Interchange Documentation (Full)

Advanced Interchange Topics

Advanced Interchange Topics

1. Advanced Interchange Topics

» Maintaining production Interchange servers

« Interchange Administration Tool Development
» Making catalog skeletons for use with makecat
* Building custom link programs

1. Advanced Interchange Topics

2. Maintaining Interchange

Some utilities are supplied in the VendRoot/bin directory:

compile_link Compiles an Interchange vlink or tlink CGI link
configdump Dumps the configuration directives for a particular catalog
dump Dumps the session file for a particular catalog

expire Expires sessions for a particular catalog

expireall Expires all catalogs

makecat Make catalog

Some example scripts for other functions are in the eg/ directory of the software distribution.

Some thought should be given to where the databases, error logs, and session files should be located,
especially on an ISP that might have multiple users sharing an Interchange server. In particular, put all of th
session files and logs in a directory that is not writable by the user. This eliminates the possibility that the
catalog may crash if the directory or file is corrupted.

To test the format of user catalog configuration files before restarting the server, set (from VendRoot):
bin/interchange —test
This will check all configuration files for syntax errors, which might otherwise prevent a catalog from

booting. Once a catalog configures properly, user reconfiguration will not crash it. It will just cause an error.
But, it must come up when the server is started.

2.1. Starting, Stopping, and Re—starting the Servers

The following commands need to have VENDROOT changed to the main directory where Interchange is
installed. If the Interchange base directory is /homel/interchange/, the start command would be
/home/interchange/bin/interchange.

Do a perldoc VENDROOT/bin/interchange for full documentation.

To start the server with default settings:

VENDROOT/bin/interchange

Assuming the server starts correctly, the names of catalogs as they are configured will be displayed, along
with a message stating the process ID it is running under.

It is usually best to issue a restart instead. It doesn't hurt to do a restart if you're actually starting the first tim
And, if a server is already running (from this VENDROOT), a new start attempt will fail. To restart the server

VENDROOT/bin/interchange -restart
The —r option is the same as —restart.
This is typically done to force Interchange to re-read its configuration. A message will be displayed stating

that a TERM signal has been sent to the process ID the servers are running under. This information is also
sent to VENDROOT/error.log. Check the error.log file for confirmation that the server has restarted

2. Maintaining Interchange 3

Interchange Documentation (Full)

properly.
To stop the server:

VENDROOT/bin/interchange -stop

A message will be displayed stating that a TERM signal has been sent to the process ID the server is runnir
under. This information is also sent to VENDROOT/error.log.

Because processes waiting for selection on some operating systems block signals, they may have to wait fc
HouseKeeping seconds to stop. The default is 60.

To terminate the Interchange server with prejudice, in the event it will not stop:

VENDROOT/bin/interchange -kill

2.2. UNIX and INET modes

Both UNIX-domain and INET-domain sockets can be used for communication. INET domain sockets are
useful when more than one web server, connected via a local-area network (LAN), is used for accessing an
Interchange server.

Important note: When sending sensitive information like credit card numbers over a network, always ensure
that the data is secured by a firewall, or that the Interchange server runs on the same machine as any
SSL-based server used for encryption.

Use the —i and —u flags if you only want to use one communication method:

Start only in UNIX mode
VENDROOT/bin/interchange -r —u

Start only in INET mode
VENDROOT/bin/interchange -r —i

2.3. User Reconfiguration

The individual catalogs can be reconfigured by the user by running the [reconfig] support tag. This should be
protected by one of the several forms of Interchange authentication, preferably by HTTP basic authorization
See RemoteUser.

The command line can be reconfigured (as the Interchange user) with:
VENDROOT/bin/interchange -reconfig <catalog>
It is easy for the administrator to manually reconfigure a catalog. Interchange simply looks for a file

etc/reconfig (based in the Interchange software directory) at HouseKeeping time. If it finds a script
name that matches one of the catalogs, it will reconfigure that catalog.

2.2. UNIX and INET modes 4

Interchange Documentation (Full)

2.4. Expiring Sessions

If Interchange is using DBM capability to store the sessions, periodically expire old sessions to keep the
session database file from growing too large.

expire —c catalog

There is also an expireall script which reads all catalog entries in interchange.cfg and runs
expire on them. The expire script accepts a —r option which tells it to recover lost disk space.

On a UNIX server, add a crontab entry such as the following:

once a day at 4:40 am
40 4 *** perl /home/interchange/bin/expireall —r

Interchange will wait until the current transaction is finished before expiring, so this can be done at any time
without disabling web access. Any search paging files for the affected session (kept in ScratchDir) will be
removed as well.

If not running DBM sessions, use a Perl script to delete all files not modified in the last one or two days. The
following will work if given an argument of a session directory or session files:

#lperl
expire_sessions.pl —— delete files 2 days old or older

my @files;
my $dir;
foreach $dir (@ARGV) {
just push files on the list
if (-f $dir) { push @files, $_; next; }

next unless —d $dir;

get all the file names in the directory

opendir DIR, $dir or die "opendir $dir: $\n";

push @files, (map { "$dir/$_"} grep(! /M\.\.?$/, readdir DIR)) ;
}

for (@files) {
unless (-f$_) {
warn "skipping $_, not a file.\n";
next;

}
next unless -M $_ >=2;
unlink $_ or die "unlink $_: $!\n";

}
It would be run with a command invocation like:

perl expire_sessions.pl /home/you/catalogs/simple/session
Multiple directory names are acceptable, if there is more than one catalog.

This script can be adjusted as necessary. Refinements might include reading the file to "eval" the session
reference and expire only customers who are not members.

2.4. Expiring Sessions 5

Interchange Documentation (Full)

2.5. My session files change to owner root every day!

You have the expireall —r entry in the root crontab, and it should either be in the Interchange user crontab or
run as:

44 4 ** * su —c "[INTERCHANGE_ROOT/bin/expireall -r" INTERCHANGE_USERNAME

2.5. My session files change to owner root every day!

3. Interchange Components

Interchange components are merely portions of HTML/ITL that are included into pages within the site
depending on options set in the Admin Ul. The default component set includes the following:

best_horizontal
best_vertical

cart

cart_display
cart_tiny
category_vertical
cross_horizontal
cross_vertical
promo_horizontal
promo_vertical
random_horizontal
random_vertical
upsell_horizontal
upsell_vertical

3.1. Content —> Page Edit

The Interchange Admin Ul offers a page editor function that allows component definitions and options to be
modified for each page within the catalog.

3.1.1. Template

The choices for the Template drop—down are read from template definition files located in the
CATROOT/template directory. These files store the name and description of the template, as well as
components and options for the particular template.

To create a new template for use in the admin, it is best to copy an existing template definition to a new file
name and edit it's contents to suit. Once the catalog is reconfigured, the new choice will be visible within the
Content Page Editor admin function.

Each template option is looped through and a scratch is set using its same name and value.

ITL is used near the bottom of this file to set each option to default values before the page is displayed.

[set page_title][set]

[set page_banner][set]

[set members_only][set]
[set component_before][set]
[set component_after][set]
[set bgcolorl#FFFFFF[/set]

3.1.2. Page Title

Sets the title of the page which is synonymous with the html <title></title> code.

The following code within the template definition file is used to display this option within in the content
editor:

3. Interchange Components 7

Interchange Documentation (Full)

page_title: description: Page title
This code dynamically adds the title to the page:

<title>[scratch page_title]</title>
3.1.3. Page Banner

Sets a textual title for each page which is called by [either][scratch page_banner][or][scratch
page _title][/either] This results in the Page Banner being displayed if defined. Otherwise, the Page Title is
used.

3.1.4. Members Only

The members only function is handled by the following code within each template file:

[if scratch members_only]
[set members_only][/set]
[if Isession logged_in]
[set mv_successpage]@ @MV_PAGE@ @][/set]
[bounce page=login]
[/if]
[/if]

This code says if members only is set to yes and the visitor is logged in, display the page. Otherwise, redire
the visitor to the login page.

3.1.5. Break 1

This code causes a separation in the Content Editor between the next set of options. (A blue line)

3.1.6. Horizontal Before Component

This allows the inclusion of a defined component to be displayed before, or above, the page's content. It is
called with the following code within the LEFTRIGHT_TOP template:

[if scratch component_before]
[include file="templates/components/[scratch component_before]"]
[set component_before][/set]

[/if]
3.1.7. Horizontal After Component

This function allows the inclusion of a defined component to be displayed after or below the page's content.
It's called with the following code within the LEFTRIGHT_BOTTOM template:

[if scratch component_after]
[include file="templates/components/[scratch component_after]"]
[set component_after][/set]

[/if]

3.1.3. Page Banner 8

Interchange Documentation (Full)

3.1.8. Horizontal Item Width

This setting allows you to choose how many items the horizontal components display. For example, the
horizontal best sellers component uses this setting to randomly select the best sellers. Notice the default to
nothing is defined.

random="[either][scratch component_hsize][or]2[/either]"

3.1.9. Special Tag

This setting is only viable when a promotion is used for a horizontal component. It tells the promotional
component which rows to evaluate in the merchandising table for display within the component. This setting
normally correlates to the featured column of the merchandising table as follows:

[query arrayref=main
sql="
SELECT sku,timed_promotion,start_date,finish_date
FROM merchandising
WHERE featured = "[scratch hpromo_type]'

"l/query]
3.1.10. Before/After Banner

Allows a title for the horizontal components to be defined to displayed in a header above the component's
items. It is called with the [scratch hbanner] tag.

3.1.11. Break 2

This code causes a separation in the Content Editor between the next set of options. (A blue line)

3.1.12. Vertical Component

Defines a component to be displayed along the right side of the LEFTRIGHT_BOTTOM template. It is callec
from the template with the following code:

[include file="templates/components/[scratch component_right]"]

3.1.13. Vertical Items Height

Sets the number of items to display within the vertical component. Called with the following code:

random="[either][scratch component_vsize][or]3[/either]"

3.1.14. Right Banner

Allows a title to be set for a vertical component which is displayed as a header above the items in the vertice
component. It's called with the [scratch vbanner] tag.

3.1.8. Horizontal Item Width 9

Interchange Documentation (Full)

3.1.15. Special Tag

Essentially the same as the Special Tag setting described in item number 9 above.

3.1.16. Background Color

Allows the background color of the page to be selected. The choices are stored within the page or template
definition as in:

bgcolor:
options: #FFFFFF=White,pink=Pink
widget: select
description: Background color

3.1.17. Content

Allows the page code to be downloaded, uploaded and viewed/edited. Only the code between <!-- BEGIN
CONTENT ——> and <!-— END CONTENT —-> is displayed or can be edited here.

3.1.18. Preview, Save, and Cancel buttons

Allows the changes to the edited page to be previewed in a pop—up browser window, or saved. Cancel retur
you to the page editor selection page.

3.1.19. Save template in page

Template settings are stored in the template definitions by default. This allows a common set of choices for
template settings for all pages. If specific setting options are desired for a page, the template can be saved
within the page so that it may have individual options.

The in—page template definition must be surrounded by [comment] [[comment].

3.2. Custom Admin Ul Options

Other options may be added to the template by defining them in the default definition file, or using in—page
definitions.

When the following lines are added to the template definition, the new option is added to the Admin Ul.
option_name:
options: 1,2*,3
widget: select

description: Option Description
help: Other Details

Each time the template is used, an option_name scratch variable is created. (Called with: [scratch
option_name].) This scratch value will be equal to what's selected here in the admin tool.

The possible widgets include:
break — produces the blue line separator.

3.1.15. Special Tag 10

Interchange Documentation (Full)

radio — produces radio button type selections.
select — standard drop—down selector.
move_combo - select drop down with options and text input for new option.

3.1.15. Special Tag

11

4. Administrative Pages

With Interchange's GlobalSub capability, very complex add—on schemes can be implemented with Perl
subroutines. And with the new writable database, pages that modify the catalog data can be made. See
MasterHost, RemoteUser, and Password.

In addition, any Interchange page subdirectory can be protected from access by anyone except the
administrator if a file called '.access' is present and non-zero in size.

4.1. Controlling Access to Certain Pages

If the directory containing the page has a file .access and that file's size is zero bytes, access can be gated
in one of several ways.

1. If the file .access_gate is present, it will be read and scanned for page—based access. The file has
the form:

page: condition
*: condition

The page is the file name of the file to be controlled (the .html extension is optional). The condition is

either a literal Yes/No or Interchange tags which would produce a Yes or No (1/0 work just fine, as do
true/false).

The entry for * sets the default action if the page name is not found. If pages will be allowed by default, set if
to 1 or Yes. If pages are to be denied by default in this directory, leave blank or set to No. Here is an
example, for the directory controlled, having the following files:

—-rw—-rw—-r—— 1 mike mike 0Jan 8 14:19 .access
-rw—-rw-r—— 1 mike mike 185 Jan 8 16:00 .access_gate
—-rw-rw-r-— 1 mike mike 121 Jan 8 14:59 any.html
—-rw—-rw-r—— 1 mike mike 104 Jan 8 14:19 bar.html
—-rw—-rw-r—— 1 mike mike 104 Jan 8 14:19 baz.html
—-rw—-rw-r—— 1 mike mike 104 Jan 8 14:19 foo.html

The contents of .access_gate:

foo.html: [if session username eq ‘flycat’]
Yes
[/if]
bar: [if session username eq 'flycat’]
[or scratch allow_bar]
Yes
[/if]
baz: yes
*: [data session logged_in]

The page controlled/foo is only allowed for the logged—in user flycat.

The page controlled/bar is allowed for the logged-in user flycat, or if the scratch variable
allow_bar is set to a non-blank, non-zero value.

The page controlled/baz is always allowed for display.

The page controlled/any (or any other page in the directory not named in .access_gate) will be
allowed for any user logged in via UserDB.

4. Administrative Pages 12

Interchange Documentation (Full)

1. If the Variable MV_USERDB_REMOTE_USER is set (non-zero and non-blank), any user logged in
via the UserDB feature will receive access to all pages in the directory. NOTE: If there is a
.access_gate file, it overrides this.

2. If the variables MV_USERDB_ACL_TABLE is set to a valid database identifier, the UserDB module
can control access with simple ACL logic. See USER DATABASE. NOTE: If there is a
.access_gate file, it overrides this. Also, if MV_USERDB_REMOTE_USER is set, this capability
is not available.

4.2. display tag and mv_metadata

Interchange can store meta information for selected columns of tables in a site's database. This meta
information is used when the user interacts with the database. For example, the meta information for a Hide
Item field might specify that a checkbox be displayed when the user edits that field, since the only
reasonable values are on and off. Or, the meta information might specify a filter on data entered for a
Filename field which makes sure that the characters entered are safe for use in a filename.

Widget type specifies the HTML INPUT tag type to use when displaying the field in, say, the item editor.
Width and Height only apply to some of the Widget type options, for instance the Textarea widget.

Label is displayed instead of the internal column name. For example, the category column of the
products table might have a label of Product Category.

Help is displayed below the column label, and helps describe the purpose of the field to the user.

Help url can be used to link to a page giving more information on the field.

Lookup can be used when a field is acting like a foreign key into another table. In that case, use some sort ¢
select box as the widget type, and if referencing multiple rows in the destination table, use a multi select box

with colons_to_null as the pre_filter, and :: as the lookup_exclude.

Filter and pre_filter can be used to filter data destined for that field or data read from that field,
respectively.

Repeat?: The Interchange back office Ul uses the mv_metadata table to discover formatting information for
field, table, and view display. The information is kept in fields in the mv_metadata table, and is used to selec
the display, the HTML input type, the size (height and width where appropriate), label, help text, additional
help URL, and default value display.

It works in conjunction with the [display ...] usertag defined in the Interchange Ul as well as in specific pages
in the Ul. The [display] tag has this syntax:

[display table=tablename column=fieldname key=key arbitrary=tag filter=op ...]
In the simplest use, the formatting information for a table form field is called with:
[display table=products column=category key="0s28007"]

The mv_metadata table is scanned for the following keys:

4.2. display tag and mv_metadata 13

Interchange Documentation (Full)

products::category::0s28007
products::category

If a row is found with one of those keys, then the information in the row is used to set the display widget. If
no row is found, an INPUT TYPE=TEXT widget is displayed. If the data is all digits, a size of 8 is used,
otherwise the size is 60.

If the following row were found (not all fields shown, would be tab—-separated in the actual data):

code type width height label options
products::category text 20 Category

Then this would be output:
<INPUT TYPE=text SIZE=20 VALUE="*category*">
If the following row were found:

code type width height label options
products::category select Category =none, product=Hardware

Then the following would be output:

<SELECT NAME=category>

<OPTION VALUE="">none

<OPTION VALUE="product">Hardware
</SELECT>

The standard widget types are:

text

The default. Uses the fields:
width size of input box

textarea

Format a <TEXTAREA> </TEXTAREA> pair. Uses the fields:

width COLS for textarea
height ROWS for textarea

select

Format a <SELECT> </SELECT> pair with appropriate options. Uses the fields:

height SIZE for select

default Default for SELECTED

options Options for a fixed list (or prepended to a lookup)
lookup signals a lookup (used as field name if "field" empty)
field field to look up possible values in

db table to look up in if not current table

lookup_exclude regular expression to exclude certain values from lookup

4.2. display tag and mv_metadata 14

5. Usertag Reference

Admin Tool-specific usertags.

5. Usertag Reference

15

6. Admin Tool Database Tables

6.1. icmenu.txt

Used for back—office administration Ul menus and wizards.

code
Arbitrary primary key
mgroup
Menu group (for grouping searches)
msort
Sort order within the group
next_line
Set to 1 if submenu
indicator
exclude_on
depends_on
page
form
name
super
inactive
special
help_name
img_dn
img_up
img_sel
img_icon
url

6.2. mv_metadata.asc

code
Table::Column to be operated on.
Database table
type

Widget type (Select the basic display type for the field)
textarea = Textarea
text = Text Entry (default)
select = Select Box
yesno = Yes/No (Yes=1)
noyes = No/Yes (No=1)
multiple = Multiple Select
combo = Combo Select
reverse_combo = Reverse Combo
move_combo = Combo move
display = Text of option
hidden_text = Hidden(show text)
radio = Radio box
radio_nbsp = Radio (nbsp)
checkbox = Checkbox
check_nbsp = Checkbox (nbsp)
imagedir = Image listing
imagehelper = Image upload
date = Date selector
value = Value
option_format = Option formatter
show = Show all options

6. Admin Tool Database Tables

Interchange Documentation (Full)

width
Width (SIZE for TEXT, COLS for TEXTAREA, Label limit for SELECT)
height
Height (SIZE for SELECT, ROWS for TEXTAREA)
field
Field for lookup (can be two comma separated fields, in which case
second is used as the label text. Both must be in the same table.)
db
name
Variable name (normally left empty, changes variable name to send in
form)
outboard
Select directory for image listing widget
options
options in the format <blockquote>value=label*</blockquote>
attribute
Column name (Do not set this.)
label
help
Help (displays at top of page)
lookup
Lookup select (Whether lookup is performed to get options for a select
type. If nothing is in the field, then used as the name of the field
to lookup in. Use lookup table if you want to look up in a different
table.
filter
Filters (Filters which can transform or constrain your data. Some
widgets require filters.)
help_url
Help URL (links below help text)
A URL which will provide more help
pre_filter
lookup_exclude
ADVANCED: regular expression that excludes certain keys from the lookup
prepend
append
Append HTML (HTML to be appended to the widget. Will substitute in the
macros _UI_TABLE_, _UI_COLUMN_, _UI_KEY_, and _UI_VALUE_, and will
resolve relative links with absolute links.)
display_filter

6. Admin Tool Database Tables

17

7. makecat — Set Up a Catalog from a Template

After Interchange is installed, you need to set up at least one catalog. Interchange will not function properly
until a catalog is created.

The supplied makecat script, which is in the Interchange program directory bin, is designed to set up a
catalog based on the user's server configuration. It interrogates the user for parameters like which directorie
to use, a URL to base the catalog in, HTTP server definitions, and file ownership. It gives relevant examples
of the entries it expects to receive.

Note: A catalog can only be created once. All further configuration is done by editing the files within the
catalog directory.

The makecat script requires a catalog skeleton to work from. The Foundation demo is distributed with
Interchange. See the icfoundation document for information on building the Foundation demo store. Other
demo catalogs are available at http://interchange.redhat.com/.

It is not normally necessary for you to understand how to build catalog skeletons for use with makecat, but tl
following information will help you if you should ever need to.

7.1. Catalog Skeletons

A catalog skeleton contains an image of a configured catalog. The best way to see what the makecat progre
does is to configure the simple demo and then run a recursive diff on the template and configured catalog
directories:

cd /usr/local/interchange
diff —r construct catalogs/construct

The files are mostly identical, except that certain macro strings have been replaced with the answers given 1
the script. For example, if www.mydomain.com was answered at the prompt for a server name, this
difference would appear in the catalog.cfg file:

template
Variable SERVER_NAME __ MVC_SERVERNAME_

configured catalog
Variable SERVER_NAME www.mydomain.com

The macro string __ MVC_SERVERNAME___ was substituted with the answer to the question about server
name. In the same way, other variables are substituted, and include:

MVC_BASEDIR MVC_IMAGEDIR
MVC_CATROOT MVC_IMAGEURL
MVC_CATUSER MVC_MAILORDERTO
MVC_CGIBASE MVC_MINIVENDGROUP
MVC_CGIDIR MVC_MINIVENDUSER
MVC_CGIURL MVC_SAMPLEHTML
MVC_DEMOTYPE MVC_SAMPLEURL
MVC_DOCUMENTROOT MVC_VENDROOT
MVC_ENCRYPTOR

7. makecat — Set Up a Catalog from a Template 18

Interchange Documentation (Full)

Note: Not all of these variables are present in the "construct" template, and more may be defined. In fact, ar
environment variable that is set and begins with MVC_ will be substituted for by the makecat script. For
example, to set up a configurable parameter to customize the COMPANY variable in catalog.cfg, run a
pre—qualifying script that set the environment variable MVC_COMPANY and then place in the catalog.cfg
file:

Variable COMPANY __MVC_COMPANY_

All files within a template directory are substituted for macros, not just the catalog.cfg file. There are two
special directories named html and images. These will be recursively copied to the directories defined as
SampleHTML and ImageDir.

Note: The template directory is located in the Interchange software directory, i.e., where

interchange.cfg resides. Avoid editing files in the template directory. To create a new template, it is
recommended that it should be named something besides ‘construct' and a copy of the construct demo
directory be used as a starting point. Templates are normally placed in the Interchange base directory, but c
be located anywhere. The script will prompt for the location if it cannot find a template.

In addition to the standard parameters prompted for by Interchange, and the standard catalog creation
procedure, four other files in the config directory of the template may be defined:

additional_fields —- file with more parameters for macro substitution
additional_help —- extended description for the additional_fields
precopy_commands —- commands passed to the system prior to catalog copy
postcopy_commands —— commands passed to the system after catalog copy

All files are paragraph—based. In other words, a blank line (with no spaces) terminates the individual setting

The additional_fields file contains:

PARAM
The prompt. Set PARAM to?
The default value of PARAM

This would cause a question during makecat:
The prompt. Set PARAM to?.....[The default value of PARAM]
If the additional_help file is present, additional instructions for PARAM may be provided.

PARAM

These are additional instructions for PARAM, and they
may span multiple lines up to the first blank line.

The prompt would now be:

These are additional instructions for PARAM, and they
may span multiple lines up to the first blank line.

The prompt. Set PARAM to?.....[The default value of PARAM]

If the file config/precopy_commands exists, it will be read as a command followed by the prompt/help value.

7. makecat — Set Up a Catalog from a Template 19

Interchange Documentation (Full)

mysgladmin create _ MVC_CATALOGNAME___
We need to create an SQL database for your Interchange
database tables.

