Now you have a working CVS development system. At this point it may be valuable to learn more about CVS
the client tools that you are using.

Interchange Documentation (Full)

90.3. Automatic updates on commit 663



91. The two track model: development and live
catalogs
It is often very valuable to have a two−track development model that separates the classes of work into
separate timing and decision categories. Some use "staging" and "production" terminology, others prefer
"unstable" and "stable", "beta" and "release", or "development" and "live".
The easiest starting point for two−track development is to just use two completely separate CVS modules and
catalogs. This can make a lot of sense for many situations, for example when the next revision of the site will
be so different that it is for all practical purposes starting from ground zero.
A slightly more complicated solution is to use the CVS branches feature. It is more difficult to set up, but can
be rewarding when used correctly.

91.1. When to branch

The first decision is when to branch the source code. For websites, this can sometimes be an easy decision like
"first went live", or "site−wide overhaul", etc.

91.2. Which way to branch

There are many different ways to branch source code. What seems to be the most common method is to use
the "trunk", which is the HEAD tag to CVS as the development version, and then make a branch when a
stable release is to be made.
That model doesn't fit my development style at the current time, so I use the HEAD default branch as my
stable live version, and use other tags (like DEV1 and DEV_REALLY_UNSTABLE) for my development
branch.
You may find that you are merging (or "folding") most or all of your development branch back into your
stable branch frequently. This is because unlike traditional programming where products are launched every
two or three years with new features, web sites often have little fixes and new features added every day or
every few weeks, with new "releases" happening more often than traditional software development (though
not all web sites follow that trend). The flexibility is there to branch the source for quite some time to work on
a very complex feature or complete redesign before bringing it to the live site, as well as the flexibility for
day−to−day updates.

91.3. Performing the branch

To perform the branch use the cvs tag −b <BRANCH NAME> command. For example:

    cvs tag −b DEV1

Remember that this does not change your locally checked out working directory to the new tag automatically,
it only creates the branch within the CVS repository.

91.4. Setup the development catalog

Now we have a branch in CVS, but we need to tie it to something in the real world, namely, an Interchange
catalog.

91. The two track model: development and live catalogs 664



91.4.1. Importing the catalog

Like we did in Integrating CVS with Interchange, you must make another copy of your catalog for use as the
development version. Some would like to keep the orders/, logs/, and other directories the same, but I prefer to
start with a clean slate, especially since I don't plan on having any customers visit the development site. (In
fact, you can restrict who can access the development URL using the Apache <Directory> allow
from... directive).

91.4.1.1. Checkout source code

    cd /var/lib/interchange
    cvs co −d foundation_dev foundation

91.4.1.2. Copy any other needed directories to complete the catalog

Depending on how complete your catalog is in CVS, you may need to create or copy directories/files.

    cd /var/lib/interchange/foundation
    cp −a catalog.cfg orders/*   \
            /var/lib/interchange/foundation_dev

Note: A lot of the following steps are performed by the /usr/local/interchange/bin/makecat script, but here is
how to do it manually:

91.4.2. Setting up a separate database

Most often, I find it profitable to make use of a second database for the development catalog, rather than
having both catalogs reference the same database (especially if the first catalog is live).

91.4.2.1. Create a second database

Use the means of your database platform to create a separate database. For example, PostgreSQL users might
do something like:
createdb foundation_dev

91.4.2.2. Populate the database

You can rely on the catalogs internal products/*.txt data to generate the database tables and populate them, or
you can export another catalog's database and import it for the development catalog, like the example below
for PostgreSQL users.

    pg_dump foundation  > ~/foundation.dump
    psql foundation_dev < ~/foundation.dump

91.4.3. Copy the catalog support files

    #Must be root
    su − root

    #Copy HTML
    cd /var/www/html/
    cp −a foundation foundation_dev

Interchange Documentation (Full)

91.4.1. Importing the catalog 665



    #Copy CGI
    cd /var/www/cgi−bin
    cp −a foundation foundation_dev

91.4.4. Configure the Interchange daemon

Perform the necessary modifications to interchange.cfg. For example:

/usr/local/interchange/interchange.cfg:
    Catalog foundation     /var/lib/interchange/foundation     /cgi−bin/foundation
    Catalog foundation_dev /var/lib/interchange/foundation_dev /cgi−bin/foundation_dev

91.4.5. Configure the catalog specifics

The development catalog will differ at least a little bit from the standard catalog, such as in the CGI_URL and
database parameters. You can also modify/add the foundation_dev/variable.txt instead of the following.