This will cause the prompt:

We need to create an SQL database for your Interchange
database tables.

Run command "mysqgladmin create simple"?

If the response is "y" or "yes," the command will be run by passing it through the Perl system() function. As
with any of the additional configuration files, MVC_PARAM macro substitution is performed on the
command and help. Proper permissions for the command are required.

The file config/postcopy_commands is exactly the same as <precopy_commands>, except the prompt occu
after the catalog files are copied and macro substitution is performed on all files.

There may also be SubCatalog directives:
SubCatalog easy simple /home/catalogs/simple /cgi-bin/easy
easy

The name of the subcatalog, which also controls the name of the subcatalog configuration file. In this case,
is easy.cfg.

simple

The name of the base configuration that will be the basis for the catalog. Parameters in the easy.cfg file that
are different will override those in the catalog.cfg file for the base configuration.

The remaining parameters are similar to the Catalog directive.

Additional interchange.cfg parameters set up administrative parameters that are catalog wide. See the serve
configuration file for details on each of these.

Each catalog can be completely independent with different databases, or catalogs can share pages, databa
and session files. This means that several catalogs can share the same information, allowing "virtual malls."

7.2. Manual Installation of Catalogs

An Interchange installation is complex, and requires quite a few distinct steps. Normally you will want to use
the interactive catalog builder, makecat, described above. It makes the process much easier. Please see th
iccattut document for a full tutorial on building a catalog by hand.

7.2. Manual Installation of Catalogs 20

8. Link Programs

Interchange requires a web server that is already installed on a system. It does have an internal server whic
can be used for administration, testing, and maintenance, but this will not be useful or desirable in a
production environment.

As detailed previously, Interchange is always running in the background as a daemon, or resident program.
monitors either a UNIX-domain file—based socket or a series of INET-domain sockets. The small CGlI link
program, called in the demo simple, is run to connect to one of those sockets and provide the link to a
browser.

Note: Since Apache is the most popular web server, these instructions will focus on it. If using another type |
web server, some translation of terms may be necessary.

A ScriptAlias or other CGI execution capability is needed to use the link program. (The default
ScriptAlias for many web servers is /cgi—bin.) If ExecCGl is set for all directories, then any
program ending in a particular file suffix (usually .cgi) will be seen as a CGI program.

Interchange, by convention, names the link program the same name as the catalog ID, though this is not
required. In the distribution demo, this would yield a program name or SCRIPT_PATH of

/cgi—bin/simple or /simple.cgi. This SCRIPT_PATH can be used to determine which Interchange

catalog will be used when the link program is accessed.

8.1. UNIX-Domain Sockets

This is a socket which is not reachable from the Internet directly, but which must come from a request on the
server. The link program vlink is the provided facility for such communication with Interchange. This is the
most secure way to run a catalog, for there is no way for systems on the Internet to interact with Interchange
except through its link program.

The most important issue with UNIX-domain sockets on Interchange is the permissions with which the CGI
program and the Interchange server run. To improve security, Interchange normally runs with the socket file
having 0600 permissions (rw———-———), which mandates that the CGI program and the server run as the sat
user ID. This means that the vlink program must be SUID to the same user ID as the server executes under
(Or that CGIWRAP is used on a single catalog system).

With Interchange's multiple catalog capability, the permissions situation gets a bit tricky. Interchange comes
with a program, makecat, which configures catalogs for a multiple catalog system. It should properly set up
ownership and permissions for multiple users if run as the superuser.

8.2. INET-Domain Sockets

These are sockets which are reachable from the Internet directly. The link program tlink is the provided
facility for such communication with Interchange. Other browsers can talk to the socket directly if mapped to
a catalog with the global TcpMap directive. To improve security, Interchange usually checks that the reques
comes from one of a limited number of systems, defined in the global TcpHost directive. (This check is not
made for the internal HTTP server.)

8. Link Programs 21

Interchange Documentation (Full)

8.3. Internal HTTP Server

If the socket is contacted directly (only for INET-domain sockets), Interchange will perform the HTTP servel
function itself, talking directly to the browser. It can monitor any number of ports and map them to a
particular catalog. By default, it only maps the special catalog mv_admin, which performs administrative
functions. The default port is 7786, which is the default compiled into the distribution tlink program. This port
can be changed via the TcpMap directive.

To prevent catalogs that do not wish access to be made in this way from being served from the internal serv

Interchange has a fixed SCRIPT_PATH of /catalogname (/simple for the distribution demo) which needs
to be placed as an alias in the Catalog directive to enable access. See TcpMap for more details.

8.4. Setting Up VLINK and TLINK

The vlink and tlink programs, compiled from vlink.c and tlink.c, are small C programs which

contact and interface to a running Interchange daemon. The VLINK executable is normally made setuid to t
user account which runs Interchange, so that the UNIX-domain socket file can be set to secure permissions
(user read—write only). It is normally not necessary for the user to do anything. They will be compiled by the
configuration program. If the Interchange daemon is not running, either of the programs will display a
message indicating that the server is not available. The following defines in the produced config.h should
be set:

LINK_FILE

Set this to the name of the socket file that will be used for configuration, usually
"lusr/local/lib/interchange/etc/socket" or the "etc/socket” under the directory chosen for the VendRoot.

LINK_HOST

Set this to the IP number of the host which should be contacted. The default of 127.0.0.1 (the local machine
is probably best for many installations.

LINK_PORT

Set this to the TCP port number that the Interchange server will monitor. The default is 7786 (the decimal
ASCII codes for 'M' and 'V') and does not normally need to be changed.

LINK_TIMEOUT

Set this to the number of seconds vlink or tlink should wait before announcing that the Interchange
server is not running. The default of 45 is probably a reasonable value.

8.5. Compiling VLINK and TLINK

There is a compile_link program which will assist with this. Do:

perldoc VENDROOT/bin/compile_link

for its documentation.

8.3. Internal HTTP Server 22

Interchange Documentation (Full)

8.6. Manually Compiling VLINK and TLINK

Change directories to the src directory, then run the GNU configure script:

cd src
Jconfigure

There will be some output displayed as the configure script checks the system. Then, compile the programs
perl compile.pl
To compile manually:

cc vlink.c —o vlink
cc tlink.c —o tlink

On manual compiles, ensure that the C compiler will be invoked properly with this little ditty:

perl —e 'do "syscfg"; system("$CC $LIBS $CFLAGS $DEFS -o tlink tlink.c");'
perl —e 'do "syscfg"; system("$CC $LIBS $CFLAGS $DEFS —o vlink vlink.c");'

On some systems, the executable can be made smaller with the strip program, if available. It is not required

strip vlink
strip tlink

If Interchange is to run under a different user account than the individual configuring the program, make that

user the owner of vlink. Do not make vlink owned by root, because making vlink SETUID root is an
huge and unnecessary security risk. It should also not normally run as the default Web user (often nobody ©

http)).

chown interchange vlink

Move the vlink executable to the cgi—bin directory:
mv vlink /the/cgi—bin/directory
Make vlink SETUID:
chmod u+s /the/cgi—bin/directory/vlink
Most systems unset the SUID bit when moving the file, so change it after moving.

The SCRIPT_NAME, as produced by the HTTP server, must match the name of the program. (As usual, let
the makecat program do the work.)

8.7. VLINK or TLINK Compile Problems

The latest version of vlink.c and tlink.c have been compiled on the following systems:

AlX 4.1
BSD2.0 (Pentium/x86)

8.6. Manually Compiling VLINK and TLINK 23

Interchange Documentation (Full)

Debian GNU/Linux

Digital Unix (OSF/Alpha)

FreeBSD 2.x, 3.X, 4.X

IRIX 5.3, IRIX 6.1

OpenBSD 2.7

Red Hat Linux 6.2, 7.0, 7.1

SCO OpenServer 5.x

Solaris 2.x (Sun compiler and GCC)
Solaris 7 (Sun compiler and GCC)
Sun0S 4.1.4

Some problems may occur. In general, ignore warnings about pointers.

Make sure that you have run the configure program in the src directory. If you use Interchange's makecat
program, it will try to compile an appropriate link at that time, and will substitute tlink.pl if that doesn't work.

You can compile manually with the proper settings with this series of commands:

cd src

Jconfigure

perl —e 'do "syscfg"; system ("$CC $CFLAGS $DEFS $LIBS -o tlink tlink.c")'
perl —e 'do "syscfg"; system ("$CC $CFLAGS $DEFS $LIBS —o vlink vlink.c")'

There is also a compile_link program which has documentation embedded and which will compile an
appropriate link. If you cannot compile, try using the tlink.pl script, written in Perl instead of C, which
should work on most any system. Since vlink needs to have values set before compilation, a pre-compiled
version will not work unless it has the exact values you need on your system. If you can use the defaults of
'localhost' and port 7786, you may be in luck.

8.6. Manually Compiling VLINK and TLINK 24

9. Installing Perl Modules without Root Access

Installing Interchange without root access is no problem. However, installing Perl modules without root
access is a little trickier.

You must build your makefile to work in your home dir. Something like:

PREFIX=~/usr/local \
INSTALLPRIVLIB=~/usr/local/lib/perl5 \
INSTALLSCRIPT=~/usr/local/bin \
INSTALLSITELIB=~/ustr/local/lib/perl5/site_perl \
INSTALLBIN=~/usr/local/bin \
INSTALLMAN1DIR=~/usr/local/lib/perl5/man \
INSTALLMAN3DIR=~/ustr/local/lib/perl5/man/man3

Put this in a file, say 'installopts', and use it for the Makefile.PL.
perl Makefile.PL “cat installopts’
Then, forget ./config. Just do:

make
make test
make install

Some of the tests may fail, but that's probably ok.

Also make sure to install Bundle::Interchange, which will need the same config data as you put into
'installopts'.

9. Installing Perl Modules without Root Access 25

10. Installation Troubleshooting

Interchange uses the services of other complex programs, such as Perl, Web servers, and relational databa
to work. Therefore, when there is a problem, check these programs before checking Interchange. Many mot
basic installation problems have to do with those than with Interchange itself.

If an error message is received about not being able to find libraries, or a core dump has occurred, or a
segment fault message, it is always an improperly built or configured Perl. Contact the system administrator
or install a new Perl.

The makecat program is intended to be used to create the starting point for the catalog. If the demo does nc
work the first time, keep trying. If it still does not work, try running in INET mode.

Check the two error log files: error.log in the Interchange home directory (where interchange.cfg resides)
and error.log in the catalog directory (where catalog.cfg resides; there can be many of these). Many
problems can be diagnosed quickly if these error logs are consulted.

Check the README file, the FAQ, and mail list archive at the official Interchange web site for information:

http://interchange.redhat.com/
Double check the following items:

1. Using UNIX sockets?
¢ Check that the vlink program is SUID, or the appropriate changes have been made in the
SocketPerms directive. Unless the files are world—writable, the vlink program and the
Interchange server must run as the same user ID! If running CGI-WRAP or SUEXEC, the
vlink program must not be SUID.
¢ If having trouble with the vlink program (named construct in the demo configuration), try
re—-running makecat and using INET mode instead. (Or copy the tlink INET mode link
program over vlink). This should work unchanged for many systems.
¢ If using an ISP or have a non-standard network configuration, some changes to
interchange.cfg are necessary. For tlink to work, the proper host name(s) must be
configured into the TcpHost directive in interchange.cfg. The program selects port 7786 by
default (the ASCII codes for "M" and "V", for MiniVend). If another port is used, it must be
set to the same number in both the tlink program (by running compile_link) and the
interchange.cfq file. The tlink program does not need to be SUID.
2. Proper file permissions?
¢ The Interchange server should not run as the user nobody! The program files can be owned
by anyone, but any databases, ASCII database source files, error logs, and the directory that
holds them must be writable by the proper user ID, that is the one that is executing the
Interchange program.
¢ The best way to operate in multi-user, multiple catalog setups is to create a special interch
user, then put that user in the group that contains each catalog user. If a group is defined for
each individual user, this provides the best security. All associated files can be in 660 or 770
mode. There should be no problems with permissions and no problems with security.
3. Is the vlink program being executed on a machine that has the socket file etc/socket on a
directly attached disk?
¢ UNIX-domain sockets will not work on NFS—mounted file systems! This means that the
Interchange server and the CGI program vlink must be executing on the same machine.

10. Installation Troubleshooting 26

Interchange Documentation (Full)

¢ The tlink program does not have this problem, but it must have the proper host name(s)
and TCP ports set in the TcpHost and TcpMap directives in interchange.cfg. Also, be

careful of security if sensitive information, like customer credit card numbers, is being placed
on a network wire.

Copyright 2001-2002 Red Hat, Inc. Freely redistributable under terms of the GNU General Public License.
line:

10. Installation Troubleshooting 27

Catalog—Building Tutorial

Catalog—Building Tutorial

28

11. Purpose

The purpose of this document is to guide you through constructing a simple Interchange catalog from scratc
The demo catalog that ships with Interchange is quite complex since it highlights some of the many
capabilities that Interchange offers. As a template for your own catalog, the demo can either be an
intimidating place to start.

The simple catalog you create using this tutorial should give you a feel for the basic Interchange system. It
should also be considered a stepping stone to a more complete and functional e-~commerce system built wi
Interchange. The tutorial relies as much as possible on default settings to accentuate how Interchange work
It will use as few of Interchange's capabilities as possible, while still building a usable store. The resulting sif
will be simple but usable. The value of this tutorial is in the instruction that occurs along the way.

It is recommended that you create the files used in this tutorial yourself. You will learn more by creating the

directory structure and using your favorite text editor to create files in the proper places on your own system
as they are discussed.

11. Purpose 29

12. Before you begin

This section explains the initial set up tasks that must be completed before you can begin building your simg
e—-commerce site.

12.1. Install Interchange and the demo catalog

The easiest way to get Interchange and the demo set up is through an RPM install on the Red Hat Linux or
Linux Mandrake operating systems. You can also get Interchange by unpacking an Interchange tarball or
checking out a copy of the CVS repository and doing a manual installation. These installations can be done
either as a regular user or as root, installing for a special Interchange user.

You must also know what type of installation you ran so you know where to place the various files created.
Before proceeding, verify that Interchange is properly installed. Also, keep in mind which type of installation
you did:

* RPM (Red Hat Package Manager) install
» Manual install as root
« Manual install as regular user

Note: After installation, makecat should be run to build your catalog. For information on installing
Interchange and building your catalog using makecat, see the Interchange Getting Started Guide. Do not to
continue with this tutorial without a working demo catalog.

Installing the demo catalog set up the Interchange global configuration file interchange.cfg, which
resides in the Interchange software directory. Also, it compiled the link program for your specific server and
placed the executable program in your cgi—bin directory. This is necessary for your catalog to run properly.

12.2. The Interchange operating system user

If Interchange was installed as a regular user, that will be the user Interchange runs as. If Interchange was
installed as root or from an RPM, you need to know the name of the separate Interchange user. The
Interchange daemon will not run as root, and should not run as the web server user (usually 'apache’, 'www’
'httpd’, or 'nobody"). If Interchange was installed from the RPM, or with the default source installation setting:
the username is interch. If you selected a different user name, you will need to know what it is.

12.3. Important directories

In order to complete this tutorial you will need to know the location of each of the following directories and
have write permissions on them:

* Interchange software directory .RPM install: /usr/lib/interchange .Manual install as root:
{/usr/locall/interchange .Manual install as regular user: /lhome/username/interchange

 Catalogs directory .RPM install: /var/lib/interchange .Manual install as root:
lusr/locall/interchange/catalogs .Manual install as regular user: /home/username/catalogs

« cgi—bin directory .RPM install or source install as root: /var/www/cgi—bin .Manual install as root
(locally installed web server): /usr/local/htdocs, /opt/www,Manual install as regular user:
/home/username/public_html (with .cgi extension)

12. Before you begin 30

Interchange Documentation (Full)

Note: The installation of Interchange is very flexible and the file locations on your system may vary,
depending on how your system was set up. It is recommended that you not proceed until you are sure you
have this information and the necessary permissions to write to these directories.

12.4. Your catalog URL

Finally, you need to know the URL to access your store from a web browser. Again, this can vary depending
on how your web server has been set up. But, assuming a common setup of the Apache web server, your U
should be one of the following:

* Root or RPM install: http://localhost/cgi—bin/tutorial/pagename
« Manual install as user:http://localhost/~username/tutorial.cgi/pagename

If you aren't running your web browser on the server where Interchange is running, you need to substitute
your server's host name (for example: machine.domain.com for localhost) where mentioned.

Note: It is recommended that you use the real machine name instead of localhost. The standard for cookies
specifies that they can only be set when a domain name has at least two dots in it. If you use localhost, you
will lose session information if you leave catalog, since the session ID is passed only as part of the URL.

12.5. Starting or restarting Interchange

When you make changes to the configuration files you need to restart the Interchange server. How this is dc
depends on how you installed Interchange:

* RPM install as root: /usr/sbin/interchange -r
« Manual install as Interchange user:/ustr/local/interchange/bin/interchange -r
* Manual install as root: su interch —c
'lusr/local/interchange/bin/interchange —r'
« Manual install as regular user:~/interchange/bin/interchange —r

Find the right command for your system and remember it, since you will need to restart Interchange a few
times during the tutorial.

12.6. Tutorial assumptions

Because it is impossible to cover all scenarios, this tutorial assumes that you installed Interchange on Red +
Linux from the RPM packages. This creates the following settings:

« Interchange software directory: /usr/lib/interchange

« Catalogs directory: /var/lib/interchange

« cgi—bin directory: /var/www/cgi—bin

« Interchange user: interch

« Demo catalog name: foundation

« Demo catalog URL base: http://localhost/cgi—bin/foundation
« Tutorial catalog name: tutorial

« Tutorial catalog URL base: http://localhost/cgi—bin/tutorial

12.4. Your catalog URL 31

Interchange Documentation (Full)

« Tutorial catalog directory: /var/lib/interchange/tutorial

If you did not install with these settings, substitute the correct values for your system when these settings ar
mentioned in the tutorial.

12.4. Your catalog URL 32

13. Building Your Catalog

This section describes the pages and directories that need to be established to create a properly functioning
catalog.

13.1. Create the link program

You need to make a copy of the demo link program in your cgi—bin directory and name it tutorial.

The demo link program has the same name as your demo catalog, usually foundation. The link program
links the Interchange daemon with your web server. Make sure that it has the same owner and file permissic
as the one you copied from. The set-UID bit is especially (unless you installed as a regular user). Normally
you will need to be root to have write permissions in the cgi—bin directory.

Type this command as root while in your cgi—bin directory:
cp —p foundation tutorial

If everything is working correctly, typing Is —I should describe your files roughly like this:

—rwsr—xr=x 1 interch interch 7708 Dec 16 22:47 foundation
—rwsr—xr=x 1 interch interch 7708 Dec 16 22:47 tutorial

13.2. Create the tutorial catalog directory

As root, create a subdirectory named tutorial under your catalogs directory (probably

Ivar/lib/interchange/). This is where all of the catalog—specific files will go. It needs to be readable,

writable, and executable by the Interchange user. This will be referred to as your catalog directory. Type the
following while in the catalogs directory to create the tutorial subdirectory:

mkdir tutorial
chown interch.interch tutorial
chmod 770 tutorial

13.3. Become the Interchange user

You should be able to do everything you need to do as the 'interch' user for the rest of this tutorial. So you ¢
switch to that user now (su — interch). If you installed Interchange from the RPM, the user interch

probably doesn't have a password. You'll have to set it with a command such as passwd interch while

root.

13.4. Go to the tutorial catalog directory

Change to the catalog directory with the 'cd' command. For the rest of this tutorial, all file locations will be
given relative to the tutorial catalog directory. For example, pages/ord/basket.html would actually be
Ivar/lib/interchange/tutorial/pages/ord/basket.html or the equivalent on your system.

The only exception is interchange.cfg, which is in the Interchange software directory.

13. Building Your Catalog 33

Interchange Documentation (Full)

Note: To improve clarity, we will append a trailing slash to directory names to clearly distinguish them from
file names. (Similar to the output of the Is command with the —F option.)

13.5. Create the session directory

You need to create the session directory where Interchange saves information on each visitor's browsing
session. If you do not have this directory, your catalog will not work. This directory is called session/ and
goes under your catalog directory. Type mkdir session to create this directory.

13.5. Create the session directory 34

14. Configuration files

Interchange configuration is controlled by a number of directives, which are specified in two files. Global
configuration directives go in interchange.cfg in the Interchange software directory. Catalog-specific
configuration directives go in catalog.cfg in the catalog directory.

A complete directive consists of the directive name followed by whitespace—separated parameters. Any
number of spaces or tabs can be between the directive and its options, but the directive and its options mus
on the same line. The directive is case-insensitive, but it is recommended that you use it consistently for
readability.

You can insert blank lines or comment lines (lines where the first non—blank character is '#') throughout the
configuration files to improve readability. The order the lines appear in is significant, but unimportant for the
simple catalog you are creating.

For the next part, access your text editor (for example, vi, emacs, pico, joe, gedit, or nedit) to start editing
some files.

14.1. interchange.cfg

The first directive we need to use is a global directive that tells Interchange where the new catalog is, called
Catalog. The Catalog directive has the following format:

Catalog name catalog_base_directory link_url_path

Open interchange.cfg in the Interchange software directory. Go near the top of the file, right below the
other Catalog directives, and add this line:

Catalog tutorial /var/lib/interchange/tutorial /cgi—bin/tutorial

Save the file.

14.2. catalog.cfg

For the rest of the tutorial, most of the files mentioned do not exist yet. You will create them yourself with
initial text we give.

You need to create a catalog.cfg file for your tutorial store (in the tutorial catalog directory). We'll start
with a very simple products database table with a few fields and a few products.

The Database directive describes a database table to the Interchange system in this format:

Database name filename format

Interchange has several database options available. We will use the simplest, which is the built—in default
(specifically, some variant of DBM). The default location for filename is in a subdirectory called products
under the catalog directory. Interchange recognizes a number of file formats. We will use a tab—delimited te;
file. Enter the following into catalog.cfg:

Database products products.txt TAB

14. Configuration files 35

Interchange Documentation (Full)

This tells Interchange that you have a database table named 'products' that is described in a tab—delimited f
named products.txt. You can describe an unlimited number of arbitrary database tables for the system to
use this way. Interchange keeps a list of default tables called "Product Files," reflecting its e-commerce root
You can specify all of the database tables that contain products by using the ProductFiles directive. There is
no default for this, so you will have to specify your products table's name by adding the following line to
catalog.cfg:

ProductFiles products

There are a few other directives that Interchange expects to see in order to complete the minimum
configuration. They are VendURL, SecureURL, and MailOrderTo. They are, respectively, your catalog's
base URL, its secure URL, and the e-mail address to mail order notices to. Add the following lines to
catalog.cfg to establish these directives:

VendURL http://localhost/cgi—bin/tutorial
SecureURL http://localhost/cgi—bin/tutorial
MailOrderTo your@email.address

The catalog.cfg file should look like this when you save it:

Database products products.txt TAB
ProductFiles products

VendURL http://localhost/cgi—bin/tutorial
SecureURL http://localhost/cgi—bin/tutorial
MailOrderTo your@email.address

14. Configuration files 36

15. The products database table

15.1. products/products.txt

Create the products/ directory in your tutorial catalog directory.

The products/products.txt file will serve two purposes. It will provide Interchange with the layout of

the products database table and it will also provide the data. When Interchange parses the products.txt file,

will expect the first line to contain the names of the fields for the database table (for example, sku, descriptic
price). The first field in the list is expected to be a primary key (unique identifier) for that row. In most cases

you are going to use the SKU (stock keeping unit) as the unique identifier for each product.

The product database is handled as a special case since Interchange expects at least the description, price
product ID (sku) fields. In other words, the products.txt file must at least contain fields named sku,
price, and description. You can have other fields too, if you wish.

The simple store that we are going to build will sell tests. You can choose another sample product line, but i
is recommended that you keep it simple. Create the file products/products.txt to look like this, with
a single tab separating each field:

sku description price

4595 Nice Bio Test 275.45

2623 Stack of Econ Quizzes 1.24

0198 Really Hard Physics Test 1589.34
1299 Ubiquitous diff eq final 37.00

Note: When using tab—delimited files as we are, make sure you have exactly one tab between each field.
Some text editors will use spaces to simulate tabs. Interchange expects actual ASCII tab characters; extra
spaces or other characters will corrupt your data.

You may notice that the columns don't line up in your text editor. This is the nature of tab—delimited files. Do
not try to fix these.

15. The products database table 37

16. Page templates

Since most sites have certain aspects of the site that remain the same as the content of the pages changes
are going to create a template that we can use for all pages. We'll divide the page into four sections:

I
I
I
I
I
I
|left] main |
I
I
I
I
I
I

The "main" section holds the content that is different for each page. The "top" section is for headers, banner
menus, and so on. The "left" section can be used as a sidebar or navigation bar, and the "bottom" section c:
contain the copyright and contact info. The top, left, and bottom sections will remain constant throughout the
site. Making a change to information in one of these sections will make that change to all pages in your site.

Now type the HTML for each template section in an individual plain text file in the catalog directory, named
'top', 'left', and 'bottom’, respectively using the code displayed below. No ".html' suffixes are used on these
because they are not meant to be parsed directly by Interchange as full pages.

16.1. top

<html>

<head>

<title>The Interchange Test Catalog</title>

</head>

<body>

<div align=center>

<table width="80%" border cellpadding=15>

<tr><td colspan=2 align=center><h1>The Interchange Test Catalog</h1></td></tr>

16.2. left

<tr>
<td align=center>(left)</td>
<td align=center>

16.3. bottom

</td>

</tr>

<tr><td colspan=2 align=center>(bottom)</td></tr>
</table>

</div>

</body>

16. Page templates 38

Interchange Documentation (Full)

</html>

16.4. The Interchange Tag Language

Now we need a way to pull the template pieces we just created into the proper places to make a complete
page. This is done using ITL, the Interchange Tag Language.

ITL is at the heart of almost all Interchange catalog pages. It's how you use Interchange's functionality. The
ITL tags appear between square brackets like [this]. Options appear after the tag, separated by whitespace,
like this: [tag option1 option2] and this: [tag optionl=valuel option2=value2]. They can span multiple lines.
(That can help readability when the tag has many options.) There are many ITL tags, and for this tutorial ver
few will be addressed. For a complete listing of the ITL tags, see the Interchange Tag Reference Guide.

Your first tag will be [include], which reads the file mentioned (relative to the catalog directory), parses any

Interchange tags, and puts the result in place of the tag. This is demonstrated on the next page you need to
create.

16.4. The Interchange Tag Language 39

17. Creating a welcome page

17.1. pages/index.html

Create a directory called pages/ in your tutorial catalog directory.

Type the following text and save it as pages/index.html. This will create a page to test that everything
works so far.

[include top]

[include left]

This is where your content goes.
[include bottom]

Restart Interchange so your changes take effect. Go to your web browser and load the page. The URL shol
be similar to the following: http://localhost/cgi—bin/tutorial/index.html.

Note: Interchange pages in the pages/ or other directories must have the .html suffix on them. You can
drop the suffix in your URL and in other places, such as the [page] tag you'll learn about later, but the file
name on disk must have the suffix.

17. Creating a welcome page 40

18. Troubleshooting

Your first Interchange page should have displayed as described in your browser. If it didn't, you need to figu
out what went wrong. Most of the time, overlooked details are the problem. Double—checking your typing is
good habit to get into.

The following is a troubleshooting checklist to use when you run into problems:

1.

2.

7.

8.

Have you created directories with the proper names in the proper locations? (See Appendix A for a
full directory and file structure of the tutorial catalog.)

Have you misspelled any file names or put them in the wrong directories? Are the files and parent
directories readable by the interch user? Double—check with the Is command.

. Did you type letters in the proper case? Remember that both Unix and Interchange are case-sensiti

and for the most part you may not switch upper- and lower—case letters.

. Did you type all punctuation, ITL tags, and HTML tags correctly?
. Did you use whitespace correctly in the cases where it mattered? Remember to use tabs when tabs

called for (in lists and database text files).

. Did you restart Interchange if you changed anything in interchange.cfg or catalog.cfg, or

if you're in a high—traffic mode?

Check your catalog error log, error.log in your tutorial catalog directory, to see if Interchange
reported any errors.

Check the Interchange server error log, error.log in the Interchange software directory, to see if it
had problems loading the catalog at all.

9. View the HTML source of any catalog pages that are loading incorrectly to check for a coding error.

The problem may reveal itself when you see what HTML the browser is getting.

18. Troubleshooting 41

19. Displaying products
19.1. Listing all products

Now that your store is running, you need to display your products on the welcome page. We will loop over a
of the products in our database and produce an entry for each one in a table. Replace the line "This is wher
your content goes" in pages/index.html with the following:

<table cellpadding=5>
<tr>

<th>Test #</th>
<th>Description</th>
<th>Price</th>

</tr>

</table>

Now we will use Interchange tags to fill in the rest of the table from the products database you created. The
[loop] [/loop] ITL tag pair tells Interchange to iterate over each item in the parameter list. In this case, the loc
is over the result of an Interchange search. The search parameter does a database search on the provided
parameters. In this case, we're doing a very simple search that returns all of the fields for all of the entries in
the products database. The parameters passed to the search tell Interchange to return all ('ra") on the file ('fi
products respectively. The following should take the place of the ellipsis in the code you placed in
index.html:

[loop search="ra=yes/fi=products"]

[/loop]

In the loop we just established, the individual elements of the entry using the [loop—field] tag. The following
code should replace the above ellipsis in the code we placed in pages/index.html:

<tr>

<td>[loop—code]</td>

<td>[loop—field description]</td>

<td align=right>[loop—field price]</td>
</tr>

The [loop—code] tag refers to the primary key (unique identifier) for the current row of the database table in
guestion. In this case, it will produce the same output as the [loop—field sku] tag, because the 'sku’ field is th
primary key for products table. In each case the tag is replaced by the appropriate element. When put togett
Interchange generates a page with your products table on it.

Your finished page should look like this:

[include top]

[include left]

<table cellpadding=5>
<tr>

<th>Test #</th>

19. Displaying products 42

Interchange Documentation (Full)

<th>Description</th>
<th>Price</th>

</tr>

[loop search="ra=yes/fi=products"]
<tr>

<td>[loop—code]</td>
<td>[loop—field description]</td>
<td align=right>[loop—field price]</td>
</tr>

[/loop]

</table>

[include bottom]

Test this page by refreshing the index.html page in your browser.

19.2. pages/flypage.html

The next step is to create an individual page for each item. To do this, you need to create a special generic
page called pages/flypage.html. When a page is requested that does not exist in the pages/ directory,
Interchange will check and see if the requested page has the same name as a product ID from the product
database table (in this case a SKU). If it does, it will show the flypage for that product. If there's no product
with that ID, the special error page special_pages/missing.html (described in the next section) will

be displayed.

For example, if the page 0198.html was requested, Interchange first checks for a page with that name. If
one is not found, it searches the products database table for a product with that ID. Interchange then create:
product page "on the fly" using pages/flypage.html. When constructing the flypage, the entire product
record for the requested product is available through the [item—field] tag (similar to the [loop—field] tag). To
create a fly page, type the following code and save it as pages/flypage.html.

[include top]
[include left]

<h3>Test #[item—code]</h3>
<p>[item—field description] . . . [item—field price]</p>

[include bottom]

Then, to provide links to the product flypages from your home page, modify pages/index.html slightly,
so that:

<td>[loop—field description]</td>
becomes:

<td>[loop—field description]</td>

19.3. special_pages/missing.html

Create the special_pages/ directory in your tutorial catalog directory (not in the pages/ directory).

As mentioned, it is a good idea to display an error page when Interchange is asked for an unknown page. T
create a missing page for display, type the following and save it as special_pages/missing.html.

19.2. pages/flypage.html 43

Interchange Documentation (Full)

[include top]
[include left]
<p>We're sorry, the page you requested has not been found.</p>

<p>Try finding what you need on the [page index]welcome page.</p>
[include bottom]

The addition of this page ensures that users see your error message instead of a mysterious server error if 1
mistype a URL.

19.2. pages/flypage.html 44

20. The shopping basket
20.1. A link for ordering

Now that you have your products available, let's add a shopping cart so customers can purchase them. This
created using the [order] [/order] tags. These tags create an HTML link that causes the specified item to be
ordered and transfers the shopper to the basket page. This is a built-in shortcut to the complete order proce
which uses an HTML form submission process. The parameter for the [order] tag is the product ID. To add
these tags to the catalog, make the following change to pages/index.htmil:

<tr>
<td>[loop—code]</td>
<td>[loop—field description]</td>
<td align=right>[loop—field price]</td>
+ <td>[order [loop-code]]Order Now][/order]</td>
</tr>
[/loop]

Note: The line you need to add is marked by a '+'. However, do not include the '+ when adding this line. The
surrounding lines are shown to give you context. This style is called a "context diff" and is used often in this
tutorial.

20.2. pages/ord/basket.html

Create the directory pages/ord/ in the tutorial catalog directory. In other words, ord/ should be inside
the pages/ directory.

For the [order] tag, Interchange expects a default page called pages/ord/basket.html. This page
displays the contents of the shopping basket and contains other shopping basket functionality.

The Foundation store has a full-featured shopping basket available for use, but this tutorial teaches you to
build your own simple one. The shopping basket items can be accessed using a set of tags that have an [ite
prefix. Put the following code in the new file pages/ord/basket.html. The section that follows

explains the tags used.

[include top]
[include left]

<h2>This is your shopping cart!</h2>
<table cellpadding=5>

<tr>
<th>Qty.</th>
<th>Description</th>
<th>Cost</th>
<th>Subtotal</th>
</tr>

[item—list]

<tr>

<td align=right>[item—quantity]</td>
<td>[item—field description]</td>

20. The shopping basket 45

Interchange Documentation (Full)

<td align=right>[item-price]</td>
<td align=right>[item-subtotal]</td>
</tr>

[/item~—list]

<tr><td colspan=4></td></tr>

<tr>

<td colspan=3 align=right>Total:</td>
<td align=right>[subtotal]</td>

</tr>

</table>

<hr>

<p>

[page checkout]Purchase now

[page index]Return to shopping
</p>

[include bottom]

The basket items can be accessed one at a time by using the [item-list] tag. So we will create a table by
iterating through the basket items. The text within the [item-list] [/item-list] tags is created for each item in

the list.

« [item—quantity] shows the quantity of the item ordered. If the same item is ordered multiple times, the

guantity increases.

« [item—field description] shows the description from the product database table. Any field that is not

special to Interchange can be accessed from the shopping cart this way.
« [item—price] shows the per—item price that is defined in the product database table.

« [item—subtotal] shows the total cost of this order line. This is normally the price multiplied by the
guantity, but it can also take into account other considerations, such as various kinds of price

discounts.
« [subtotal] shows the calculated shopping basket subtotal.

* [page index] creates the starting HTML for a link to the catalog welcome page.

You also need to put a link in the index page so that shoppers can go to their shopping cart without ordering

something. Modify the end of pages/index.html by adding the following lines.

</table>

+ <hr>

+ <p align=center>[page order]View shopping cart</p>
[include bottom]

Refresh the page and test the shopping basket in your browser.

20. The shopping basket

46

21. Order checkout
21.1. pages/checkout.html

The site can now be completed by adding the ability to check out with the shopping cart and finalize the ord
To do this the customer needs to provide a shipping address (which, for the sake of this tutorial, we will
assume is the same as the billing address), and payment information. We will process the order by verifying
the customer's payment information and sending an email to the merchant (ourselves) detailing the order.

First you need to create a checkout page. The checkout page consists of a form that receives order informa
from the customer and performs a simple credit card number check. In this tutorial we will use a built-in test

that only checks to see if a given credit card number could be valid. If the information is acceptable the
customer will move to the next phase of the order process. If it is not, an error page will be displayed.

To create a checkout page, type the following code and save it as pages/checkout.html. The section

that follows explains the code.

[include top]
[include left]
<h1>Checkout Page</h1>

<form method=post action="[process]">

<input type=hidden name=mv_todo value=submit>

<input type=hidden name=mv_order_profile value=order_profile>
<input type=hidden name=mv_cyber_mode value=minivend_test>

<table cellpadding=3>

<tr>
<td align=right>First name:</td>

<td><input type=text name=fname value="[value fname]"></td>
</tr>

<tr>
<td align=right>Last name:</td>

<td><input type=text name=Iname value="[value Iname]"></td>
</tr>

<tr>
<td align=right rowspan=2>Address:</td>

<td><input type=text name=address1 value="[value address1]"></td>
</tr>

<tr>
<td><input type=text name=address2 value="[value address2]"></td>
</tr>

<tr>
<td align=right>City:</td>

<td><input type=text name=city value="[value city]"></td>
</tr>

<tr>
<td align=right>State:</td>

<td><input type=text name=state value="[value state]"></td>
</tr>

21. Order checkout

47

Interchange Documentation (Full)

<tr>

<td align=right>Postal code:</td>

<td><input type=text name=zip value="[value zip]"></td>
</tr>

<tr>
<td align=right>Country:</td>

<td><input type=text name=country value="[value country]"></td>
</tr>

</table>

<p>
Note: We assume that your billing address is the same as your shipping address.
</p>

<table cellpadding=3>

<tr>
<td align=right>Credit card number:</td>

<td><input type=text name=mv_credit_card_number value="" size=20></td>
<ftr>

<tr>

<td align=right>Credit card expiration date:</td>
<td>

Month (number from 1-12):

<input type=text name=mv_credit_card_exp_month value=

Year (last two digits only):

<input type=text name=mv_credit_card_exp_year value=
</td>

<ftr>

size=2 maxlength=2>

size=2 maxlength=2>

</table>

<p>
<input type=submit name=submit value="Finalize!">
<input type=reset name=reset value="Reset">

</p>

</form>

<p>[page index]Return to shopping instead</p>
[include bottom]

The HTML form begins with a method of 'post' (which sends the form data as its own stream, as opposed to
the 'get' method which encodes the data as part of the URL). The [process] tag creates a special URL for fo
processing. Interchange has a built—in form processor that is configured by submitting certain fields in the
form. The Finalize button will invoke this form processor and link the user to the

special_pages/receipt.html page, which is described later.

You are submitting some hidden form values that will tell Interchange how to process this form. The first
value, mv_todo was set as submit. This causes the form to be submitted for validation. The second value,
mv_order_profile was set as order_profile. This determines the validation process for the form. It is explaine
further in the next section.

The last value, mv_cyber_mode, was set to be minivend_test. The mv_cyber_mode value determines what
method will be used to charge a credit card. The value of minivend_test uses the internal test method, whict

21. Order checkout 48

Interchange Documentation (Full)

calculates a simple checksum against the card to determine if it is a valid number.

When preparing an order for processing, Interchange looks for certain named fields in the form values for
name, address, and credit card information. We are using all expected field names in this form so that no
translation needs to take place.

View the checkout page in your browser. The "Finalize!" link has not been enabled, but the page should
display properly.

21.2. etc/profiles.order

Create the etc/ directory in the tutorial catalog directory now.

You need to set up verification for the order form by defining an order profile for the form. An order profile
determines what fields are necessary for the form to be accepted. Create an order profile verification page
typing the following and saving it as etc/profiles.order. The section that follows explains the code

used.

__NAME__ order_profile

fname=required
Iname=required
addressl=required
city=required
state=required
zip=required

&fatal=yes
&final=yes

__END__
A single file can contain multiple profile definitions. First the profile is named using the _ NAME__ pragma.
(This is unrelated to the _ VARIABLE __ syntax seen elsewhere in Interchange.) Then in the profile there is
list of the form fields that are required. The &fatal setting indicates that validation will fail if any of the
requirements are not met. &final indicates that this form will complete the ordering process. This setting is
helpful if you have a multi-page ordering process and you want to validate each page individually. The
__END__ pragma signals the end of this profile, after which you can begin another one.

In order to activate your order profile, add the following OrderProfile directive to the end of catalog.cfg:

OrderProfile etc/profiles.order

21.3. special_pages/needfield.html

If the submitted form lacks a required field, Interchange will display an error page. The default location is
special_pages/needfield.html. To create this page, type the following text and save it as
special_pages/needfield.html.

[include top]
[include left]
<p>The following information was not given:</p>

21.2. etc/profiles.order 49

Interchange Documentation (Full)

<p>[error all=1 show_var=1 show_error=1 joiner='
"1</p>

<p>Please go back to the [page checkout]checkout page
and fill out the form properly.</p>

[include bottom]

The [error] tag is the most important tag on this page. The all parameter tells the tag to iterate through all of
the errors reported from the failed verification, and the show_var parameter indicates that the failed variable
name should be displayed. For example, if the first name was left empty, fname would be shown. The
show_error parameter displays the actual error for the variable. The joiner parameter inserts an HTML

tag between each error message, so each error is displayed on its own line. In more complex configurations
the [error] tag can be even more expressive.

21.4. Credit card processing

This tutorial uses a very simple order process. To accomplish this, one more directive needs to be added to
file etc/profiles.order:

&fatal=yes
&final=yes
+ &credit_card=standard keep

END

This issues two instructions to the credit card system.

The first option, standard, uses the standard built—in encryption algorithm to encrypt the credit card number
and erases the unencrypted copy from memory. We are using the standard option not to encrypt the numbe
but to run the checksum verification on the number to verify that it is a potentially correct number. We will
not be checking with a real payment processor to see if it actually is a valid card number. For testing purpos
you can use the card number 4111 1111 1111 1111, which will pass the checksum test.

The second option, keep, keeps the credit card number from getting removed from memory. We want to kee
the number in memory so that it is available when it is mailed as part of the order.

If the credit card number passes and all of the required fields are present, the customer will be sent to the fit
page. Interchange then sends an e-mail to the store owner (you).

21.5. etc/report

When the customer's involvement in the order is complete, Interchange composes an email and sends it to
recipient defined in the MailOrderTo directive in catalog.cfg. The default location for the template for
this email report is etc/report. Interchange tags can be used to fill in the body of the message.

The report should include at least the customer's name, address, and the items they ordered. The following
simple report template; save it as etc/report.

Name: [value fname] [value Iname]
Address: [value address1][if value address2]
[value address2][/if]
City, State, etc.: [value city], [value state] [value zip] [value country]

21.4. Credit card processing 50

Interchange Documentation (Full)

Credit Card #: [cgi mv_credit_card_number]
Expiration Date: [cgi mv_credit_card_exp_month]/[cgi mv_credit_card_exp_year]

*kkkkkkkkkkk ORDER *kkkkkkkkkkk
[item—list]
[item—quantity] x [item—description] ([item—code]), [item—price] ea.
[/item~—list]
Subtotal: [subtotal]
Total: [total-cost]

This file is in plain text format where, unlike HTML, white space is relevant. It is fairly straightforward,
except that the [if] tag was added to only include the optional second address line if the customer filled it in.

One of the special properties of the mv_credit_card_number field is that Interchange specifically precludes
the credit card number from being saved. This makes it unavailable to you in the [value] tag. The [cgi] tag is
used to circumvent this important security measure in order to get the value submitted from the last form.

WARNING! Obviously it is a bad idea to send a real credit card number over an insecure channel like email.
In a real configuration, you would encrypt the number securely before emailing or storing it.

21.6. special_pages/receipt.html

Once the report has been run, Interchange will finish the order process on the customer side by displaying &
success screen containing a receipt. The default location for this page is

special_pages/receipt.html. To create a receipt page, type the following code and save it as
special_pages/receipt.html.

[include top]

[include left]

<p>Thank you for ordering stuff from us.
Have a nice day!</p>
<p>[page index]Return to our welcome page</p>

[include bottom]

Once the order is processed, the customer's shopping cart is emptied.

At this point you have a more-or-less functional store. Congratulations.

21.6. special_pages/receipt.html 51

22. Enhancing the catalog

Now that you have a working catalog, you can go back and add improvements and test them incrementally.
This section walks you through several and then suggests more enhancements you can attempt on your ow

22.1. Price pictures

You may have noticed that the product prices aren't formatted as prices usually are. The way to correct this
with an Interchange feature called price pictures.

There are several properties to price pictures: the currency symbol, the thousands separator, the decimal pc
the number of digits to show behind the decimal, and so on. Most Unix systems have U.S. currency and the
English language as the default locale, which is called en_US. The only thing you need to do on such a
system is specify the currency symbol, which, in this case, is the dollar sign. To do this, add the following lin
to your catalog.cfg file:

Locale en_US currency_symbol $

Restart Interchange and view your catalog. You will notice little has changed on the welcome page or the
flypages, but in the shopping cart all your prices should be formatted as U.S. dollars ("1347.3" has become
"$1,347.30"). This is because Interchange automatically formats shopping cart prices as currency. To turn o
this feature, you would have to change the [item—price] tag to [item—price noformat] in
pages/ord/basket.html.

But that's probably not what you want to do. You're probably more interested in formatting your other prices
as currency. To do that, simply use the [currency] [/currency] tag pair for all price values. Make the following
change to pages/index.htmil:

[loop search="ra=yes/fi=products"]
<tr>
<td>[loop—code]</td>
<td>[loop—field description]</td>
- <td align=right>[loop—field price]</td>
+ <td align=right>[currency][loop—field price][/currency]</td>
</tr>
[/loop]

Note: The line that begins with '=' should be deleted. Do not type the '-'. The next line, that starts with '+,
replaces it.

A similar change to the [item—field price] tag in the pages/flypage.html page will fix that
currency display. View the page in your browser. All your prices should be formatted for U.S. currency.

If your prices are not being formatted correctly, your default system locale may be set up differently or your
en_US locale settings may be wrong. There are a few other catalog.cfg directives you can use to correct
the situation:

Locale en_US p_cs_precedes 1

Makes the currency symbol precede the currency value. A '0' setting makes the symbol come after the
currency value.

22. Enhancing the catalog 52

Interchange Documentation (Full)

Locale en_US mon_thousands_sep ,
Sets your thousands separator to a comma. It can be set to any value.
Locale en_US mon_decimal_point .

Sets your decimal separator to a comma. Many countries use a comma instead of a period to separate the
integer from the decimal part.

Note: Consult the Interchange documentation and your operating system manual for more information on
locale settings.

22.2. Catalog variables

Interchange provides a very useful feature that has not been discussed yet called catalog variables. It provic
a way for you to set a variable to a certain value in the catalog.cfg file and use it anywhere in your

catalog pages. The Variable directive allows an Interchange catalog variable to be created with the name
coming from the first parameter and the value from the rest of the line, like this:

Variable SOMENAME whatever value you want

To access that variable in your pages, type the token _ SOMENAME___. Notice that there are two undersco
characters before the variable name and two after it, and that in place of the word SOMENAME you would
put the actual name of the variable. The first thing Interchange does on a page is to replace the token with tl
variable's value. The value can also include Interchange tags to be parsed.

22.3. A more interesting page footer

You can put a contact email address at the bottom of each page in case your customers want to contact yot
You could just add it to the footer, but by putting it into a variable you can use it in contact pages as well. Th
allows you to easily change the variable information and have that change reflected in all instances of that
variable. The following is an example of how to set a catalog variable in catalog.cfg:

Variable CONTACT_EMAIL someone@your.domain

Now make the following change to your template file bottom:

</td>

</tr>
— <tr colspan=2><td>(bottom)</td></tr>
+ <tr colspan=2><td>Contact us
+ if you have any questions.</td></tr>

</table>

</div>

</body>

</html>

Be sure to restart Interchange before reloading the page in your browser, since you made a change to
catalog.cfg.