/var/lib/interchange/catalog.cfg:
    Variable CGI_URL   /cgi−bin/foundation_dev
    Variable IMAGE_DIR /foundation_dev/images
    Variable SQLDSN    dbi:Pg:dbname=foundation_dev
    Variable SQLDB     foundation_dev

Now you can restart Interchange to make your changes take effect.

91.5. Splitting updates on commit by tag

Setup CVS so that when you commit to the DEV1 branch, only the development (foundation_dev)
catalog will be updated. And when you commit with no tags (HEAD branch), the live (foundation)
catalog will be updated. Here is an example loginfo. The −r <tag> may be used just in case your
environment is such that the tags may be changed by other sources.

$CVSROOT/CVSROOT/loginfo:
    ^foundation      (date; cat; (sleep 1; cd /var/lib/interchange/foundation_dev; cvs −q up −d; cd /var/lib/interchange/foundation; cvs −q up −d) &) >> $CVSROOT/CVSROOT/updatelog 2>&1
    ALL     /usr/bin/cvs−log     $CVSROOT/CVSROOT/commitlog $USER "%{sVv}"

91.6. Using new branches

To use your new branch, checkout a working copy of the source with the correct tag specified. For example:

    cvs co −P −r DEV1

Then make change to one of the files, and commit it. The change should show on your development catalog,
but not your live catalog.

91.7. Merging

When you want to merge a change that you have made on your development branch into your stable
branch, there are many ways that you can do it. One would be to :

Interchange Documentation (Full)

91.4.4. Configure the Interchange daemon 666



Make a change in the development branch (DEV1) and commit it.♦ 
Copy the development−tagged file to a temporary name♦ 
Update to the live version (HEAD)♦ 
Overwrite the live (HEAD) version of the file with your temporary one♦ 
Commit the result♦ 
Update back to the development version (DEV1)♦ 

I do the above so often that I have written a Tcl script for WinCVS that will automatically perform the above
steps. And similar shell scripts can probably be easily written to match your development environment.
The above seems to be the easiest way, to me. However, there are other alternatives detailed in the CVS
manual in chapter 5, "Branching and merging", that I highly recommend for reading. One method involves
specifying the last version that has already been merged into the live branch using a specific version number,
date, relative time, or special purpose tag.

Interchange Documentation (Full)

91.4.4. Configure the Interchange daemon 667



92. Tools of the trade
This is the productivity tips section, which will hopefully help you to be able to get more done in less time.

92.1. Workstation Interchange installation

Not all developers work on Linux workstations, many use Apples (graphics designers and HTML gurus tend
to, I've found), and many use Windows. This means that many developers have the extra step of uploading
their changes to a Unix server where Interchange is running in order to see their changes.
The remedy to that is to setup an Interchange server on your workstation, or any location that has direct access
to the CVS source files. I'll explain:
The Interchange server that runs where the CVS server is (that we setup earlier) can be seen as the gathering
point for all the developers. However, each developer may run as many Interchange daemons as he/she
requires in a local context for the purpose of seeing the changes made before uploading them via CVS.
For example, Bob could setup another Interchange catalog on the same server as the CVS, (e.g.
foundation−bob). To get direct access to those files (rather than FTP), Bob could use NFS mounts (if Bob's
workstation is Linux) or SMB mounts using Samba if his workstation is a Windows variant. Any way that
Bob can get direct access to the files will save him some time (by cutting out the "upload" from the
"edit−>upload−>test" development cycle). One could even use VMware to run a Linux server on your
Windows workstation.

Note: You can now use the cygwin compatibility confirmed in Interchange versions 4.7.6 and above to run
Interchange right on your Windows workstation.

The result will be that you can modify the files with your favorite text editor and see the results
immediately through your local catalog. Setting up the catalog initially is quite easy. Just follow the
same steps used to setup the CVS catalog. Which is:
Stop Interchange.• 
bin/makecat a new catalog.• 
Checkout from CVS into a new CVS catalog directory and link the images/ directory.• 
Move any needed files back into the CVS catalog directory.• 
Make modifications to products/variable.txt and catalog.cfg (e.g. CGI_URL, HOSTNAME,
DBI_USER, DBI_PASSWORD).