Let's add another variable to your catalog. This variable demonstrates how an Interchange tag can be incluc
in the variable. This Interchange tag returns the current date in a standard format. Add the following to

22.2. Catalog variables 53

Interchange Documentation (Full)

catalog.cfg:

Variable DISPLAYDATE [time]%A, %B %d, %Y[/time]

Note: See the Interchange Tag Reference Guide for an explanation of the [time] tag.

Now add the following to the left template piece:

<tr>

- <td align=center>(left)</td>

+ <td align=center>__DISPLAYDATE__ </td>
<td align=center>

Restart Interchange and view the page.

22.4. Advanced credit card expiration date selection

To reduce the possibility of human error at checkout time, most online stores use a pull-down option menu-
list the months and the years for the credit card expiration date, instead of having the user to type the numb
by hand. It also lets you avoid explaining whether the user should enter a 2— or 4-digit year.

Make the following change to your pages/checkout.html page. The section that follows explains the
code. Read the explanation section below before typing the code to be sure you know where tabs should be
used instead of spaces and where to watch out for “backticks’.

<tr>
<td align=right>Credit card expiration date:</td>
<td>
- Month (humber from 1-12):
- <input type=text name=mv_credit_card_exp_month value="" size=2 maxlength=2>
-

- Year (last two digits only):
- <input type=text name=mv_credit_card_exp_year value="" size=2 maxlength=2>
+
+ Month:
+ <select name=mv_credit_card_exp_month>
+ [loop
+ Ir=1
+ option=mv_credit_card_exp_month
+ list="
+1 01 -January
+2 02 - February
+3 03 - March

+4 04 - April
+5 05-May
+6 06— June
+7 07 -Jduly

+8 08 - August

+9 09 - September

+10 10 - October

+11 11 - November

+12 12 - December"]

+ <option value="[loop—code]">[loop—pos 1]
+ [/loop]

+ </select>

+

+ Year:

22.4. Advanced credit card expiration date selection 54

Interchange Documentation (Full)

+ <select name=mv_credit_card_exp_year>

+ [comment]

+ This should always return the current year as the first, then

+ seven more years.

+ [fcomment]

+ [loop option=mv_credit_card_exp_year Ir=1 list="
my $year = $Tag—>time(", { format =>'%Y"'}, '%Y");
my $out = ";
for ($year .. $year + 7) {

Nd\d(\d\d)/;

$last_two = $1;

$out .= "$last_twolt$_\n";
}
return $out;

1

+ <option value="[loop—code]">[loop-pos 1]

+ [/loop]

+ </select>

+
</td>
</tr>

+ + + + + + o+

+

</table>

In the first set of <select> </select> tags a list is generated of the months to choose from. This is accomplist
by using a [loop] tag. In this case we are looping over an explicit list. The list is provided in the list paramete
Use caution when typing this, as it is sensitive to formatting (which may not be reflected in this document).
Make sure that the numbers are the first characters on each new line and that the elements are separated &
single tab. Since the columns in this list are not named, the first element can be accessed using [loop—code
[loop—pos 0] with subsequent elements being accessed by [loop—pos N] where N is the number of the elems
you want. Notice that the elements are zero—indexed. Each time through this loop Interchange generates a
select <option> with a humber as the value and the name of the month as the text for the select menu.

For the next set of <select> </select> tags embedded Perl is used to generate the list which is iterated over.
Perl code can be embedded in Interchange pages in order to extend the abilities of the system. Make sure
typed backticks (grave accents) after "list=" and before the closing bracket and not apostrophes. This code
generates an entry for seven years in addition to the current year. It is not necessary at this point for you to
understand this Perl code.

22.5. Sorting the product list

The products listed on your welcome page are shown in the same order that you entered them into
products/products.txt. As you add more products, you will want this list to show up in a predictable
order. To do this, you need to change the search parameters in index.html, which were originally:

[loop search="ra=yes/fi=products"]

You will recall that 'ra’ stands for 'return all' and 'fi' stands for file. Let's add the search parameter 'tf', which
specifies the sort field. You can specify the field either by name or by number (starting with 0), with names
and order as given in the first line of products/products.txt). Make the following change in

index.html:

[loop search="ra=yes/fi=products/tf=price"]

22.5. Sorting the product list 55

Interchange Documentation (Full)

Refresh your browser. The default ordering is done on a character—by—character basis, but we were looking
do a numeric sort. For this you need to set 'to', the sort order, to 'n’, for numeric:

[loop search="ra=yes/fi=products/tf=price/to=n"]

Refresh your browser. Now try reversing the sort order by adding 'r' to the 'to' setting:

[loop search="ra=yes/fi=products/tf=2/to=nr"]

You'll notice that it worked equally well to specify the sort field by number instead of name. You could also
do a reverse alphabetical sort by description:

[loop search="ra=yes/fi=products/tf=1/to=r"]

Now let's try narrowing the search down a bit. Instead of returning all, we'll give 'se’, the search parameter,
and and use 'su’, which allows substring matches. To search only for products that have the word "test" in o
of their fields, and sort the results by description, type:

[loop search="se=test/su=yes/fi=products/tf=description"]
Which seems like something that would be better done in a search box for your store visitors.

Before moving on, change this search back to the simple list, sorted by description:

[loop search="ra=yes/fi=products/tf=description"]

22.6. Adding a search box

Your customers might appreciate the ability to search for a test by SKU or part of the test description. To do
this, you need to add a search box to the left portion of the page layout. Make the following change to the fil
left:

<tr>
- <td align=center>__ DISPLAYDATE__ </td>
+ <td align=center>
+ <form action="[area search]" method=post>
+ Search:

+ [set testhame]su=yes/fi=products/sf=sku/sf=description[/set]
+ <input type=hidden name=mv_profile value=testname>
+ <input type=text name=mv_searchspec size=15 value="">
+ </form>
+ <hr>
+ __ DISPLAYDATE___
+ </td>
<td align=center>

This is a simple HTML form with a single input box for text. The action goes to a special Interchange
processor called 'search' that will perform the search and pass the results to a page called
pages/results.html (that has not been created yet).

The [set testhname] ... [/set] tags set an Interchange 'value' variable that, in this case, will be used as a

predefined search profile. We specify all the search parameters except the one the user will enter,
'mv_searchspec' (the long name for 'se'). We then tell Interchange we want to use this search profile in a

22.6. Adding a search box 56

Interchange Documentation (Full)

hidden form tag named 'mv_profile'.

The search box will now appear on all catalog pages, but you still need to create the search results page. T
create the search results page, type the following code and save it as pages/results.html.

[include top]
[include left]
<h3>Search Results</h3>
[search-region]
[on—-match]
<table cellpadding=5>
<tr>
<th>Test #</th>
<th>Description</th>
<th>Price</th>
</tr>
[fon—-match]
[search-list]
<tr>
<td>[item—-code]</td>
<td>[item—field description]</td>
<td align=right>[item—field price]</td>
<td>[order [item—code]]order now[/order]</td>
</tr>
[/search-list]
[on—-match]
</table>
[fon—-match]
[no—match]
<p>Sorry, no matches were found for '[cgi mv_searchspec]'.</p>
[/no—match]
[/search-region]
<hr>
<p align=center>[page index]Return to welcome page</p>
<p align=center>[page order]View shopping cart</p>
[include bottom]

The search results will be contained in the [search-region] [/search-region] tags. The text in the [on—match]
[fon—-match] container will be displayed only if matches were found for the search. The text in the [no—match

[f[no—match] container will be displayed only if no matches were found. The [search-list] [/search-list]
container functions just like [loop] [/loop], iterating over its contents for each item in the search results list.

22.7. The default catalog page

As you know, a standard Interchange catalog page URL looks like this:
http://localhost/cgi—bin/tutorial/index.html

But what happens if you leave off the page name, as people often do when typing URLs in by hand? Type:
http://localhost/cgi—bin/tutorial

and you get a server error message. We can change this by adding the following directive to catalog.cfg:

SpecialPage catalog index

22.7. The default catalog page 57

Interchange Documentation (Full)

Restart Interchange and try the above URL again.

Note: If you want to make the welcome page something other than pages/index.html, modify the
'index’ part of the directive appropriately.

22.8. High—-traffic changes

Through this tutorial you have created catalog pages that use the [include] tag to include template pieces in
pages. This has worked well, but there are a few drawbacks. First, if you want to rename any of the templatt
piece files or move them out of the main catalog directory and into their own subdirectory, you would have tc
update the [include] tag on every page. To avoid this, you can create catalog variables set to the [include] ta
Add these lines to your catalog.cfg file:

Variable TOP [include top]
Variable LEFT [include left]
Variable BOTTOM [include bottom]

Now change every instance of [include top] to _ TOP__, doing the same for each [include] tag. At this point
you might not want to do a search—and-replace on all the .html files you just created, but keep this capabilit
in mind for the next catalog you work on.

If you made all of the replacements and then renamed and moved your top file, you would only have to mak
a single change for each region in catalog.cfg to get your pages up to date:

Variable TOP [include templates/main—top]

And so on, depending on your naming scheme.

22.9. High traffic mode

Every time a catalog page is viewed, each file in an [include] tag must be loaded from disk. In a test situatiol
this takes no noticeable amount of time. But on a busy Interchange server, this can slow your system.

You can switch to a high—traffic mode that doesn't require each template piece to be read from disk every tir
the page is loaded. Instead, all of the pieces are read into variables once when Interchange is started and tt
remain in memory until Interchange is restarted. On very busy Interchange catalogs, this can increase your
speed noticeably. The only drawback is that you need to restart the Interchange daemon when you make
changes to the template pieces in order to have the changes take effect. You can set up high—traffic templa
by changing the Variable directives in catalog.cfg as follows:

Variable TOP <top
Variable LEFT <left
Variable BOTTOM <bottom

22.8. High—traffic changes 58

23. ldeas for further enhancements

You can expand your skill with Interchange by adding more functionality to your test catalog. Here are some
simple ideas to get you started:

» Send the customer a receipt by email

« Allow customer to specify item quantities

» Generate a unique order number for each order

* Store each order in a database

« Interface with GnuPG or PGP to encrypt credit card numbers in email reports
« Organize your products into categories and group lists by category

23. ldeas for further enhancements 59

A. Catalog directory structure

This diagram shows the directory and file structure used for the 'tutorial' catalog you built. The base will be &
directory with the name of your catalog:

tutorial/

I

|-———bottom

|-—--catalog.cfg

|-———error.log *

|-———etc/
|-———profiles.order
|-——-report

|[-——-left

|-——-pages/
|-——-checkout.html
|-———flypage.html
|-——=index.html
|-——-ord/

|-———Dbasket.html

|-——-results.html

|-———products/
|-——-products.gdbm *
|-———products.txt

|-——-session/
|-———(many subdirectories and files) *

|-——-special_pages/
|-———missing.html
|-———needfield.html
|-——-receipt.html

|-———tmp/ *

|-———top

* denotes files that are automatically created by Interchange at run time. The name of products.gdbm may
vary on your system depending on your Perl setup and default system DBM libraries.

A. Catalog directory structure 60

B. Document history

October 2000. Conceived and written by Sonny Cook.

December 2000. Edited and expanded by Jon Jensen.

January 2001. Proofread and clarified by Alison Smith and David Adams.
12 January 2001. First public release.

12 April 2002. Remove mention of obsolete Red Hat Linux 6—specific RPMs.

Copyright 2001-2002 Red Hat, Inc. Freely redistributable under terms of the GNU General Public License.
line:

B. Document history 61

Configuration Reference

Configuration Reference

62

24. Interchange Configuration Files

This is an alphabetical reference to the configuration directives used in Interchange global and catalog
configuration files.

Interchange has multiple catalog capability, and therefore splits its configuration into two pieces. One is

global, interchange.cfg, and affects every catalog running under it. The other, catalog.cfg is
specific to an individual catalog, and has no effect on other catalogs.

24.1. Directive syntax

Configuration directives are normally specified with the directive as the first word on the line, with its value
or values following. Capitalization of the directive hame is not significant. Leading and trailing whitespace is
stripped from the line.

Including files in directives
Additional files may be called with an include file notation like this:
DirectiveName <includefile

Files included from interchange.cfg are relative to the Interchange software directory. Files included from
catalog.cfg are relative to the catalog directory.

Here documents

A "here document” can be used to spread directive values over several lines, with the usual Perl <<MARKE
syntax. No semicolon is used to terminate the marker. The closing marker must be the only thing on the line
No leading or trailing characters are allowed, not even whitespace. Here is a hypothetical directive using a
here document:

DirectiveName <<EOD
settingl
setting2
setting3

EOD

That is equivalent to:

DirectiveName settingl setting2 setting3
Include single setting from file

Value can be pulled from a file with <file:

Variable MYSTUFF <file

This works well for includes that must be of the highest possible performance. They can be simply placed in
page with _ VARIABLE .

include

24. Interchange Configuration Files 63

Interchange Documentation (Full)

Other configuration files can be included in the current one. For example, common settings can be set in on
file:

include common.cfg
Or all files in one directory:
include usertag/*

ifdef and ifndef

ifdef/endif and ifndef/endif pairs can be used:

Variable ORDERS_TO email_address

ifdef ORDERS_TO
ParseVariables Yes
MailOrderTo __ ORDERS_TO___
ParseVariables No

endif

ifdef ORDERS_TO =~ /foo.com/

Send all orders at foo.com to one place now
Set ORDERS_TO to stop default setting
Variable ORDERS_TO 1

MailOrderTo orders@foo.com

endif

ifdef ORDERS_TO eq 'nobody@nowhere.com’

Better change to something else, set ORDERS_TO to stop default
Variable ORDERS_TO 1

MailOrderTo someone@somewhere.com

endif

ifndef ORDERS_TO

#Needs to go somewhere....
MailOrderTo webmaster@Ilocalhost
endif

24. Interchange Configuration Files 64

25. interchange.cfg

The VendRoot directory, specified in the main program interchange, is the default location of all of the
Interchange program, configuration, special, and library files. Unless changed in the call to interchange,
the main Interchange server configuration file will be interchange.cfg in the VendRoot directory.

The directives defined in interchange.cfg affect the entire Interchange server and all catalogs running
under it. Multiple Interchange servers may be run on the same machine with totally independent operation.

Following is an alphabetical listing of all global configuration directives.

25.1. ActionMap *global*

Allows setting of Interchange form actions, usually with a Perl subroutine. Actions are page names like:

process Perform a processing function

order Order items

scan Search based on path info

search Search based on submitted form variables

The global version of ActionMap applies to all catalogs. If the same action is specified in catalog.cfg, it
will pertain. See ActionMap in that section.

25.2. AddDirective *global*

Adds a configuration directive that will be parsed for every catalog.cfg file. Accepts three parameters:
the name of the directive, the name of the parser (if any), and the default value (if any). The following
definition would add a directive "Foo," with parser "parse_bar," and a default value of "Hello, world!":

AddDirective Foo bar "Hello, world!"
If the parser is not defined, the directive value will be scalar and the same as what the user passes in the cc
file. If defined, the parser must be extant before it can be referenced, is always resident in Vend::Config, anc

begins with the string parse_. Examples can be found in the files in the distribution software directory
compat/.

25.3. AdminSub *global*

Marks a global subroutine for use only by catalogs that are set to AllowGlobal (see below). Normally
global subroutines can be referenced (in embedded Perl) by any catalog.

AdminSub dangerous

25.4. AllowGlobal *global*

Specifies catalog identifiers that may define subroutines and UserTag entries that can operate with the full
permissions of the server. Don't use this unless the catalog user is trusted implicitly. Default is blank.

AllowGlobal simple

25. interchange.cfg 65

Interchange Documentation (Full)

Using AllowGlobal is never necessary, and is always dangerous in a multi-user environment. Its use is not
recommended.

25.5. AutoVariable *global*

Specifies directives which should be translated to Variable settings. For scalars, the directive name become
the Variable name and yields its value, i.e. ErrorFile becomes __ ErrorFile__, which would by

default be error.log. Array variables have a _N added, where N is the ordinal index, i.e. SafeUntrap
becomes _ SafeUntrap 0, SafeUntrap_1 , etc. Hash variables have a _KEY added, i.e.

SysLog becomes __ SysLog command__, SyslLog_facility , etc. Doesn't handle hash keys

that have non—-word characters or whitespace. Only single—level arrays and hashes are translated properly.

See AutoVariable in catalog.cfg.

25.6. Catalog *global*

Specifies a catalog that can run using this Interchange server. This directive is usually inserted into
interchange.cfg by the makecat program when you build a new catalog.

There are three required parameters, as shown in this example:
Catalog simple /home/interchange/simple /cgi—bin/simple

The first is the name of the catalog. It will be referred to by that name in error, warning, and informational
messages. It must contain only alphanumeric characters, hyphens, and underscores. It is highly recommenc
that it be all lower case.

The second is the base directory of the catalog. If the directory does not contain a catalog.cfg file, the
server will report an error and refuse to start.

The third is the SCRIPT_NAME of the link program that runs the catalog. This is how the catalog is selected
for operation. Any number of alias script names may be specified as additional parameters. This allows the
calling path to be different while still calling the same catalog:

Catalog simple /home/interchange/simple /cgi—bin/simple /simple

This is useful when calling an SSL server or a members-only alias that requires a username/password via
HTTP Basic authorization. All branched links will be called using the aliased URL.

The script names must be unique among CGI program paths that run on this server; the same name cannot
used for more than one catalog unless the FullURL directive is specified. In this case, the parameter may be
specified as:

www.yourcompany.com/cgi—bin/simple
www.theirs.com/cgi—bin/simple

Each of those 'simple' catalogs would then call a different catalog.

Optionally, individual Catalog directives that specify each of the different parameters may be used. The
equivalent of our original example directive above is:

25.5. AutoVariable *global* 66

Interchange Documentation (Full)

Catalog simple directory /home/interchange/simple
Catalog simple script /cgi—bin/simple
Catalog simple alias /simple

Global directives may be specified that will change for that catalog only. This is mostly useful for
ErrorFile and DisplayErrors:

Catalog simple directive ErrorFile /var/log/interchange/simple_error.log

25.7. CheckHTML *global*

Set to the name of an external program that will check the user's HTML when they set [flag
checkhtml] or [tag flag checkhtml][/tag] in their page.

CheckHTML /usr/local/bin/weblint

25.8. ConfigAllAfter *global*

The name of a file (or files) which should be read as a part of every catalog's configuration, after any other
configuration files are read. Default is catalog_after.cfg.

ConfigAllAfter check_actions.cfg check_variables.cfg

25.9. ConfigAllBefore *global*

The name of a file (or files) which should be read as a part of every catalog's configuration, before any othel
configuration files are read. Default is catalog_before.cfg.

ConfigAllBefore set_actions.cfg set_variables.cfg

25.10. ConfigParseComments *global*

Set to No if you want old—style '#include', '#ifdef', or '#ifndef' to be treated as the comments they appear to b
The default is Yes, which means both '#include' and 'include’ do the same thing. (Use a space after the '#' if
you really want to comment out the command.)

Interchange prior to version 4.7 used a different syntax for meta—directives 'include’, 'ifdef', and 'ifndef' in
configuration files. The commands were borrowed from the C preprocessor, and true to their C heritage, the
started with '#'": '#include', '#ifdef', '#ifndef'. Interchange configuration files, unlike C, uses '#' to begin
one-line comments, which meant that a newcomer at first glance might assume that:

#Variable DEBUG 1
#include more.cfg

were both comments, when in fact the second was a live #include command.
To begin to make things more consistent, Interchange 4.7 and up now recognize those meta—directives

without the leading '#', and the included demo catalog sets this directive to No so that lines beginning with '#
really are skipped as comments, regardless of what comes after.

25.7. CheckHTML *global* 67

Interchange Documentation (Full)

25.11. Database *global*

Defines a database which is global and available to all catalogs. Writing can be controlled by catalog. See
Database.

25.12. DataTrace *global*

Set DBI to trace at the level specified. Valid values are:

0 — Trace disabled.

1 - Trace DBI method calls returning with results or errors.

2 — Trace method entry with parameters and returning with results.

3 - As above, adding some high-level information from the driver and some internal information from the
DBI.

4 - As above, adding more detailed information from the driver. Also includes DBI mutex information when
using threaded Perl.

5 and above — As above but with more and more obscure information.

Trace level 1 is best for most Interchange debug situations. Trace will only be enabled when DebugFile is
specified, as that file is the target for the trace. Example:

DataTrace 1

Default is 0. Directive added in 4.7.0.

25.13. DebugFile *global*

Names a file, relative to the Interchange root directory, which should store the output of logDebug
statements, and warnings if warnings are enabled.

DebugFile /tmpl/icdebug

25.14. DeleteDirective *global*

Deletes a configuration directive from the list is parsed for every catalog.cfg file. Can save memory for
installations with large numbers of catalogs.

DeleteDirective DescriptionField OfflineDir

The directive is not case—sensitive. Has no effect on global directives.

25.11. Database *global* 68

Interchange Documentation (Full)

25.15. DisplayErrors *global*

While all errors are reported in the error log file, errors can also be displayed by the browser. This is
convenient while testing a configuration. Unless this is set, the DisplayErrors setting in the user catalogs
will have no effect. Default is No.

DisplayErrors Yes

Note: This changes the value of $SIG{__DIE__} and may have other effects on program operation. This
should NEVER be used for normal operation.

25.16. DomainTail *global*

Implements the domain/IP session qualifiers so that only the major domain is used to qualify the session ID.
This is a compromise on security, but it allows hon—cookie—accepting browsers to use multiple proxy server
in the same domain. Default is Yes.

DomainTail No

If encrypting credit cards with PGP or GPG, or are using a payment service like CyberCash, look at the
WideOpen directive, which enables more browser compatibility at the cost of some security.

25.17. DumpStructure *global*

Tells Interchange to dump the structure of catalogs and the Interchange server to a file with the catalog namn
and the extension .structure. Use this to see how directives have been set.

25.18. EncryptProgram *global*

Specifies the default encryption program that should be used to encrypt credit card numbers and other
sensitive information. Default is gpg if found on the system; then pgpe, if found; then pgp, and finally
none, disabling encryption.

This is used to set the default in catalog.cfg, which has its own independent setting of
EncryptProgram.

25.19. Environment *global*

Environment variables to inherit from the calling CGlI link program. An example might be PGPPATH, used tc
set the directory which PGP will use to find its key ring.

Environment MOD_PERL REMOTE_USER PGPPATH

25.20. ErrorFile *global*

Sets the name of the global error log. The default is error.log in the Interchange software directory.

ErrorFile /var/log/interchange/log

25.15. DisplayErrors *global* 69

Interchange Documentation (Full)

Of course, the user ID running the Interchange server must have permission to write that file.

Optionally, syslog error logging can be set up as well. See SysLog.

25.21. FormAction *global*

Allows a form action (like the standard ones return, submit, refresh, etc.) to be set up. It requires
a Perl subroutine as a target:

FormAction foo <<EOR
sub {
$CGI->{mv_nextpage} = 'bar’;

}
EOR

If it returns a true (non-zero, non—-empty) value, Interchange will display the page defined in
$CGI->{mv_nextpage}. Otherwise, Interchange will not display any page. The default Interchange actions
can be overridden, if desired. There is also a catalog—specific version of this directive, which overrides any
action of the same name.

The global version affects all catalogs —— there is also a catalog—specific version of FormAction which is
protected by Safe.