• 

Restart Interchange.
One aspect of this local configuration is managing the differences between the main Interchange
daemon which runs on the CVS server and the local Interchange daemon. The differences are
probably hostname, database information, etc. That will all need to be managed (usually through
catalog.cfg entries) and database exports & imports (i.e. the postgres pg_dump command).
Another thing that you might have noticed at this point is all the files that are modified locally by the
Interchange daemon will report ? or M when you run an update. This can be handled with
CVSROOT/cvsignore and $CVSIGNORE, which are beyond the scope of this document.

• 

92.2. Mailserver for CVS updates

To setup a mailserver for CVS updates, first download and install Mailman. For RPM−based systems,
check on rpmfind.net for a precompiled binary package.
After installing, read the following information about Mailman and what needs to be done after

92. Tools of the trade 668



installation (taken from the RPM meta data):
"Mailman is software to help manage email discussion lists, much like Majordomo and Smartmail.
Unlike most similar products, Mailman gives each mailing list a web page, and allows users to
subscribe, unsubscribe, etc. over the web. Even the list manager can administer his or her list entirely
from the web. Mailman also integrates most things people want to do with mailing lists, including
archiving, mail <−> news gateways, and so on.
When the package has finished installing, you will need to:
Run /var/mailman/bin/mmsitepass to set the Mailman administrator password.• 
Edit /var/mailman/Mailman/mm_cfg.py to customize Mailman's configuration for your site.• 
Modify the sendmail configuration to ensure that it is running and accepting connections from the
outside world (to ensure that it runs, set "DAEMON=yes" in /etc/sysconfig/sendmail, ensuring that it
accepts connections from the outside world may require modifying /etc/mail/sendmail.mc and
regenerating sendmail.cf), and

• 

Add these lines:• 

      ScriptAlias /mailman/ /var/mailman/cgi−bin/
      Alias /pipermail/ /var/mailman/archives/public/
      <Directory /var/mailman/archives>
        Options +FollowSymlinks
      </Directory>

to /etc/httpd/conf/httpd.conf to configure your web server.
Users upgrading from previous releases of this package may need to move their data or adjust the
configuration files to point to the locations where their data is."
Then run /var/mailman/bin/newlist and follow the directions from there.

92.3. Locally mapped source code for a network IC server

This is useful mostly to Windows users, since Linux users can just as easily run IC daemons on their own
workstation as they can a separate server.
The idea is to have the IC server use its own files and directories for things that won't be edited and modified
locally, but reference a Samba directory or NFS directory for things that will (such as pages/,
templates/, etc.).

92.3.1. Mount the Samba or NFS directory

smbmount <...> or mount −t nfsfs <...>
The following script uses two directories (source and destination) to create symlinks for the commonly
modified source directories of Interchange.

    export S=/mnt/nfs/foundation
    export D=/var/lib/interchange/foundation
    F=db; ln −s $S/$F $D/$F
    F=dbconf; ln −s $S/$F $D/$F
    F=etc; ln −s $S/$F $D/$F
    F=images; ln −s $S/$F $D/$F
    F=pages; ln −s $S/$F $D/$F
    F=special_pages; ln −s $S/$F $D/$F
    F=templates; ln −s $S/$F $D/$F

This will leave you with a working catalog that can be quickly modified (since your editor can access the local
copy), while Interchange has to do the work of going over the SMB or NFS connection.

Interchange Documentation (Full)

92.3. Locally mapped source code for a network IC server 669



92.4. jEdit − a good editor with Interchange/HTML/Perl
colorization and CVS

I have been quite impressed with jEdit (http://www.jedit.org, and open source editor that is written in Java and
runs on most platforms.
I use the interchange.xml language definition written by Chris Jesseman chris@sitemajic.net, which is
available from http://www.sitemajic.net/jedit/. With this, jEdit automatically colors HTML, Perl, AND many
Interchange tags very intelligently.
Further, jEdit has a CVS plugin, written by Ben Sarsgard bsarsgard@vmtllc.com, and available at:
http://www.vmtllc.com/~bsarsgard/jedit.html. This plugin allows you to diff, update, and commit right from
the editor.