25.22. FullUrl *global*

Normally Interchange determines which catalog to call by determining the SCRIPT_NAME from the CGI
call. This means that different (and maybe virtual) hosts cannot use the same SCRIPT_NAME to call differe
catalogs. Set FullUrl to Yes to differentiate based on the calling host. Then, set the server name in the
Catalog directive accordingly, such as yourdomain.com/cgi—bin/simple. A yes/no directive, the

default is No.

FullUrl Yes

If it is set in this fashion, all catalogs must be defined in this fashion. NOTE: The individual catalog setting
will not work, as this is used before the catalog name is known.

25.23. GlobalSub *global*

Defines a global subroutine for use by the [perl sub] subname arg /perl] construct. Use the
"here document" capability of Interchange configuration files to make it easy to define:

GlobalSub <<EOF

sub count_orders {
my $counter = new File::CounterFile "/tmp/count_orders", '1";
my $number = $counter—>inc();
return "There have been $number orders placed.\n";

}
EOF

As with Perl "here documents," the EOF (or other end marker) must be the ONLY thing on the line, with no
leading or trailing white space. Do not append a semicolon to the marker. (The above marker appears

25.21. FormAction *global* 70

Interchange Documentation (Full)

indented. It should not be that way in the file!)

IMPORTANT NOTE: These global subroutines are not subject to security checks. They can do most
anything! For most purposes, scratch subroutines or catalog subroutines (also Sub) are better.

GlobalSub routines are subject to full Perl use strict checking, so errors are possible if lexical variables or
complete package qualifications are not used for the variables.

25.24. HammerLock *global*

The number of seconds after which a locked session could be considered to be lost due to malfunction. This
will kill the lock on the session. Only here for monitoring of session hand—off. If this error shows up in the
error log, the system setup should be examined. Default is 30.

HammerLock 60

This mostly doesn't apply to Interchange when using the default file—based sessions.

25.25. HitCount *global*

Increments a counter in ConfDir for every access to the catalog. The file is named hits.catalogname,
where catalogname is the short catalog identifier. A Yes/No directive, default is No.

HitCount Yes

25.26. HouseKeeping *global*

How often, in seconds, the Interchange server will "wake up" and look for user reconfiguration requests and
hung search processes. On some systems, this wakeup is the only time the server will terminate in respons
a stop command. Default is 60.

HouseKeeping 5

25.27. Inet_Mode *global*

Determines whether INET-domain sockets will be monitored on startup. Overridden by the command-line
parameter —i. Default is Yes.

25.28. IpHead *global*

Implements the domain/IP session qualifiers so that only the first IpQuad dot—quads of the IP address are
used to qualify the session ID. The default is 1. This is a slight compromise on security, but it allows
non-cookie—accepting browsers, like AOL's V2.0, to use multiple proxy servers.

DomainTail is preferable unless one of your HTTP servers does not do host name lookups. Default is No,
and DomainTail must be set to No for it to operate.

IpHead Yes

25.24. HammerLock *global* 71

Interchange Documentation (Full)

25.29. IpQuad *global*

The number of dot—quads that IpHead will look at. Default is 1.

IpQuad 2

25.30. Locale *global*

Sets the global Locale for use in error messages. Normally set from a file's contents, as in the example
before:

Locale <locale.error

25.31. LockoutCommand *global*

The name of a command (as it would be entered from the shell) that will lock out the host IP of an offending
system. The IP address will be substituted for the first occurrence of the string %s. This will be executed witl
the user ID that Interchange runs under, so any commands that require root access will have to be wrapped
with an SUID program.

On Linux, a host may be locked out with:
ipfwadm -1 —i deny —S %s

This would require root permissions, however, under normal circumstances. Use sudo or another method to
wrap and allow the command.

A script can be written which modifies an appropriate access control file, such as .htaccess for your CGI
directory, to do another level of lockout. A simple command line containing perl -0777 —npi —e

's/deny/deny from %s\ndeny/' /home/me/cgi-bin/.htaccess would work as well
(remember, the %s will become the IP address of the offending user).

LockoutCommand lockout %s

25.32. LockType *global*

Allows selection of file locking method used throughout Interchange. Options are 'flock’, 'fcntl', and 'none'.
Added in 4.7.0.

Default is flock. See the flock(2) manpage for details.
The fentl setting is needed for NFS filesystems; for NFS—based locking to work, the NFS lock daemon
(lockd) must be enabled and running on both the NFS client and server. Locking with fcntl works on Linux

and should work on Solaris, but is not guaranteed to work on all OSes.

The none setting turns off file locking entirely, but that is never recommended. It might be useful to check if
locking is causing hangs on the system.

If you are only accessing sessions on an NFS—-mounted directory but the rest of Interchange is on the local

25.29. IpQuad *global* 72

Interchange Documentation (Full)

filesystem, you can instead set the SessionType catalog directive to 'NFS', which enables fcntl locking for
sessions only on a per—catalog basis.

25.33. Mall *global*

Set to Yes to issue cookies only for the current catalog's script. By default, when Interchange issues a cooki
it does so for the base domain. This will allow multiple catalogs to operate on the same domain without
interfering with each others session ID.

A yes/no directive.

Mall Yes

25.34. MaxServers *global*

The maximum number of servers that will be spawned to handle page requests. If more than MaxServers
requests are pending, they will be queued (within the defined capability of the operating system, usually five
pending requests) until the number of active servers goes below that value.

MaxServers 4

Default is 10.

25.35. NoAbsolute *global*

Whether Interchange [file ...] and other tags can read any file on the system (that is readable by the
user id running the Interchange daemon). The default is No, which allows any file to be read. This should be
changed in a multi-user environment to minimize security problems.

NoAbsolute Yes

Note that this does not apply to tests for whether a file exists, as with [if file ...]. Such operations are
allowed regardless of the NoAbsolute setting.

25.36. PIDcheck *global*

If non—zero, enables a check of running Interchange processes during the housekeeping routine. If a proces
has been running (or is hung) for longer than PIDcheck seconds then a kill =9 will be issued and the server
count decremented. During the housekeeping routine, the number of servers checked by MaxServers will
be recounted based on PID files.

Default is 0, disabling the check.

PIDcheck 300

If have long-running database builds, this needs to be disabled. Set it to a high value (perhaps 600, for 10
minutes), or use the offline script.

25.33. Mall *global* 73

Interchange Documentation (Full)

25.37. PIDfile *global*

The file which will contain the Interchange server process ID so that it can be read to determine which proce
should be sent a signal for stopping or reconfiguring the server.

PIDfile /var/run/interchange/interchange.pid

This file must be writable by the Interchange server user ID.

25.38. Profiles *global*

Names a file (or files) which contain OrderProfile and SearchProfile settings that will apply for all
catalogs.

Profiles etc/profiles.common

25.39. SafeUntrap *global*

Sets the codes that will be untrapped in the Safe.pm module and used for embedded Perl and conditional
operations. View the Safe.pm documentation by typing perldoc Safe at the command prompt. The

default is ftfile sort, which untraps the file existence test operator and the sort operator. Define it as

blank to prevent any operators but the default restrictive ones.

SafeUntrap ftfile sort ftewrite rand

25.40. SendMailProgram *global*

Specifies the program used to send email. Defaults to '/ust/lib/sendmail'. If it is not found at startup,
Interchange will return an error message and refuse to start.

SendMailProgram /bin/mailer

A value of 'none' will disable the sending of emailed orders. Orders must be read from a tracking file, log, or
by other means.

25.41. SOAP *global*

If set to Yes, allows handling of SOAP rpc requests.

25.42. SOAP_Host

The list of hosts that are allowed to connect to for SOAP rpc requests. Default is localhost 127.0.0.1.

25.43. SOAP_MaxRequests

The maximum number of requests a SOAP rpc server will handle before it commits suicide and asks for a
replacement server. This prevents runaway memory leaks.

25.37. PIDfile *global* 74

Interchange Documentation (Full)

25.44. SOAP_Perms

The permissions that should be set on a SOAP UNIX-domain socket. Default is 0660, which allows only
programs running as the same UID as Interchange to access the socket.

25.45. SOAP_Socket

A list of sockets which should be monitored for SOAP requests. If they fit the form
NNN.NNN.NNN.NNN:PPPP, they are IP addresses and ports for monitoring INET-domain sockets, any
other pattern is assumed to be a file name for monitoring in the UNIX domain.

SOAP_Socket 12.23.13.31:7770 1.2.3.4:7770 /var/run/interchange/soap

25.46. SOAP_StartServers

The number of SOAP servers which should be started to handle SOAP requests. Default is 1.

SOAP_StartServers 10

25.47. SocketFile *global*

The name of the file which is used for UNIX—domain socket communications. Must be in a directory where
the Interchange user has write permission.

SocketFile /var/run/interchange/interchange.socket

Default is etc/socket or the value of the environment variable MINIVEND_SOCKET. If set, it will
override the environment. It can be set on the command line as well:

bin/interchange —r SocketFile=/tmp/interchange.socket

25.48. SocketPerms *global*

The permissions (prepend a 0 to use octal notation) that should be used for the UNIX-domain socket.
Temporarily set this to 666 on the command line to debug a permission problem on vlink.

bin/interchange —r SocketPerms=0666

25.49. StartServers

The number of Interchange page servers which should be started to handle page requests when in PreFork
mode. Default is 1.

SOAP_StartServers 10

25.50. SubCatalog *global*

25.44. SOAP_Perms 75

Interchange Documentation (Full)

Allows definition of a catalog which shares most of the characteristics of another catalog. Only the directives
that are changed from the base catalog are added. The parameters are: 1) the catalog ID, 2) the base catal
ID, 3) the directory to use (typically the same as the base catalog), and 4) the SCRIPT_NAME that will
trigger the catalog. Any additional parameters are aliases for the SCRIPT_NAME.

The main reason that this would be used would be to conserve memory in a series of stores that share mos
the same pages or databases.

SubCatalog sample2 sample /usr/catalogs/sample /cgi—bin/sample2

25.51. SysLog *global*

Set up syslog(8) error logging for Interchange.

SysLog command /usr/bin/logger
SysLog tag intl

SysLog alert local3.warn
SysLog warn local3.info
SysLog info local3.info
SysLog debug local3.debug

This would cause global errors to be logged with the command:
lusr/bin/logger -t intl —p local3.alert
and cause system log entries something like:

Oct 26 17:30:11 bill int1: Config 'co’ at server startup

Oct 26 17:30:11 bill intl: Config ‘homefn' at server startup

Oct 26 17:30:11 bill intl: Config 'simple’ at server startup

Oct 26 17:30:11 bill int1: Config 'test' at server startup

Oct 26 17:30:13 bill intl: START server (2345) (INET and UNIX)

This would work in conjunction with a UNIX syslogd.conf entry of:

Log local3 stuff to Interchange log
local3.* Ivar/log/interchange.log

A custom wrapper can be created around it to get it to behave as desired. For instance, if you didn't want to
use syslog but instead wanted to log to a database (via DBI), you could create a Perl script named
"logdatabase" to log things:

#!/usr/bin/perl

my $script_name = "logdatabase";
use DBI;

use Getopt::Std;

getopts('d:p:T:k:")
or die "$script_name options: $@\n";

use vars qw/$opt_d $opt_p Sopt_T $opt_k/;
my $dsn = $opt_d || SENV{DBI_DSN};
my $template = $opt_T
|| "insert into log values (‘~~KEY~~', '~~LEVEL~~', '~~MSG~~")";

25.51. SyslLog *global* 76

Interchange Documentation (Full)

my $dbh = DBI->connect($dsn)
or die "$script_name cannot connect to DBI: $DBI::errstr\n";

my %data;
$data{KEY} = Sopt_k || *;

local ($/);
$data{MSG} = <>;

$data{LEVEL} = $opt_p || 'interchange.info’;
$template =~ s\~\~(\w+)\~\~/$dbh—>quote($data{$1})/;

my $sth = $dbh->prepare($template)
or die "$script_name error executing query: $template\n";

$sth—>execute()
or die "$script_name error executing query: $template\n";

exit;

25.52. TcpHost *global*

When running in INET mode, using tlink, specifies the hosts that are allowed to send/receive transactions
from any catalog on this Interchange server. Can be either an name or IP number, and multiple hosts can b
specified in a space-separated list. Default is localhost.

TcpHost localhost secure.domain.com

25.53. TcpMap *global*

When running in INET mode, using tlink or the internal HTTP server, specifies the port(s) which will be
monitored by the Interchange server. Default is 7786.

To use the internal HTTP server (perhaps only for password—protected queries), a catalog may be mapped
port. If three catalogs were running on the server www.akopia.com, named simple, sample, and
search, the directive might look like this:

TcpMap 7786 — 7787 simple 7788 sample 7789 search

Note: To map large numbers of ports, use the <<MARKER here document notation in interchange.cfg. With
this in effect, the internal HTTP server would map the following addresses:

* 7786 mv_admin
* 7787 simple
* 7788 sample
* 7789 search

Note: This does not pertain to the use of tlink, which still relies on the CGI SCRIPT_PATH. To enable
this, the SCRIPT_PATH aliases /simple, /sample, etc. must be set in the Catalog directive. This would look
like:

25.52. TcpHost *global* 77

Interchange Documentation (Full)

Catalog simple /home/interchange/catalogs/simple /cgi—-bin/simple /simple

To bind to specific IP addresses, add them in the same fashion that they would as an Apache Listen directiv

TcpMap <<EOF
127.0.0.1:7786 -
www.akopia.com:7787 -

EOF

Note: As usual, the EOF should be at the beginning of a line with no leading or trailing whitespace.

25.54. TemplateDir *global*

This can be used to supply some default pages so catalogs will not need their own copies.

Supply one or more directory names, separated by whitespace, which will be searched for pages not found
the catalog's PageDir directory or the catalog-level TemplateDir directory list.

TemplateDir /usr/local/interchange/default_pages

This is undefined by default.

25.55. TolerateGet *global*

Set to 'Yes' to enable parsing of both GET data and POST data when a POST has been submitted. The def
is 'No', which means that GET data is ignored during a POST. Unfortunately this has to be a global setting
because at URL parse time, the Interchange daemon doesn't yet know which catalog it's dealing with (due t
catalog aliases, etc.).

25.56. UrlSepChar *global*

Sets the character which separates form parameters in Interchange—generated URLs. Default is &.

25.57. Unix_Mode *global*

Determines whether the UNIX-domain socket will be monitored on startup. Overridden by the
command-line parameter —u. Default is Yes.

25.58. UserTag *global*

This defines a UserTag which is global in nature, meaning not limited by the Safe.pm module, and is is
available to all Interchange catalogs running on the server. Otherwise, this is the same as a catalog UserTa

25.59. Variable *global*

Defines a global variable that will be available in all catalogs with the notation @ @VARIABLE@ @.
Variable identifiers must begin with a capital letter, and can contain only word characters (A-Z,a-z,0-9 and
underscore). They are case—sensitive.

25.54. TemplateDir *global* 78

Interchange Documentation (Full)

Variable DOCUMENT_ROOT /usr/local/etc/httpd/htdocs
Only variables with ALL CAPS names will be parsed in catalog pages or, when the ParseVariables
directive is set, in catalog (not global) configuration directives (other than Variable itself). These are
substituted first in any Interchange page, and can contain any valid Interchange tags including catalog
variables. If a variable is called with the notation @ _VARIABLE_@, and there is no catalog Variable with its
name, the global Variable value will be inserted.
There are several standard variables which you should not set:
MV_FILE
Name of the last file read in, as in [file ...] or an externally located perl routine.
MV_NO_CRYPT
Set this to 1 to disable encrypted passwords for the AdminUser.
MV_PAGE
Name of the last page read in, as in the page called with mv_nextpage or mv_orderpage.
CURRENCY, MV_CURRENCY
The current locale for currency.
LANG, MV_LANG
The current locale for language.
Some global variables can be set to affect Interchange:

MV_DOLLAR_ZERO

This determines what Interchange does to Perl's $0 variable, which contains the operating system's name o
the running process, for example in the ps(1) or top(1) commands. Valid settings are:

Setting |Result

(not set) ['interchange’

0 (do nothing)

1 'interchange ——> (CATROQT)
string |'string’

Note that this is set globally once only when the Interchange daemon is started, so it's pointless to change tl
variable after that.

25.60. VarName *global*

Sets the names of variables that will be remapped to and from the URL when Interchange writes it. For

25.60. VarName *global* 79

Interchange Documentation (Full)

instance, to display the variable mv_session_id as session in the user's URL:
VarName mv_session_id session

The default can also be set in the etc/varnames file after the first time Interchange is run. Setting it in
interchange.cfqg is probably better for clarity.

There is also a catalog—specific version of this setting.

25.60. VarName *global* 80

26. catalog.cfg

Each catalog must have a catalog.cfg file located in its base catalog directory. It contains most of the
configurable parameters for Interchange. Each is independent from catalog to catalog.

Additional configuration techniques are available in the catalog.cfg file. First, set a Variable and use
its results in a subsequent configuration setting if ParseVariables is on:

Variable SERVER_NAME www.akopia.com
Variable CGI_URL /cgi—-bin/demo

ParseVariables Yes
VendURL http://__ SERVER_NAME CGI_URL__
ParseVariables No

Define subroutine watches

Almost any configuration variable can be set up to be tied to a subroutine if the Tie::Watch module is
installed. It uses a notation like the <<HERE document, but <& HERE is the notation. See Interchange

Programming for details.

26.1. Programming Watch Points in catalog.cfg

Almost any configuration variable can be set up to be tied to a subroutine if the Tie::Watch module
installed. It uses a notation like the <<HERE document, but <&HERE is the notation. Here is a simple case:

MailOrderTo orders@akopia.com
MailOrderTo <&EOF
sub {
my($self, $default) = @_;
if($Values—>{special_handling}) {
return 'vip@akopia.com’;

}
else {
return $default;

}
}
EOF

When the order is mailed out, if the user has a variable called special_handling set in their session
(from UserDB, perhaps), the order will be sent to 'vip@akopia.com.' Note the single quotes to prevent
problems with the @ sign. Otherwise, the order will get sent to the previously defined value of
orders@akopia.com.

If the configuration value being watched is a SCALAR, the subroutine gets the following call:
&{$subref}(SELF, PREVIOUS_VALUE)

The subroutine should simply return the proper value.

SELF is a reference to the Tie::Watch object (read its documentation for what all it can do) and

PREVIOUS VALUE is the previously set value for the directive. If set after the watch is set up, it will simply
have the effect of destroying the watch and having unpredictable effects. (In the future, a "Store" routine ma

26. catalog.cfg 81

Interchange Documentation (Full)

be able to be set up that can subsequently set values).

If the configuration value being watched is an ARRAY, the subroutine gets the following call:

&{$subref}(SELF, INDEX, PREVIOUS_VALUE)

INDEX is the index of the array element being accessed. Setting up watch points on array values is not
recommended. Most Interchange subroutines call arrays in their list context, and no access method is provic
for that.

If the configuration value being watched is a HASH, the subroutine gets the following call:

&{$subref(SELF, KEY, PREVIOUS_VALUE)

KEY is the index into the hash, an example of HASH type Interchange configuration values. NOTE: The
following is not recommended for performance reasons. The Variable is a commonly used thing and should
not bear the extra overhead of tieing, but it illustrates the power of this operation:

Variable TESTIT Unwatch worked.

Variable <& EOV
sub {
my ($self, $key, $orig) = @_;
if($key eq 'TESTIT") {
only the first time
if($Scratch—>{$key}++) {
$self->Unwatch();
return $orig—>{TESTIT};

}
else {

return "Tie::Watch works! —— name=$Values—>{name}";
}

}
else {

return $orig—>{$key};
}

}
EOV

The firsttime _ TESTIT__ is called for a particular user, it will return the string "Tie::Watch works! ——
name=" along with their name set in the session (if that exists). Any other variables will receive the value the

they were set to previously. Once the TESTIT key has been accessed for that user, the watch is dropped uf
the next access.

26.2. Configuration Directives in catalog.cfg

All directives except MailOrderTo and VendURL have default values and are optional, though most
catalogs will want to configure some of them.

26.3. ActionMap

Allows setting of Interchange actions, usually with a Perl subroutine. Actions are page names like:

process Perform a processing function

26.2. Configuration Directives in catalog.cfg 82

Interchange Documentation (Full)

order Order items
scan Search based on path info
search Search based on submitted form variables

These are the standard supplied actions for Interchange. They can be overwritten with user—defined versior
if desired. For example, to ignore the order action, set:

ActionMap order sub {return1}
When the leading part of the incoming path is equal to order, it will trigger an action. The page name will
be shifted up, and the order stripped from the page name. So this custom order action would essentially
perform a no-op, and a URL like:

 Go to the next page
would be the equivalent of "[area nextpage]." If the action does not return a true (non-zero, non-blank) stat
no page will be displayed by Interchange, not even the special missing page. A response may also be
generated via Perl or MVASP.

The standard process action has a number of associated FormAction settings. Besides using Perl,
Interchange tags may be used in an action, though they are not nearly as efficient.

26.4. AlwaysSecure

Determines whether checkout page operations should always be secure. Set it to the pages that should alw
be secure, separated by spaces and/or tabs.

AlwaysSecure ord/checkout

26.5. AsciiTrack

A file name to log formatted orders in. Unless preceded by a leading /', will be placed relative to the catalog
directory. Disabled by default.

AsciiTrack etc/tracking.asc

If a Route is set up to supplant, this is ignored.

26.6. Autoend

Sets an action that is automatically performed at the end every access. It is performed after any page parsir
occurs, just before the transaction ends. See Autoload.

26.7. Autoload

Sets an action that is automatically performed for every access. It is performed before any page parsing
occurs, and before the action or page is even determined. Can contain ITL tags or a global subroutine name
the return value is true, a normal display of $CGI->{mv_nextpage} will occur —— if it returns a false (zero,
undef, or blank) value, no page will be processed.

26.4. AlwaysSecure 83

Interchange Documentation (Full)

As an example, to remap any mv_nextpage accesses to the private subdirectory of pages, set:
Autoload [perl] $CGI->{mv_nextpage} =~ s:"private/:public/:; [/perl]
You can temporarily change any of the catalog configuration settings, for example use a different flypage.

Autoload <<EOA

[perl]

if ($Session—>{browser} =~ /msiefi) {
$Config—>{Special}->{flypage}='ms_flypage'};

}

[/perl]

EOA

Please note that SpecialPage is the corresponding directive in the catalog configuration, not Special.
This is an exceptional case. Usually the hash key has the same name as the catalog configuration directive.

26.8. AutoModifier

Sets an attribute in a shopping cart entry to the field of the same name in the ProductsFile pertaining to
this item. This is useful when doing shipping calculations or other embedded Perl that is based on item
attributes. To set whether an item is defined as "heavy" and requires truck shipment, set:

AutoModifier heavy

When an item is added to the shopping cart using Interchange's routines, the heavy attribute will be set to tt
value of the heavy field in the products database. In the default demo that would be products. Any
changes to ProductFiles would affect that, of course.

Some values are used by Interchange and are not legal:

mv_mi
mv_si
mv_ib
group
code
quantity
item

26.9. AutoVariable

Specifies directives which should be translated to Variable settings. For scalars, the directive name become
the Variable name and yields its value, i.e. DescriptionField becomes __ DescriptionField

which would by default be description. Array variables have a _N added, where _N is the ordinal index, i.e.
ProductFiles becomes __ ProductFiles 0, ProductFiles_1 , etc. Hash variables have a

_KEY added, i.e. SpecialPage becomes __SpecialPage_missing__,

__SpecialPage_violation__, etc. Doesn't handle hash keys that have non—-word characters or

whitespace. Only single-level arrays and hashes are translated properly.

26.10. CommonAdjust

Settings for Interchange pricing. See Chained pricing.

26.8. AutoModifier 84

Interchange Documentation (Full)

CommonAdjust pricing:g2,95,910,925, ;products:price, ==size:pricing

26.11. ConfigDir

The default directory where directive values will be read from when using the <file notation. Default is
config. The name is relative to the catalog directory unless preceded by a /.

ConfigDir variables

This can be changed several times in the catalog.cfg file to pick up values from more than one directory.
Another possibility is to use a Variable setting to use different templates based on a setting:

Variable TEMPLATE blue
ParseVariables Yes

ConfigDir templates/__ TEMPLATE___
ParseVariables No

Variable MENUBAR <menubar
Variable LEFTSIDE <leftside

Variable BOTTOM <bottom
ConfigDir config

This will pick the templates/blue template. If TEMPLATE is set to red, it would read the variables
from templates/red.

26.12. CookieDomain

Allows a domain to be set so that multiple servers can handle traffic. For example, to use server addresses
secure.yourdomain.com and www.yourdomain.com, set it to:

CookieDomain .yourdomain.com

More than one domain can be set. It must have at least two periods or browsers will ignore it.

26.13. CookieLogin

Allows users to save their username/password (for Vend::UserDB) in a cookie. Expiration is set by
SaveExpire and is renewed each time they log in. To cause the cookie to be generated originally, the CGI
variable mv_cookie_password or mv_cookie _username must be set. The former causes both

username and password to be saved; the latter just the username.

CookieLogin Yes

Default is No.

26.14. Cookies

Determines whether Interchange will send (and read back) a cookie to get the session ID for links that go
outside the catalog. Allows arbitrary HREF links to be placed in Interchange pages, while still saving the
contents of the session. The default is Yes.

26.11. ConfigDir 85

Interchange Documentation (Full)

Cookies Yes

If the Cookies directive is enabled, and mv_save_session is set upon submission of a user form (or in the
CGl variables through a Perl GlobalSub), the cookie will be persistent for the period defined by
SaveExpire.

Note: This should almost always be "Yes."

Caching, timed builds, and static page building will never be in effect unless this directive is enabled.

26.15. CreditCardAuto

If set to Yes, enables the automatic encryption and saving of credit card information. In order for this to work
properly, the EncryptProgram directive must be set to properly encode the field. The best way to set
EncryptProgram is with PGP in the ASCII armor mode. This option uses the following standard fields on
Interchange order processing forms:

mv_credit_card_number

The actual credit card number, which will be wiped from memory after checking to see if it is a valid Amex,
Visa, MC, or Discover card number. This variable will never be carried forward in the user session.

mv_credit_card_exp_all

The expiration date, as a text field in the form MM/YY (will take a four—digit year as well). If it is not
present, the fields mv_credit_card_exp_month and mv_credit_card_exp_year are looked at. It

is set by Interchange when the card validation returns, if not previously set.

mv_credit_card_exp_month

The expiration date month, used if the mv_credit_card_exp_all field is not present. It is set by
Interchange when the card validation returns, if not previously set.

mv_credit_card_exp_year

The expiration date year, used if the mv_credit_card_exp_all field is not present. It is set by
Interchange when the card validation returns, if not previously set.

mv_credit_card_error

Set by Interchange to indicate the error if the card does not validate properly. The error message is not too
enlightening if validation is the problem.

mv_credit_card_force

Set this value to 1 to force Interchange to encrypt the card despite its idea of validity. Will still set the flag for
validity to O if the number/date does not validate. Still won't accept badly formatted expiration dates.

mv_credit_card_separate

26.15. CreditCardAuto 86

Interchange Documentation (Full)

Set this value to 1 to cause Interchange encrypt only the card number and not accompany it with the
expiration date and card type.

mv_credit_card_info

Set by Interchange to the encrypted card information if the card validates properly. If PGP is used in ASCII
armor mode, this field can be placed on the order report and embedded in the order email, replete with
markers. This allows a secure order to be read for content, without exposing the credit card number to risk.
mv_credit_card_valid

Set by Interchange to true, or 1, if the the card validates properly. Set to 0 otherwise.

GnuPG is recommended as the encryption program. Interchange will also work with PGP.

CreditCardAuto Yes

26.16. CustomShipping

If not blank, causes an error log entry if the shipping file entry is not found. Not otherwise used for shipping.
See SHIPPING for how to go about doing that.

CustomShipping Yes

26.17. Database

Definition of an arbitrary database, in the form "Database database file type," where "file" is the name of an
ASCII file in the same format as the products database. The file is relative to VendRoot. Records can be
accessed with the [data database field key] tag. Database names are restricted to the

alphanumeric characters (including the underscore), and it is recommended that they be either all lower or &
upper case. See DATABASES.

Database reviews reviews.txt CSV

26.18. DatabaseDefault

Defines default parameters for a database. This can be used to set a default WRITE_CONTROL setting, se
default USER or PASSWORD, etc. It accepts any scalar setting, which means all except:

ALTERNATE_* BINARY COLUMN_DEF DEFAULT FIELD_ALIAS FILTER_* NAME NUMERIC
POSTCREATE WRITE_CATALOG

This default setting is made when the table is initially defined, i.e. explicit settings for the database itself
override the defaults set.

DatabaseDefault ~WRITE_CONTROL 1
DatabaseDefault WRITE_TAGGED 1

This setting must be made *before* the database is defined. To reset its value to empty, use the Replace
directive.

26.16. CustomShipping 87

Interchange Documentation (Full)

Replace DatabaseDefault

26.19. DefaultShipping

This sets the default shipping mode by initializing the variable mv_ship_mode. If not set in
catalog.cfg, it is default.

DefaultShipping UPS
Somewhat deprecated, the same thing can be achieved with:

ValuesDefault mv_shipmode UPS

26.20. DescriptionField

The field that will be accessed with the [item—description] element.

DescriptionField description

Default is description. It is not a fatal error if this field does not exist. This is especially important for
on-the—fly items. If there is an attribute set to the same name as DescriptionField, this will be used for
display.

26.21. DirConfig

DirConfig allows you to batch-set a bunch of variables from files. The syntax:
DirConfig directive—name directory—glob

directive—name is usually Variable, but could be any hash—-based directive. (No other standard
directives currently make sense to set this way.)

directory—glob is a filespec that could encompass multiple directories. Files are ignored.

The directories are read for file *names* that contain only word characters, i.e. something that would be a
valid Variable. (This alone might make it not suitable for other uses, but picking up the junk from the
in—directory—backup-file people would be intolerable.)

Then the contents of the file is used to set the variable of the file name.

The source file name is kept in $Vend::Cfg—>{DirConfig}{Variable {VARNAME}, for use if
dynamic_variables Pragma is set.

Pragma dynamic_variables enables dynamic updating of variables from files. Pragma
dynamic_variables_files_only restricts dynamic variables to files only —— otherwise variables are
dynamically read from the VarDatabase definition as well.

With dynamic variables, all @ _VARIABLE_@ and _ VARIABLE _ settings are checked first to see if the

source file is defined. If there is a key present, even if its contents are blank, it is returned. Example: in the
case of this catalog.cfg entry:

26.19. DefaultShipping 88

Interchange Documentation (Full)

DirConfig Variable templates/foundation/regions

If the file NOLEFT_TOP is present at catalog config time, _ NOLEFT_TOP__ will equal [include
templates/foundation/regions/INOLEFT_TOP].

26.22. DisplayErrors

If the administrator has enabled DisplayErrors globally, setting this to "Yes" will display the error returned
from Interchange in case something is wrong with embedded Perl programs, tags, or Interchange itself.
Usually, this will be used during development or debugging. Default is No.

DisplayErrors Yes

26.23. DynamicData

When set to one or more Interchange database identifiers, any pages using data items from the specified
database(s) will not be cached or built statically. This allows dynamic updating of certain arbitrary databases
(even the products database) while still allowing static/cached page performance gains on pages not using
those data items.

DynamicData inventory

Overridden by [tag flag build][/tag], depending on context.

26.24. EncryptProgram

Contains a program command line specification that indicates how an external encryption program will work
Two placeholders, %p and %f, are defined, which are replaced at encryption time with the password and
temporary file name respectively. See Order Security. This is separate from the PGP directive, which
enables PGP encryption of the entire order.

If PGP is the encryption program (Interchange determines this by searching for the string pgp in the
command string), no password field or file field need be used. The field mv_credit_card_number will
never be written to disk in this case.

EncryptProgram /usr/local/bin/pgp —feat sales@company.com

If the order Route method of sending orders is used (default in the demo), this sets the default value of the
encrypt_program attribute.

26.25. ErrorFile

This is where Interchange will write its runtime errors for THIS CATALOG ONLY. It can be shared with
other catalogs or the main Interchange error log, but if it is root-based, permission to write the file is require

ErrorFile /home/interchange/error.log

26.22. DisplayErrors 89

Interchange Documentation (Full)

26.26. ExtraSecure

Disallows access to pages which are marked with AlwaysSecure unless the browser is in HTTPS mode. A
Yes/No directive, the default is 'No.'

ExtraSecure Yes

26.27. Filter

Assigns one or more filters (comma separated) to be automatically applied to a variable.

As an example, multiple form variable submissions on the same page come back null-separated, like
'valuel\Ovalue2\Ovalue3'. To automatically change those nulls to spaces, you could use this directive:

Filter mail_list null_to_space

Of course you could just as easily use the regular [filter] tag on the page if the filter is only going to be used
a few places.

See the ictags document for more information, including a complete list of filters.

26.28. FormAction

Allows set up of a form action (like the standard ones return, submit, refresh, etc.). It requires a
Perl subroutine as a target:

FormAction foo <<EOR
sub {
$CGI->{mv_nextpage} = 'bar’;
}
EOR

If it returns a true (non-zero, non—-empty) value, Interchange will display the page defined in
$CGI->{mv_nextpage}. Otherwise, Interchange will not display any page. The default Interchange actions
can be overridden if desired. There is also a global version of this directive, which is overridden if a
catalog—specific action exists.

26.29. Formlgnore

Set to the name(s) of variables that should not be carried in the user session values. Must match exactly an
are case sensitive.

Formignore mv_searchtype

26.30. Fractionalltems

Whether items in the shopping cart should be allowed to be fractional, i.e., 2.5 or 1.25. Default is No.

Fractionalltems Yes

26.26. ExtraSecure 90

Interchange Documentation (Full)

26.31. Glimpse

The pathname for the glimpse command, used if glimpse searches are to be enabled. To use
glimpseserver, the —C, -J, and -K tags must be used.

Glimpse /ustr/local/bin/glimpse —C —J srch_engine —K2345

26.32. History

How many of the most recent user clicks should be stored in the session history. Default is O.

26.33. HTMLsuffix

The file extension that will be seen as a page in the pages directory. Default is .html.

HTMLsuffix .htm

26.34. ImageAlias

Aliases for images, ala Apache/NCSA, ScriptAlias, and Alias directives. Relocates images based in a
particular directory to another for Interchange use; operates after ImageDir. Useful for editing Interchange
pages with an HTML editor. Default is blank.

ImageAlias /images/ /thiscatalog/images/

26.35. ImageDir

The directory where all relative IMG and INPUT source file specifications are based. IT MUST HAVE A
TRAILING / TO WORK. If the images are to be in the DocumentRoot (of the HTTP server or virtual

server) subdirectory images, for example, use the ImageDir specification '/images/'. This would change
SRC="order.qgif" to SRC="/images/order.gif" in IMG and INPUT tags. It has no effect on other SRC tags.

ImageDir /images/

Can be set in the Locale settings to allow different image sets for different locales (MV3.07 and up).

26.36. ImageDirlnternal

A value for ImageDir only when the internal HTTP server is in use. It must have a trailing / to work, and
should always begin with a fully—qualified path starting with http://.

ImageDirinternal http://www.server.name/images/

26.37. ImageDirSecure

A value for ImageDir only when the pages are being served via HTTPS. It must have a trailing / to work,
and should always begin with a fully—qualified path starting with http://.

26.31. Glimpse 91

Interchange Documentation (Full)

ImageDirSecure /secure/images/

This is useful if using separate HTTPS and HTTP servers, and cannot make the image directory path heads
match.

26.38. Locale

Sets the special locale array. Tries to use POSIX setlocale based on the value of itself, then tries to accept
a custom setting with the proper definitions of mon_decimal_point, thousands_sep, and
frac_digits, which are the the only international settings required. Default, if not set, is to use
US-English settings.
Example of the custom setting:
Locale custom mon_decimal_point , mon_thousands_sep . frac_digits O
Example of POSIX setlocale for France, if properly aliased:

Locale fr

See setlocale(3) for more information. If embedded Perl code is used to sort search returns, the
setlocale() will carry through to string collation.

See Internationalization.

26.39. LocaleDatabase

Set to the Interchange database identifier of a table that contains Locale settings. These settings add on to
and overwrite any that are set in the catalog configuration files, including any include files.

Database locale locale.asc TAB
LocaleDatabase locale

26.40. MailOrderTo

Specifies the e-mail address to mail completed orders to.
MailOrderTo orders@xyzcorp.com

If 'none' is specified, no e-mailed order will be sent.

26.41. NoCache

The names of Interchange pages that are not to be built statically if STATIC PAGE BUILDING is in use. If
the name is a directory, no pages in that directory (or any below it) will be cached or built statically.

NoCache ord
NoCache special

26.38. Locale 92

Interchange Documentation (Full)

26.42. Nolmport

When set to one or more Interchange database identifiers, those database(s) will never be subject to import
Normally, Interchange checks to see if each database needs to be created and populated (from the source |
file) when the Interchange daemon is started or restarted, or a catalog is reconfigured.

This is useful for SQL databases used by other applications besides Interchange, or large databases you lo
and back up outside of Interchange. With this option you can omit the source text file for SQL databases
entirely.

Nolmport inventory

26.43. NolmportExternal

When set to true, this directive prevents database imports for all "external" databases:

NolmportExternal Yes

External database types are DBI (all popular SQL databases) and LDAP. Internal database types are the DI
variants (GDBM, DB_File, SDBM) and in—-memory databases.

The default setting is false (databases may be imported).

26.44. NonTaxableField

The name of the field in the products database that is set (to 1 or Yes) if an item is not to be taxed. Intercha
will log an error and tax it anyway if the field doesn't exist in the database. Blank by default, disabling the
feature.

NonTaxableField wholesale

26.45. NoSearch

Here you can provide one or more filename fragments that will be matched against the file name used in an
attempted search (the mv_search_file or 'fi' attribute). You may separate multiple match strings with
whitespace, and may include shell-style wildcards.

The default setting is 'userdb’, which means that by default you cannot use Interchange—style searches on t
userdb table. (Pure SQL searches still work with it, however.)

For example, consider this setting:
NoSearch userdb .* *.secret

In this case any search file with 'userdb’ in its name, or beginning with a dot, or ending in ".secret’, will not be
searchable.

26.42. Nolmport 93

Interchange Documentation (Full)

26.46. OfflineDir

The location of the offline database files for use with the Interchange offline database build command. Set tc
"offline" as the default, and is relative to VendRoot if there is no leading slash.

OfflineDir /usr/data/interchange/offline

26.47. OnFly

Enables on—-the—fly item additions to the shopping cart. If set to the name of a valid UserTag, that tag
definition will be used to parse and format the item with the following call:

$item = Vend::Parse::do_tag($Vend::Cfg—>{OnFly},
$code,
$quantity,
$fly[$i],
);

$fly[$]] is the value of mv_order_fly for that item. An onfly tag is provided by Interchange. See
<On-the—fly> ordering.

26.48. OrderCounter

The name of the file (relative to catalog root if no leading /) that maintains the order number counter. If not
set, the order will be assigned a string based on the time of the order and the user's session number.

OrderCounter etc/order.number

Bear in mind that Interchange provides the order number as a convenience for display, and that no internal
functions depend on it. Custom order number routines may be defined and used without fear of consequenc

If a Route is set up to supplant and the counter attribute is set there, this is ignored.

26.49. OrderLineLimit

The number of items that the user is allowed to place in the shopping cart. Some poorly-mannered robots n
"attack" a site by following all links one after another. Some even ignore any robots.txt file that may

have been created. If one of these bad robots orders several dozen or more items, the time required to save
restore the shopping cart from the user session may become excessive.

If the limit is exceeded, the command defined in the Global directive LockoutCommand will be executed

and the shopping cart will be emptied. The default is 0, disabling the check. Set it to a number greater than 1
number of line items a user is ever expected to order.

OrderLineLimit 50

26.50. OrderProfile

Allows an unlimited number of profiles to be set up, specifying complex checks to be performed at each of ti

26.46. OfflineDir 94

Interchange Documentation (Full)

steps in the checkout process. The files specified can be located anywhere. If relative paths are used, they
relative to the catalog root directory.

OrderProfile etc/profiles.order etc/profiles.login
The actions defined here are also used for mv_click actions if there is no action defined in scratch space.
They are accessed by setting the mv_order_profile variable to the name of the order profile. Multiple
profiles can reside in the same file, if separated by _ END__ tokens, which must be on a line by themselves
The profile is named by placing a name following a __ NAME___ pragma:

__NAME__ billing

The _ NAME__ must begin the line, and be followed by whitespace and the name. The search profile can
then be accessed by <mv_order_profile="billing">. See Advanced Multi-level Order Pages.

26.51. OrderReport

The location of the simple order report file. Defaults to etc/report.

OrderReport /data/order—form

26.52. PageDir

Location of catalog pages. Defaults to the pages subdirectory in the VendRoot directory.

PageDir /data/catalog/pages

Can be set in the Locale settings to allow different page sets for different locales.

26.53. PageSelectField

Sets a products database column which can be used to select the on—the—fly template page. This allows
multiple on-the—fly pages to be defined. If the field is empty (no spaces), the default flypage will be used.

PageSelectField display_page

26.54. ParseVariables

Determines whether global and catalog variables will be parsed in catalog configuration directives (not
including the Variable directive itself, which never parses its settings). Applies only to variables with names
in ALL CAPS. Default setting is No. The foundation catalog.cfg turns ParseVariables on and usually expects
it to be on.

Variable STORE_ID topshop
ParseVariables Yes

StaticDir /home/__STORE_ID__ /www/cat
ParseVariables No

26.51. OrderReport 95

Interchange Documentation (Full)

26.55. Password

The encrypted or unencrypted password (depending on Variable MV_NO_CRYPT) that will cause internal
authorization checks for RemoteUser to allow access.

Below is the encrypted setting for a blank password.

Password bAWoVkuzphOX.

26.56. PGP

If credit card information is to be accepted, and the e—mailed order will go over an insecure network to react
its destination, PGP security should be used. The key ring to be used must be for the user that is running th
Interchange server, or defined by the environment variable PGPPATH, and the key user specified must hav
key on the public key ring of that user.

PGP /usr/local/bin/pgp —feat orders@company.com
If this directive is non—null, the PGP command string as specified will be used to encrypt the entire order in
addition to any encryption done as a result if CreditCardAuto. If, for some reason, an error comes from

PGP, the customer will be given the special page failed.

If a Route is set up to supplant, this is ignored.

26.57. Pragma

Sets the default value of an Interchange pragma. The directive is set like this:
Pragma my_pragma_name

To enable a pragma for only a particular page, set it anywhere in the page:
[pragma my_pragma_name]

To disable a pragma for a particular page, set it anywhere in the page:
[pragma my_pragma_name 0]

Descriptions of each pragma follow.

dynamic_variables

dynamic_variables_file_only

no_image_rewrite

Prevents image locations in pages from being altered by Interchange. Added in Interchange 4.7.0.

Interchange normally rewrites image locations to point to ImageDir. This applies to image locations
mentioned in , <input src="...">, <body background="...">, <table background="...">, and

26.55. Password 96

Interchange Documentation (Full)

<tr/th/td background="...">.
When this pragma is not set, the following tag:

Would, assuming an ImageDir set to /foundation/images, be transformed into:

When pragma no_image_rewrite is set, the tag would remain unchanged.
safe_data

By default Interchange does not allow data returned from databases to be reparsed for Interchange tags.
Setting the safe_data pragma eliminates this restriction.

If for some reason you want to have tags in your database, for example, to use [page ...] for catalog—interna
hyperlinks in your product descriptions, you need to enable safe_data. Some things to consider:

1. It may be better to use the safe_data attribute available to certain tags instead of the pragma, or
perhaps to use [pragma] for a whole page or [tag pragma] ... [/tag] for a small block, instead of a
catalog—wide Pragma directive.

2.1In any case it is strongly recommended that you surround the area with [restrict] ... [/restrict] tags to
allow only the specific (hopefully relatively safe) set of tags you expect to appear, such as [page] or
[area]. Expect security compromises if you allow [calc] or [perl], or other extremely powerful tags.

3. Be certain that you know everywhere the data in your database will be used. Will it always be
possible to reparse for tags? What about when it's used to create an emailed plain—text receipt — w
a literal '[page ...]' tag show up in the product description on the receipt? Would the desired output of
'' be any better in a plaintext situation? What if you access your database from
applications other than Interchange? You'll then have to decide what to do with such tags; perhaps
you can simply strip them, but will the missing tag output cause you any trouble?

In short, safe_data is disabled by default for a reason, and you should be very careful if you decide to enabl
it.

(Watch out for parse order with [tag pragma] or [restrict] when used with lists that retrieve data from the
database, as in [prefix—*] and the flypage. Loops parse before regular tags like [tag] and [restrict], and thus
aren't affected by it.)

strip_white

Set this to strip whitespace from the tops of HTML pages output by Interchange. Such whitespace usually
comes from Interchange tags at the top of the page. The pragma's purpose is mostly to make 'view source'|

the browser a slightly more tolerable experience.

Default is off; whitespace is unchanged.

26.55. Password 97

Interchange Documentation (Full)

26.58. PriceCommas

If no commas are desired in price numbers (for the [item—price] tag), set this to No. The default is to use
commas (or whatever is the thousands separator for a locale).

PriceCommas no

This is overridden if a Locale price_picture is set.

26.59. PriceDivide

The number the price should be divided by to get the price in units (dollars or such). The default is one. If
penny pricing is used, set it to 100.

PriceDivide 100

Can be set in the Locale settings to allow a price adjustment factor for different currencies.

26.60. PriceField

The field in the product database that will be accessed with the [item—price] element. Default is "price."

PriceField ProductPrice

Can be set in the Locale settings to allow different price fields for different currencies.

26.61. ProductDir

Location of the database files. Defaults to the products subdirectory of the VendRoot directory. May not be
set to an absolute directory unless NoAbsolute is defined as No.

ProductDir /data/catalog/for-sale

Most people never set this directive and use the default of products.

26.62. ProductFiles

Database tables that should be seen as the "products” database.

ProductFiles vendor_a vendor_b
The key thing about this is that each will be searched in sequence for a product code to order or an
[item—field] or [loop—field ...] to insert. The main difference between [item-field
....] and [item—data table ...] is this fall-through behavior.

Default is products.

26.58. PriceCommas 98

Interchange Documentation (Full)

26.63. ReadPermission and WritePermission

By default, only the user account that Interchange runs under (as set by the SETUID permission on vlink) ce
read and write files created by Interchange. WritePermission and ReadPermission can be set to
user, group, or 'world'.

ReadPermission group
WritePermission group

26.64. RemoteUser

The value of the HTTP environment variable REMOTE_USER that will enable catalog reconfiguration. HTTI
basic authentication must be enabled for this to work. Default is blank, disabling this check.

RemoteUser interchange

26.65. Replace

Causes a directive to be emptied and re—set (to its default if no value is specified). Useful for directives that
add to the value by default.

Replace NoCache ord special multi reconfig query

Capitalization must be exact on each directive.

26.66. Require

Forces a Perl module, global UserTag, or GlobalSub to be present before the catalog will configure. This
is useful when transporting catalogs to make sure they will have all needed facilities.