92.5. Separate servers for development and live catalogs

If you have the luxury of separate server hardware for the development and live catalogs, you might
find the following utility helpful:
CVSviaFTP (http://www.cvshome.org/dev/addoncvsftp.html) − from the CVS Add−ons page
(http://www.cvshome.org/dev/addons.html).
It allows one to have a given CVS module automatically publish each update to an FTP server, which
could serve as the live server. Or one could could use it if your CVS installation is only local and you
could use it to upload your changes to your production server.

• 

Interchange Documentation (Full)

92.4. jEdit − a good editor with Interchange/HTML/Perl colorization and CVS 670

http://www.jedit.org
mailto:chris@sitemajic.net
http://www.sitemajic.net/jedit/
mailto:bsarsgard@vmtllc.com
http://www.vmtllc.com/~bsarsgard/jedit.html
http://www.cvshome.org/dev/addoncvsftp.html
http://www.cvshome.org/dev/addons.html


F. Credits
Jon Jensen: Thanks for helping me get going on the SDF format already used by the Interchange
documentation, and fixing some SDF syntax errors.

• 

Mike Heins & all who have contributed to the success of Interchange: Thanks for following the
Way Of The Source, for quality programming, and for helping to making IC something to write
about.

• 

Thanks to the countless others who have written the CVS documentation that is available online,
which was my only source for learning CVS.

• 

F. Credits 671



G. Document history
May 2001. Conceived and written by Dan Browning.• 
July 19, 2001. First draft complete, first public release.• 
12 April 2002. Minor typographical edit.• 

G. Document history 672



H. Resources

H.1. CVS Documentation

Here are some resources for learning more about CVS. I have ranked them by the order of usefulness,
which is of course, objective.
Karl Fogel's CVS book http://cvsbook.red−bean.com/• 
The official CVS manual http://www.cvshome.org/docs/manual/• 
The official CVS FAQ http://faq.cvshome.org/• 
The official CVS homepage http://www.cvshome.org• 
Info−CVS mailing list http://mail.gnu.org/mailman/listinfo/info−cvs• 
CVS FAQ 2 http://www.cs.utah.edu/dept/old/texinfo/cvs/FAQ.txt• 
Sean Dreilinger's CVS Version Control for Web Site Projects http://durak.org/cvswebsites/• 
Pascal Molli's CVS reference site http://www.loria.fr/~molli/cvs−index.html• 
CVS Tutorial http://cellworks.washington.edu/pub/docs/cvs/tutorial/cvs_tutorial_1.html• 
CVS Tutorial 2 http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/cvs/• 
Red Hat CVS pserver setup guide http://www.michael−amorose.com/cvs/• 
CVS Add−ons http://www.cvshome.org/dev/addons.html• 

H.2. CVS Server Software

CVS RPM download (Red Hat Linux 7.1)
ftp://speakeasy.rpmfind.net/linux/redhat/7.1/en/os/i386/RedHat/RPMS/cvs−1.11−3.i386.rpm

• 

Source tarball links can can be found at cvshome.org.• 

H.3. CVS Client Software

There is a variety of client access methods for using CVS on your development box.
There are some great graphical clients for Linux, Windows, and Mac at http://www.cvsgui.org. These
also give you the same access to all the command line cvs commands.

• 

jCVS is a great cross−platform graphical CVS client available at http://www.jcvs.org.• 
jEdit is a great cross−platform text editor written in java, which not only has a CVS module that
allows you to commit (upload) files directly from the editor, but also has a Interchange Tag Language
(and Perl language) colorizer/parser. It is available from http://www.jedit.org.

• 

Copyright 2001 Dan Browning <danpb@mail.com>. Freely redistributable under terms of the GNU General
Public License.

H. Resources 673

http://cvsbook.red-bean.com/
http://www.cvshome.org/docs/manual/
http://faq.cvshome.org/
http://www.cvshome.org
http://mail.gnu.org/mailman/listinfo/info-cvs
http://www.cs.utah.edu/dept/old/texinfo/cvs/FAQ.txt
http://durak.org/cvswebsites/
http://www.loria.fr/~molli/cvs-index.html
http://cellworks.washington.edu/pub/docs/cvs/tutorial/cvs_tutorial_1.html
http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/cvs/
http://www.michael-amorose.com/cvs/
http://www.cvshome.org/dev/addons.html
ftp://speakeasy.rpmfind.net/linux/redhat/7.1/en/os/i386/RedHat/RPMS/cvs-1.11-3.i386.rpm
http://www.cvsgui.org
http://www.jcvs.org
http://www.jedit.org