Require usertag email
Require globalsub form_mail
Require module Business::UPS

26.67. RobotLimit

The RobotLimit directive defines the number of consecutive pages a user session may access without a 30
second pause. If the limit is exceeded, the command defined in the Global directive LockoutCommand will
be executed and catalog URLs will be rewritten with host 127.0.0.1, sending the robot back to itself. The
default is 0, disabling the check.

RobotLimit 200

26.68. Route

Sets up order routes. See Custom Order Routing. There are examples in the demo simple.

26.63. ReadPermission and WritePermission 99

Interchange Documentation (Full)

26.69. SalesTax

If non-blank, enables automatic addition of sales tax based on the order form. The value is one of three typ
of values:

multi

The special value "multi" enables table—based lookup of taxing rates based on the value of user form values
by default country and state.

[iti-tags]

If the value has a left square bracket, it is interpolated for ITL tags and the result used as the amount of the
salestax.

varl, var2

A comma-separated list of the field names (as placed in the checkout page, for example ord/checkout.html)
priority order. These are be used to look up sales tax percentage in the salestax.asc ASCII table. (This
table is not supplied with Interchange.)

SalesTax zip state

26.70. SalesTaxFunction

A Perl subroutine that will return a hash reference with the sales tax settings. This can be used to query a
database for the tax for a particular vendor:

SalesTaxFunction <<EOR
my $vendor_id = $Session—>{source};
my $tax = $TextSearch—>hash({
se => $vendor_id,
fi => 'salestax.asc/,
sf => 'vendor_code',
ml => 1000,
b
$tax = {} if ! $tax;
$tax—>{DEFAULT} = 0.0;
return $tax;
EOR

or simply produce a table:

SalesTaxFunction <<EOR
return {
DEFAULT => 0.0,
IL =>0.075,
OH => 0.065,
k
EOR

A DEFAULT value must always be returned or the function will be ignored.

26.69. SalesTax 100

Interchange Documentation (Full)

26.71. SaveExpire

The default amount of time that a cookie will be valid (other than the MV_SESSION_ID cookie). The ones
used in Interchange by default are MV_USERNAME and MV_PASSWORD for the CookieLogin feature.
Specified the same as SessionExpire, with an integer number followed by one of minutes, hours,

days, or weeks.

SaveExpire 52 weeks

Default is 30 days.

26.72. ScratchDefault

The default scratch variable settings that the user will start with when their session is initialized.

To disable placing URL rewrite strings after the user has given a cookie, set:

ScratchDefault mv_no_session_id 1
ScratchDefault mv_no_count 1
ScratchDefault mv_add_dot_html 1

To set the default locale:

ScratchDefault mv_locale de_DE

26.73. ScratchDir

The directory where temporary files will be written, notably cached searches and retired session IDs. Defaul
to tmp in the catalog directory.

ScratchDir Itmp

26.74. SearchProfile

Allows an unlimited number of search profiles to be set up, specifying complex searches based on a single
click. The directive accepts a file name based in the catalog directory if the path is relative:

SearchProfile etc/search.profiles

As an added measure of control, the specification is evaluated with the special Interchange tag syntax to
provide conditional setting of search parameters. The following file specifies a dictionary—based search in th
file 'dict.product”:

__NAME__ dict_search

mv_search_file=dict.product

mv_return_fields=1

[if value fast_search]
mv_dict_limit=-1
mv_last=1

[/if]

END__

26.71. SaveExpire 101

Interchange Documentation (Full)

The _ NAME__ is the value to be specified in the mv_profile variable on the search form, as in
<INPUT TYPE=hidden NAME=mv_profile VALUE="dict_search">

or with mp=profile in the one—click search.

[page scan se=Renaissance/mp=dict_search]Renaissance Art[/page]

Multiple profiles can reside in the same file, if separated by _ END__ tokens. _ NAME__ tokens should be
left-aligned, and __ END__ must be on a line by itself with no leading or trailing whitespace.

26.75. SecureURL

The base URL for secure forms/page transmissions. Normally it is the same as VendURL except for the
https: protocol definition. Default is blank, disabling secure access.

SecureURL https://machine.com/xyzcorp/cgi-bin/vlink

26.76. SendMailProgram

The location of the sendmail binary, needed for mailing orders. Must be found at startup. This often needs tc
be set for FreeBSD or BSDI.

SendMailProgram /usr/sbin/sendmail

If set to none, no mail can be sent by standard Interchange facilities. The default is the value in
interchange.cfg and varies depending on operating system.

26.77. Separateltems

Changes the default when ordering an item via Interchange to allowing multiple lines on the order form for
each item. The default, No, puts all orders with the same part number on the same line.

Setting Separateltems to Yes allows the item attributes to be easily set for different instances of the
same part number, allowing easy setting of things such as size or color.

Separateltems Yes

Can be overridden with the mv_separate_items variables (both scratch and values).

26.78. SessionDatabase

When storing sessions, specify the name of the directory or DBM file to use. The file extensions of .db or
.gdbm (depending on the DBM implementation used) will be appended. If the default file—based sessions ar
used, it is the name of the directory.

SessionDatabase session—data

Can be an absolute path name, if desired.

26.75. SecureURL 102

Interchange Documentation (Full)

It is possible for multiple catalogs to share the same session file, as well as for multiple Interchange servers
serve the same catalogs. If serving a extremely busy store, multiple parallel Interchange servers can share 1
same NFS-based file system and serve users in a "ping—pong" fashion using the file—based sessions. On h
systems, the level of directory hashing may be changed. By default, only 48 * 48 hashing is done. See the
source for SessionFile.pm.

26.79. SessionDB

The name of the Interchange database to be used for sessions if DBI is specified as the session type. This i
not recommended.

26.80. SessionExpire

A customer can exit the browser or leave the catalog pages at any time, and no indication is given to the we
server aside from the lack of further requests that have the same session ID. Old session information needs
be periodically expired. The SessionExpire specifies the minimum time to keep track of session

information. Defaults to one day. Format is an integer number, followed by s(econds), m(inutes), h(ours),
d(ays), or w(eeks).

SessionExpire 20 minutes
If CookieLogin is in use, this can be a small value. If the customer's browser has the Interchange session

cookie stored, he/she will be automatically logged back in with the next request. Note, however, that the
customer's cart and session values will be reset.

26.81. SessionLockFile

The file to use for locking coordination of the sessions.

SessionLockFile session—data.lock

This only applies when using DBM-based sessions. It is possible for multiple catalogs to share the same
session file. SessionDatabase needs to be set appropriately if the database is to be shared. Defaults to
session.lock, which is appropriate for separate session files (and therefore standalone catalogs). Can be
an absolute path name, if desired.

26.82. SessionType

The type of session management to be used. Use one of the following:

DB_File Berkeley DB

DBI DBI (don't use this, normally)
File File—based sessions (the default)
NFS File-based sessions, forces use of fcntl locking

GDBM GDBM
The default is file—based sessions, which provides the best performance and reliability in most environment:

If you are planning on running Interchange servers with an NFS—-mounted filesystem as the session target,
must set SessionType to "NFS". The other requisites are usually:

26.79. SessionDB 103

Interchange Documentation (Full)

1. fentl() supported in Perl 2. lock daemon running on NFS server system 3. lock daemon running on
Interchange server

See also the global directive LockType.

26.83. SpecialPage

Sets a special page to other than its default value. Can be set as many times as necessary. Will have no eff
if not one of the Interchange Required Pages.

SpecialPage checkout ord/checkout

SpecialPage failed special/error_on_order
SpecialPage interact special/browser_problem
SpecialPage noproduct special/no_product_found
SpecialPage order ord/basket

SpecialPage search srch/results

26.84. SpecialPageDir

The directory where special pages are kept. Defaults to special_pages in the catalog directory.

SpecialPageDir pages/special

26.85. Static

A Yes/No directive. Enables static page building and display features. Default is No.

Static Yes

26.86. StaticAll

A Yes/No directive. Tells Interchange to try and build all pages in the catalog statically when called with the
static page build option. This is subject to the settings of StaticFly, StaticPath, and NoCache.

Default is No. Pages that have dynamic elements will not be built statically, though that may be overridden
with [tag flag build][/tag] on the page in question.

StaticAll Yes

26.87. StaticDepth

The number of levels of static search building that will be done if a search results page contains a search.
Default is one, though it could be very long if set higher. Set to 0 to disable re-scanning of search results
pages.

StaticDepth 2

26.88. StaticDir

The absolute path of the directory which should be used as the root for static pages. The user ID executing

26.83. SpecialPage 104

Interchange Documentation (Full)

Interchange must have write permission on the directory (and all files within) if this is to work.

StaticDir /home/you/www/catalog

26.89. StaticFly

A Yes/No directive. If set to Yes, static builds will attempt to generate a page for every part number in the
database using the on—-the—fly page build capability. If pages are already present with those names, they wi
be overwritten. The default is No.

StaticFly Yes

26.90. StaticPage

Tells Interchange to build the named page (or pages, whitespace separated) when employing the static
page-building capability of Interchange. Not necessary if using StaticAll.

StaticPage info/about_us info/terms_and_conditions

26.91. StaticPath

The path (relative to HTTP document root) which should be used in pages built with the static page—building
capability of Interchange.

StaticPath /catalog

26.92. StaticPattern

A perl regular expression which is used to qualify pages that are to be built statically. The default is blank,
which means all pages qualify.

StaticPattern “info|*help

26.93. StaticSuffix

The extension to be appended to a normal Interchange page name when building statically. Default is .html.
Also affects the name of pages in the Interchange page directory. If set to .htm, the pages must be named
with that extension.

StaticSuffix .htm

26.94. Sub

Defines a catalog subroutine for use by the [perl][/perl] or [mvasp] embedded perl languages. Use the
"here document" capability of Interchange configuration files to make it easy to define:

Sub <<EOF
sub sort_cart_by_quantity {
my($items) = @_;

26.89. StaticFly 105

Interchange Documentation (Full)

$items = $ltems if ! $items;
my $out = '<TABLE BORDER=1>";
@$items = sort { $a—>{quantity} <=> $b->{quantity} } @S$items;
foreach $item (@$items) {
my $code = $item->{code};
$out .= '<TR><TD>";

$out .= $code;

$out .= '</TD><TD>";

$out .= $Tag—>data(‘products’, 'name’, $code);
$out .= '</TD><TD>";

$out .= $Tag—>data('‘products’, 'price’, $code);
$out .= '</TD></TR>";

}
$out .= '&It/TABLE>",

return $out;

}
EOF

As with Perl "here documents," the EOF (or other end marker) must be the ONLY thing on the line, with no
leading or trailing white space. Do not append a semicolon to the marker. The above would be called with:

[perl]

my $cart = $Carts—>{main};

return sort_cart_by_quantity($cart);
[/perl]

and will display an HTML table of the items in the current shopping cart, sorted by the quantity. Syntax error
will be reported at catalog startup time.

Catalog subroutines may not perform unsafe operations. The Safe.pm module enforces this unless global
operations are allowed for the catalog. See AllowGlobal.

26.95. Suggests

Generates a warning message when a Perl module, global UserTag, or GlobalSub is not present at catalog
configuration time. Same as the Require directive except not fatal.

Suggest usertag table_editor
Suggest globalsub file_info
Suggest module Business::UPS

26.96. TableRestrict

Used to provide "views" in database—based searches. Does not affect the text searches. Affects the table be
searched.

Takes the form of field=session_param, where field is a column in the table being iterated over, and
session_param is a $Session key (i.e., [data session username]).

TableRestrict products owner=username

The above would prevent the database search from returning any records except those where the column
owner contains the current value of [data session username].

26.95. Suggests 106

Interchange Documentation (Full)

Probably most usefully set by embedded Perl code in certain situations. For example:

[calc]
Restrict edit to owned fields
$Config—>{TableRestricti{products} = ‘'owner=username’;
return;

[/calc]

When using SQL-based databases, in effect it turns the base search query
select * from products

into
select * from products where owner = '[data session username]'

Interchange databases are similarly affected, though the methodology is different. Also may be useful in
"mall" situations, where user is allowed to only see products from the current store ID.

26.97. TaxShipping

A comma or space—separated list of states or jurisdictions that tax shipping cost, i.e., UT. Blank by default,
never taxing shipping.

TaxShipping UT,NV,94024

26.98. TemplateDir

Sets one or more directories (separated by whitespace) which will be searched (in order) for pages not foun
in the PageDir. If a page is not found in directories specified here, the search continues with the global
TemplateDir setting, if defined.

TemplateDir /var/lib/interchange/foundation/bonus_pages

This is undefined by default.

26.99. TrackFile

Name of a lodfile that tracks user traffic. This is used in the back office administration report on traffic by
affiliate.

The default is that no such file is kept.

26.100. UpsZonekFile

The file containing the UPS zone information, specified relative to the catalog directory unless it begins with
/. It can be in the format distributed by UPS or can be in a tab—delimited format, with the three-letter zip
prefix of the customer used to determine the zone. It interpolates based on the value in mv_shipmode. A
user database named the same as the mv_shipmode variable must be present or the lookup will return zerg

26.97. TaxShipping 107

Interchange Documentation (Full)

IMPORTANT NOTE: Zone information and updated pricing from UPS must be obtained in order for this to
work properly. The zone information is specific to a region!

UpsZoneFile lusrl/interchange/data/ups_zone.asc

26.101. UseModifier

Determines whether any attributes, the modifiers specified in the directive, can be attached to the item. See
Item Attributes. The default is no modifier. Don't use a value of quantity or this directive will not
work properly.

UseModifier size,color
Some values are used by Interchange and are not legal:
mv_mi
mv_si

mv_ib
group
code
quantity
item

26.102. ValuesDefault

Sets the initial state of the user values, i.e., [value key] or $Values—>{key}.

ValuesDefault fname New
ValuesDefault Iname User

When the user session starts, [value fname] [value Iname] will be "New User."

26.103. Variable

Defines a catalog variable that will be available in the current catalog with the notation _ VARIABLE .
Variable identifiers must begin with a capital letter, and can contain only word characters (A-Z,a-z,0-9 and
underscore). They are case—sensitive.

Variable DOCUMENT_ROOT /usr/local/etc/httpd/htdocs

Only variables with ALL CAPS names will be parsed in catalog pages or, when the ParseVariables
directive is set, in catalog configuration directives (other than in Variable directives themselves). These are
substituted second (right after global Variables) in any Interchange page, and can contain any valid
Interchange tags except global variables. If a variable is called with the notation @_VARIABLE_@, and
there is no catalog Variable with its name, the global Variable value will be inserted.

26.104. VariableDatabase

The name of a database containing a field Variable which will be used to set Interchange variable values. F
example, a database defined as:

26.101. UseModifier 108

Interchange Documentation (Full)

Database var var.txt TAB
VariableDatabase var

and containing

code Variable
HELLO Hi!

would cause _ HELLO__ to appear as Hi!.
The field name is case-sensitive, and variable would not work.
The values are inserted at time of definition. Any single—level hash—oriented Interchange directive, such as
SpecialPage, ScratchDefault, or ValuesDefault, can be set in the same way. If the
VariableDatabase named does not exist at definition time, a database of the default type with an ASCII
file source appending .txt is assumed. In other words:
VariableDatabase variable

is equivalent to

Database variable variable.txt TAB
VariableDatabase variable

26.105. VendURL

Specifies the base URL that will run vlink as a cgi—bin program.

VendURL http://machine.company.com/cgi—bin/vlink

26.106. WideOpen

Disables IP qualification of user sessions. This degrades catalog security. Do not use unless using
encryption or a real-time payment gateway.

Copyright 2001-2002 Red Hat, Inc. Freely redistributable under terms of the GNU General Public License.
line:

26.105. VendURL 109

Foundation Store

Foundation Store 110

27. The Foundation Store

The Foundation store is distributed with Interchange to give you a starting point with which to build your
e-business. While the Foundation store is designed to be relatively easy to start with, it is still a full-featurec
demonstration of a number of Interchange capabilities. Once you understand the Foundation store and how
works you are well on your way to understanding the Interchange software.

The following is a list of some popular features:

Category Searches

Regardless of the number of products in a catalog, categorizing them makes them easier to find. Pick a fielc
the database, typically named category, and classify the products for search using Interchange.

Images

You can display a thumbnail image for the items that have images. To do this, add an image field in the
database. (See the 'image' field of the products database.)

Related Items

You can embed searches of similar products on an individual product display page with the [query ...]
or [loop ...] tags. Or, if customer data is developed, search a past order database and display products
that would be of interest to that customer.

Reviews/Testimonials

You can key the placement of a review or testimonial on the existence of a file being in a certain directory.
This is reasonable to do when a user is viewing a single product.

27. The Foundation Store 111

28. Tree design

By determining how users will enter and exit the catalog, complex and intelligent conditional schemes are
possible, especially if the Cookies capability is exercised. However, it is recommended that simplicity be
used. Consumers will not make purchases if they can't navigate their way around the catalog.

It is important to remember that users will lose their session (and items in their shopping cart) if their browse
does not accept cookies and they leave the site. Interchange addresses this problem by using the area and
page tags. If you are using frames, source all frame panes containing Interchange links from an initial page

served by Interchange. If you don't do this, the user may have multiple session IDs depending on which fran
generated the link.

Note that Interchange can work properly even if the browser doesn't store cookies. In this situation

Interchange inserts a session ID into each URL; if the ID is preserved as the user navigates from page to pe
the session will remain intact.

28. Tree design 112

29. The Catalog Directory

Interchange pages are contained in the catalog directory. Each individual catalog has its own base directory
The catalog directory has the following structure by default:

catalog.cfg

File containing configuration directives for a particular catalog. Configuration settings established in the
catalog.cfg directory will not effect any other catalogs running under the version of Interchange you are usin
Subcatalogs can have differing information in a file named for that subcatalog.

config

Directory that will be read when directives are set with the filename notation. For example, the file

config/static.pages will be read when the following directive is encountered in the catalog.cfg
file.

StaticPage <static.pages
This directory also contains template information used with the makecat program.
error.log

File which contains catalog—specific errors. It is also where any syntax errors in embedded Perl code are
shown.

etc
Directory normally used for tracking files, order profiles, and other configuration and log information.
pages

Directory that contains the pages of the catalog. This can be considered to be the "document root" of the
catalog. Pages contained therein are called with the path information after the script name. For example:

/cgi—-bin/simple/products/gold will call the page in the file
pages/products/gold.html.

products

Directory that contains database source files, including the special Interchange databases shipping.asc,
pricing.asc (and other shipping database files).

session
Directory that contains session files.
tmp

The temporary or scratch directory used for various storage reasons, like retired ID numbers, search paging

29. The Catalog Directory 113

Interchange Documentation (Full)

files, sort tests, import temporary files, etc. This is the default set by ScratchDir. It can be redefined to be
located on another partition.

29. The Catalog Directory 114

30. Page Templates

This section describes the files located in the Foundation demo.

30.1. Template File Locations

This diagram shows the directory and file structure used for the default Foundation 'templates' directory. The
base will be a directory with the name of your catalog, here called CATROOT.

CATROOT/
I
|-——-templates/
|-———cart
|-———components/
|-———affiliate_receptor
|-———best_horizontal
|-———best_vertical
|-———cart
|-——-cart_display
|-———cart_tiny
|-———category_vertical
|-——-cross_horizontal
|-——-cross_vertical
|-———modular_buy
|-———modular_update
|-———none
|-———promo
|-——=promo_horizontal
|-———promo_vertical
|-——-random
|-——-random_horizontal
|-——-random_vertical
|-——-saved_carts_list_small
|-——-search_box_small
|-———upsell
|-——-upsell_horizontal
|-——-upsell_vertical
|-——-default ——> foundation
|-——-foundation/
|-———cart
|-———fullwidth
|-——-leftonly
|-——-leftright
|-——-regions/
|-——-LEFTONLY_BOTTOM
|-——-LEFTONLY_TOP
|-——-LEFTRIGHT_BOTTOM
|-——-LEFTRIGHT_TOP
|-———NOLEFT_BOTTOM
|-———-NOLEFT_TOP
|-——-simple
|-——-theme.cfg
|-———fullwidth
|-——-leftonly
|-——-leftright
|-——-regions/
|-——-LEFTONLY_BOTTOM
|-——-LEFTONLY_TOP
|-——-LEFTRIGHT_BOTTOM

30. Page Templates 115

Interchange Documentation (Full)

|--—-LEFTRIGHT_TOP
|-———NOLEFT_BOTTOM
|-———NOLEFT_TOP
|-———sampledata/
|-———computers/
|-——-images/
|-——-items/
|-———generic.gif
|-———gift_certificate_large.gif
|-——-yourimage.gif
|-——-thumb/
|-———generic_thumb.gif
|-———gift_certificate.gif
|-———thumb.gif
|-———products/
|-——-inventory.txt
|-———merchandising.txt
|-———mv_metadata.asc
|-——-options.txt
|-———pricing.txt
|-——-products.txt
|-——-userdb.txt
|-——-reports/
|-——-download/
|-—--00352as.pdf
|-——-11993ab.pdf
|-——-22083da.pdf
|-——-49503cg.pdf
|-—--59330rt.pdf
|-——-59402fw.pdf
|-—--66548ch.pdf
|-——-73358ee.pdf
|-———-83491vp.pdf
|-—--90773sh.pdf
|-———products/
|-———mv_metadata.asc
|-———products.txt
|-——-userdb.txt
|-——-tools/
|————etc/
|-——-after.cfg
|-——-before.cfg
|-——-images/
|-——-items/
|-——-0s28004.gif
|-—--0s28005.gif
|-—--0s28006.gif
|-—--0s28007.gif
|-—--0s28008.gif
|-—--0s28009.gif
|-——-0s28011.gif
|-——-0s28044.gif
|-——-0s28057a.gif
|-——-0s28057b.gif
|-—--0s28057c.gif
|-—--0s28062.gif
|-——-0s28064.gif
|-——-0s28065.gif
|-—--0s28066.gif
|-——-0s28068.gif
|-——-0s28068a.gif
|-——-0s28068b.gif

30. Page Templates

116

Interchange Documentation (Full)

|-———0s28069.gif
|-—--0s28070.gif
|-—--0s28072.gif
|-—--0s28073.gif
|-—--0s28074.gif
|-—--0s28075.gif
|-—--0s28076.gif
|-—--0s28077.gif
|-———0s28080.gif
|-—--0s28081.gif
|-—--0s28082.gif
|-——-0s28084.gif
|-———0s28085.gif
|-———0s28086.gif
|-—--0s28087.gif
|-—--0s28108.gif
|-—--0s28109.gif
|-—--0s28110.gif
|-——-0s28111.gif
|-—--0s28112.gif
|-—--0s28113.gif
|-———0s29000.gif
|-——=thumb/
|-———gift_certificate.gif
|-———0s28004_b.gif
|-———0s28005_b.gif
|-———0s28006_b.gif
|--——0s28007_b.gif
|-———0s28008_b.gif
|--——0s28009_b.gif
|-——-0s28011_b.gif
|-——-0s28044_b.gif
|--——0s28057a_b.gif
|--——0s28057b_b.gif
|-———0s28057c_b.qgif
|-———0s28062_b.gif
|-———0s28064_b.gif
|-———0s28065_b.gif
|-———0s28066_b.gif
|-———0s28068_b.gif
|--——0s28068a_b.gif
|-———0s28068b_b.gif
|-———0s28069_b.gif
|-——-0s28070_b.gif
|-——-0s28072_b.gif
|-——-0s28073_b.gif
|-——-0s28074_b.gif
|-——-0s28075_b.gif
|-——-0s28076_b.gif
|-——-0s28077_b.gif
|-———0s28080_b.gif
|--——0s28081_b.gif
|-———0s28082_b.gif
|-———0s28084_b.gif
|-———0s28085_b.gif
|-———0s28086_b.gif
|-———0s28087_b.gif
|-——-0s28108_b.gif
|-——-0s28109_b.gif
|-——-0s28110_b.gif
|-———0s28111_b.gif
|-———0s28112_b.gif

30. Page Templates 117

Interchange Documentation (Full)

|-—--0s28113_b.gif
|-—--0s29000_b.gif
|-———products/

|-———affiliate.txt
|-———area.txt
|-———cat.txt
|-———inventory.txt
|-———merchandising.txt
|-———mv_metadata.asc
|-———options.txt
|-———orderline.txt
|-———pricing.txt
|-———products.txt
|-——-transactions.txt
|-——-userdb.txt

30.2. Themes

This section explains how themes are defined in Interchange via the STYLE variable and the theme
configuration file, theme.cfg.

30.2.1. STYLE

The STYLE variable in CATROOT/products/variable.txt indicates the template style to be used as the theme
for the catalog; the appropriate templates for that theme are found in CATROOT/templates/ _STYLE__ /. (T
change the value of the STYLE variable, either edit variable.txt directly or use the table editor feature of the
admin interface.)

The default theme for Interchange is the Foundation demo; hence, the STYLE variable is assigned the value
'Foundation' in variable.txt. The theme is defined in catalog.cfg as follows (line numbers added):

Here we set up the catalog theme.
1 ParseVariables Yes
2 ifndef STYLE
3 Variable STYLE default

4 endif
5 include templates/__STYLE__/theme.cfg

Variables that make up the look and feel of the STYLE (theme) are defined in the file
CATROOT/templates/foundation/theme.cfg, which is read by Interchange in line 5 above.

30.2.2. theme.cfg

The file CATROOT/templates/foundation/theme.cfg serves three purposes:

1. It defines the THEME and THEME_IMG_DIR variables,
2.1t defines a cascading style sheet for the theme, and
3. It defines the location of region templates according to the traffic settings for the Interchange daemol

The THEME variable is used to set the location of the region templates in the traffic settings section of the

theme.cfq file. It is also used in the cart template definition file (CATROOT/templates/cart) to set the path of
an image. The THEME_IMG_DIR variable is used to set image paths in the template region files and the

30.2. Themes 118

Interchange Documentation (Full)

template component files.

The look and feel of the Foundation theme are defined primarily in the cascading style sheet specified in the
theme.cfq file. This

The Interchange TRAFFIC setting, defined system-wide in interchange.cfg, is described in the
??document??. The settings in theme.cfg pertain to the location of region templates for the high and low
traffic settings. For example, if you need to define a separate set of high traffic templates, you would change
the ConfigDir variable in theme.cfg to point to the directory containing those templates.

30.3. Template Definition Files

The template definition files store the name and description of the template as well as components and optic
for that template.

templates/cart
templates/fullwidth
templates/leftonly
templates/leftright

templates/foundation/cart
templates/foundation/fullwidth
templates/foundation/leftonly
templates/foundation/leftright
templates/foundation/simple

30.3.1. Template Walkthrough —— leftonly

This section is best read while viewing the file CATROOT/templates/leftonly and the 'Edit Page' page in the
Content Editor of the Interchange Administration Tool.

Looking at the example template definition file, all lines located between the [comment] and [/comment] tags
(lines 1 and 53) control what is available in the Edit Page screen of the Administration Tool.

Lines 2-5: Template specification

2 ui_template: Yes

3 ui_template_name: leftonly

4 ui_template_layout: LEFTONLY_TOP, UI_CONTENT, LEFTONLY_BOTTOM
5 ui_template_description: Page with top/left areas.

Line 2 indicates that this file is a template for the user interface. Line 3 names the template, while Line 4
indicates the regions that comprise the template and that will eventually make up the new page that is creat
from the template. Line 5 provides a description used to identify the template when it appears in a Select
Template pull-down menu on the Edit Page of the Administration Tool. This description can be changed or
modified to better describe a new template or a template that is created from the stock templates provided w
Interchange.

Lines 7-8: Break

7 break:
8 widget: break

30.3. Template Definition Files 119

Interchange Documentation (Full)

This code creates a separation line in the Edit Page between sets of options. In the default Interchange
installation the line is grey, but the color can be changed. Note —— Changing this color applies the change to
any catalog served by Interchange.

Lines 10-11: Page Title

10 page_title:
11 description: Page title

This code tells Interchange to display a text field on the Edit Page for entering the page title (‘'Title of New
Page' in this example). The value entered is assigned to the scratch variable page_title and is set as a defa
value at the bottom of the template definition file using the following ITL:

54 [set page_title][set]
which, in turn, sets the scratch variable on the new page using the tag
[set page_title]Title of New Page[set]

The scratch variable page_title is parsed by the following code in the region template specified in the temple
definition file and called in the new page:

<title>[scratch page_title]</title>
Lines 13-15: Page Banner

13 page_banner:
14 description: Page banner
15 help: Defaults to page title

Assigns a textual title for the page to the scratch variable page_banner, which is assigned by the following
ITL:

55 [set page_banner][set]

The scratch variable page_banner is set on the new page using the tag
[set page_banner]Banner of New Page[set]

The scratch variable can be parsed in the region template by this code:

[either]

[scratch page_banner]
[or]

[scratch page_title]
[feither]

This results in the page banner being displayed if defined. Otherwise, the page title is used.

Lines 17-20: Members Only

17 members_only:
18 options: 1=Yes,0=No*
19 widget: radio

30.3. Template Definition Files 120

Interchange Documentation (Full)

20 description: Members only

This creates a radio—button form element on the Edit Page with the user can specify whether the page can |
accessed if a visitor is logged in (Yes) or not (No). The default is indicated by an asterisk.

The scratch variable members_only is assigned by the ITL code

56 [set members_only][set]

and set on the new page using the tag

[set members_only]O[/set]

if the page can be accessed without logging in or

[set members_only]1[/set]
if it can not.

The members_only function is handled by the following code within each region template file:

[if scratch members_only]
[set members_only][/set]
[if Isession logged_in]
[set mv_successpage]@ @MV_PAGE@ @][/set]
[bounce page=login]
[/if]
[/if]

This code says that if "members only" is set to yes, and the visitor is logged in, to display the page. Otherwis
redirect the visitor to the login page.

Lines 22-23: Break

22 breakl:
23 widget: break

Another separation line.

Lines 25-28: Horizontal Before Component

25 component_before:

26 options: =none, best_horizontal=Best Sellers, cross_horizontal=Cross sell, \
promo_horizontal=Promotion, random_horizontal=Random items, \
upsell_horizontal=Upsell

27 widget: select

28 description: Component before content

This allows the inclusion of a defined component (included in the CATROOT/templates/components
directory) to be displayed before, or above, the page's content. It provides a pull-down menu on the Edit Pa
displaying the available components. The components, identified here on line 26, can be assigned a name \
the value=name convention.

The scratch variable component_before is assigned in the template definition file by the ITL code

30.3. Template Definition Files 121

Interchange Documentation (Full)

57 [set component_before][set]

It is called with the following code within the LEFTRIGHT_TOP, LEFTONLY_TOP, and NOLEFT_TOP
region templates:

[if scratch component_before]
[include file="templates/components/[scratch component_before]"]

[/if]
Lines 30-33: Horizontal After Component

30 component_after:

31 options: =none, best_horizontal=Best Sellers, cross_horizontal=Cross sell, \
promo_horizontal=Promotion, random_horizontal=Random items, \
upsell_horizontal=Upsell

32 widget: select

33 description: Component after content

Similar to component_before, this allows the inclusion of a defined component after, or below, the page's
content.

The scratch variable component_before is assigned in the template definition file by the ITL code

58 [set component_after][set]

It is called with the following code within the LEFTRIGHT _BOTTOM and LEFTONLY_BOTTOM region
templates:

[if scratch component_after]
[include file="templates/components/[scratch component_after]"]

[/if]
Lines 35—-38: Horizontal Item Width

35 component_hsize:

36 options: 1,2,3*

37 widget: select

38 description: Component items horizontal

This setting allows you to choose how many items the horizontal components display. For example, the
horizontal best sellers component ("best_horizontal") uses this setting to randomly select the best sellers.
Notice the default is 3 if hothing is defined. It is called by the following code in the promo_horizontal and
random_horizontal components in the Foundation demo.

random="[either][scratch component_hsize][or]2[/either]"

Lines 40-45: Before/After Banner

40 hbanner:

41 options: =——custom--, Also see..., Best Sellers, New items, \
Some of our fine products, Specials, You might also like

42 widget: move_combo

43 width: 40

44 description: Before/after Banner

45 help: Banner for Before/after component

30.3. Template Definition Files 122

Interchange Documentation (Full)

Allows a title for the horizontal components to be defined to be displayed in a header above the component'
items. It is called with the [scratch hbanner] tag and used in the Foundation demo in the random_horizontal
component.

Lines 47-51: Special Tag

47 hpromo_type:

48 options: specials=Specials, new=New items
49 widget: select

50 description: Special tag

51 help: Only for a horizontal Promotion

This setting is only viable when a promotion is used for a horizontal component. It tells the promotional
component which row(s) to evaluate in the merchandising table for display within the component. This
setting, used in the promo_horizontal component, typically correlates to the featured column of the
merchandising table as follows:

[query arrayref=main
sql="
SELECT sku,timed_promotion,start_date,finish_date
FROM merchandising
WHERE featured = '[scratch hpromo_type]'

]
[/query]

30.4. Edit Page Function

Creating a page with the following specifications using the Edit Page function results in the HTML and ITL
code displayed below.

Specifications:

Template: Page with top/left areas.
Page title: test

Page banner: test

Members only: No

Component before content: Best Sellers
Component after content: Random items
Component items horizontal: 3

Before/after Banner: New items
Special tag: Specials
Content: <P>My first HTML/ITL page!

Resulting code:

[comment]

ui_template: Yes
ui_template_name: leftonly
[fcomment]

[set hbanner]New items][/set]
[set page_title]test[/set]

[set hpromo_type]specials[/set]
[set component_hsize]3[/set]
[set page_banner]test[/set]
[set members_only]0[/set]

30.4. Edit Page Function 123

Interchange Documentation (Full)

[set component_before]best_horizontal[/set]
[set component_afterrandom_horizontal[/set]
@_LEFTONLY_TOP_@

<!-— BEGIN CONTENT ——>
<P>My first HTML/ITL page!
<!-— END CONTENT -->

@_LEFTONLY_BOTTOM_@

An important point demonstrated here is the inclusion of the region templates LEFTONLY_TOP and
LEFTONLY_BOTTOM through the @_VARIABLE_NAME_@ notation. These are included because of line
4 of the leftonly template definition file:

4 ui_template_layout: LEFTONLY_TOP, Ul_CONTENT, LEFTONLY_BOTTOM

However, understand that you are free to change the region templates used in the file by editing the file itse
or, better yet, using an existing region as a starting point for a region of your own design.

The next section explains the structure of region templates.

30.5. Region Templates

Interchange region templates (or "regions") are portions of HTML and ITL that are included in pages within
catalog. Using regions, along with the cascading style sheet defined in theme.cfg, allows you to control the
look and feel of specific parts of each catalog page.

The default Foundation region set, found in CATROOT/templates/foundation/regions, includes the following

LEFTONLY_TOP
LEFTONLY_BOTTOM
LEFTRIGHT_TOP
LEFTRIGHT_BOTTOM
NOLEFT_TOP
NOLEFT_BOTTOM

The Foundation demo uses the Variable feature extensively to simplify hand page editing. Basically, a
Variable is a define that permits the substitution of text for a simple _ VARIABLE___ string in a page. For
example, in the test page above, the variables LEFTONLY_TOP and LEFTONLY_BOTTOM correspond to
region templates that provide a logobar, menubar, leftside menu, and copyright footer. Content, consisting ©
HTML and ITL, is placed within the BEGIN and END CONTENT comments. The following illustration

shows how this looks on the page:

LOGOBAR |

MENUBAR |

I

LEFTSIDE | This is your content
I I
I I
I I

30.5. Region Templates 124

Interchange Documentation (Full)

COPYRIGHT |

In this diagram, LEFTONLY_TOP contributes the LEFTSIDE, LOGOBAR, and MENUBAR sections, while
LEFTONLY_BOTTOM contributes the COPYRIGHT section.

The following subsections provide an inventory of where each of the region templates, included with the
Foundation demo, are used in the pages and template definition files that make up the catalog.

30.5.1. LEFTONLY_TOP

The LEFTONLY_TOP template region is used in the following template pages:

pages/aboutus.html
pages/account.html
pages/affiliate/index.html
pages/affiliate/login.html
pages/canceled.html
pages/contact.html
pages/customerservice.htmi
pages/flypage.html
pages/help.html
pages/login.html
pages/logout.html
pages/modular_modify.html
pages/new_account.html
pages/ord/basket.html
pages/privacypolicy.html
pages/process_return.html
pages/quantity.html
pages/query/check_orders.html
pages/query/order_detail.html
pages/query/order_return.html
pages/returns.html
pages/saved_carts.html
pages/ship_addresses.html
pages/ship_addresses_added.html
pages/ship_addresses_removed.html
pages/stock-alert—added.html
pages/stock-alert.html

The LEFTONLY_TOP template region is used in the following templates:

templates/foundation/cart
templates/foundation/leftonly
templates/foundation/simple

30.5.1.1. Region Template Walkthrough —— LEFTONLY_TOP

1 <!-- BEGIN LEFTONLY_TOP ——>
2 [if scratch members_only]
[set members_only][/set]
[if Isession logged_in]
[set mv_successpage]@ @MV_PAGE@ @][/set]
[bounce page=login]
[/if]
[/if]

©O©oo~NOO 0w

30.5.1. LEFTONLY_TOP 125

Interchange Documentation (Full)

10 <html>

11 <head>

12 <title>[scratch page_title]</title>

13 _ THEME_CSS__

14 </head>

15

16 <body marginheight="0" marginwidth="0">

17

18 <!-—-top left and right logo ———>

19 <table width="100%" border="0" cellspacing="0" cellpadding="0">

20 <tr>

21 <td align="left" valign="middle" class="maincontent">

22

23 </td>

24 <td align="right" valign="middle" class="maincontent">

25
26 </td>

27 <htr>

28 </table>

29

30 <!---menu bar along the top ———>

31 <table width="100%" border="0" cellspacing="0" cellpadding="0">

32 <tr>

33 <td width="100%" class="menubar">

34
35

36

37 [if session logged_in]

38

39 [else]

40
41 [lelse]

42 [fif]

43

44

45

46

47

48
49

50

51 </td>

52 </tr>

53 </table>

54

55 <I-—- left category column, main content column, and right special column ———>
56 <table width="100%" border="0" cellspacing="0" cellpadding="0">

57 <tr>

58 <td width="20%" valign="top" align="Ieft" class="categorybar">

59 <I--Left Sidebar——>

60 <table width="100%" border="0" cellspacing="0" cellpadding="0">

61 [include file="templates/components/[control component none]"][control]
62 [include file="templates/components/[control component none]"][control]
63 [include file="templates/components/[control component none]"][control]
64 </table>

65 </td>

66 <td width="80%" valign="top" align="center" class="maincontent">

67 [include file="templates/components/[control component none]"][control]
68

30.5.1. LEFTONLY_TOP 126

Interchange Documentation (Full)

30.5.2. LEFTONLY_BOTTOM

The LEFTONLY_BOTTOM template region is used in the following template pages:

pages/aboutus.html
pages/account.html
pages/affiliate/index.html
pages/affiliate/login.html
pages/canceled.html
pages/contact.html
pages/customerservice.htmi
pages/flypage.html
pages/help.html
pages/login.html
pages/logout.html
pages/modular_modify.html
pages/new_account.html
pages/ord/basket.html
pages/privacypolicy.html
pages/process_return.html
pages/quantity.html
pages/query/check_orders.html
pages/query/order_detail.html
pages/query/order_return.html
pages/returns.html
pages/saved_carts.html
pages/ship_addresses.html
pages/ship_addresses_added.html
pages/ship_addresses_removed.html
pages/stock-alert—added.html
pages/stock-alert.html

The LEFTONLY_BOTTOM template region is used in the following templates:

templates/foundation/cart
templates/foundation/leftonly
templates/foundation/simple

30.5.3. LEFTRIGHT_TOP

The LEFTRIGHT_TOP template region is used in the following template pages:

pages/browse.html
pages/index.html
pages/results.html
pages/results_big.html
pages/swap_results.html

The LEFTRIGHT_TOP template region is used in the following templates:

templates/foundation/leftright

30.5.4. LEFTRIGHT_BOTTOM

The LEFTRIGHT_BOTTOM template region is used in the following template pages:
pages/browse.html

30.5.2. LEFTONLY_BOTTOM 127

Interchange Documentation (Full)

pages/index.html
pages/results.html
pages/results_big.html
pages/swap_results.html

The LEFTRIGHT_BOTTOM template region is used in the following templates:

templates/foundation/leftright

30.5.5. NOLEFT_BOTTOM

The NOLEFT_BOTTOM template region is used in the following template pages:

pages/ord/checkout.html
pages/splash.htmi

The NOLEFT_BOTTOM template region is used in the following templates:

templates/foundation/fullwidth

30.5.6. NOLEFT_TOP

The NOLEFT_TOP template region is used in the following template pages:

pages/ord/checkout.html
pages/splash.htmi

The NOLEFT_TOP template region is used in the following templates:

templates/foundation/fullwidth

30.6. Template Page List

/home/ic/catalogs/ft/pages/:

aboutus.html
account.html
browse.html
canceled.html
change_password.html
contact.html
customerservice.html
deliver.html
flypage.html
help.html

index.html

login.html
logout.html
lost_password.html
modular_modify.html
new_account.html
privacypolicy.html
process_return.html
quantity.html
results_big.html
results_either.html

30.5.5. NOLEFT_BOTTOM

128

Interchange Documentation (Full)

results.html

returns.html

saved_carts.html
ship_addresses_added.html
ship_addresses.html
ship_addresses_removed.html
splash.html
stock—-alert—added.html
stock-alert.html
swap_results.html

/home/ic/catalogs/ft/pages/admin/report_def:

Order%20Status.html
Products%20to%20edit.html

/home/ic/catalogs/ft/pages/admin/reports:

Order%20Status.html
Products%20to%20edit.html

/home/ic/catalogs/ft/pages/affiliate:

index.html
login.html

/home/ic/catalogs/ft/pages/ord:

basket.html
checkout.html

/home/ic/catalogs/ft/pages/query:

check_orders.html
get_password.html
order_detail.html
order_return.html

30.7. Special Page List

/home/ic/catalogs/ft/special_pages/:

badsearch.html
canceled.html
cc_not_valid.html
confirmation.html
failed.html
interact.html
missing.html
needfield.html
nomatch.html
noproduct.html
notfound.html
order_security.html
reconfig.html
sec_faq.html
security.html

30.7. Special Page List

129

Interchange Documentation (Full)

violation.html

30.8. Components

« Added new [control] and [control—set] tags to set series of Scratch— like option areas. Used for
components in Ul content editing.

Interchange components are portions of HTML and ITL that are included in pages within a catalog dependir
on options set in the Administration Tool. The default component set includes the following:

affiliate_receptor
best_horizontal
best_vertical

cart

cart_display
cart_tiny
category_vertical
cross_horizontal
cross_vertical
modular_buy
modular_update
none

promo
promo_horizontal
promo_vertical
random
random_horizontal
random_vertical
saved_carts_list_small
search_box_small
upsell
upsell_horizontal
upsell_vertical

/home/ic/catalogs/ftitemplates/components:

30.8.1. affiliate_receptor

Not used in Foundation demo

30.8.2. best_horizontal

The best_horizontal component is used in the following templates:

templates/foundation/cart
templates/foundation/leftonly
templates/foundation/leftright

Not used in Foundation demo pages

30.8.3. best_vertical

The best_vertical component is used in the following template:

templates/foundation/leftright

30.8. Components 130

Interchange Documentation (Full)

Not used in Foundation demo pages

30.8.4. cart

The cart component is used in the following page:

pages/ord/basket.html

30.8.5. cart_display

The cart_display component creates a small shopping cart that is displayed on the search results page
(pages/results.html). It is displayed after an item in a list of results from a search is added to the shopping c:
cart_display is called in results.html by the following include statement:

[include file="templates/components/cart_display"]

The cart_display component is used in the following pages:
pages/results.html

30.8.5.1. Component Walkthrough —— cart_display

The remainder of this section is best read in conjunction with the file
CATROOT/templates/components/cart_display in a text editor.

Lines 1-6: Component Specification

[comment]

ui_component: cart_display

ui_component_group: info

ui_component_label: Smaller cart for display in content area

[fcomment]

NOoO o~ WN R

These lines control what is shown in the Edit page screen of the admin interface.

8 <!-- BEGIN COMPONENT [control component cart_display] ——>

Line 8 is an HTML comment noting the start of the code for the component. (Note that this can serve as a
useful debugging tool to help you locate the component in the resulting HTML generated by Interchange
when you view the source of a page loaded in the browser.)

9 [if items]

Line 9 checks to see if there are items in the shopping basket. If there are, the remaining code up to the clo:
[/if] tag on line 64 is executed. If not, Interchanges continues executing the remaining code in results.html (tf
file that calls the cart_display component).

10 <center>

11 <table width="95%" border="0" cellspacing="0" cellpadding="0">
12 <TR class="contentbar2" VALIGN=TOP>

13 <td align=center class="contentbar2">Action</td>

30.8.4. cart 131

Interchange Documentation (Full)

14 <td class="contentbar2">

15 SKU

16 </td>

17 <td class="contentbar2">
18 Description

19 </td>

20 <td class="contentbar2">
21 Quantity

22 </td>

23 <td class="contentbar2">
24 Price

25 </td>

26 <td class="contentbar2">
27 Extension

28 </td>

29 </TR>

Line 10 centers the table started in line 11. Lines 12-29 create a header row in the shopping cart consisting
the header titles Action, SKU, Description, Quantity, Price, and Extension.

30 <TBODY>
31 [item-list]
32

Line 30 defines the remainder of the table as a section while the [item-list] tag on line 31 tells Interchange t
execute the code up to the closing tag ([/item-list] on line 59 for each item the customer has ordered so far.

33 <trclass="[item-alternate 2]Jmaincontent[else]contentbarl[/else][/item-alternate]">
34 <td align=center valign=top>

35 [page ord/basket]edit

36 </TD>

37 <td valign=top>[item—-code]</TD>

38 <td valign=top>[page [item—code]][item—description]

39 </TD>

40

Line 33 begins the next row in the table. The [item—alternate] tag provided as the value of the class attribute
tells Interchange to alternate between displaying the rows according to the "maincontent" and "contentbarl"
styles (gray and white, respectively).

Lines 34-36 create a link to the shopping cart (basket.html) where the customer can remove or change the
guantity of the item ordered.

Line 37 displays the SKU of the item. Lines 38 and 39 provide a link to the product display page
(flypage.html) for the item. The [item—description] tag providing the content of the [page] tag enables the
item's hame to be displayed as the link to the product display page.

41 [if-item—modifier gift_cert]

42 <TD ALIGN=CENTER><small>Amount of gift:</small></TD>
43 <TD ALIGN=CENTER>[item—quantity]</TD>

44 <TD ALIGN=right>

45 [item—subtotal]
46 </TD>
47 [else]

48 <TD ALIGN=CENTER>[item—-quantity]</TD>
49 <TD ALIGN=right>

50 [item—price]

51 </TD>

30.8.4. cart 132

52
53
54
55
56
57
58

Interchange Documentation (Full)

<TD ALIGN=right>
[item—subtotal]
</TD>
[felse]
[/if-item-modifier]
</TR>

Line 41 checks whether the item is a gift certificate. If it is it displays "Amount of gift:" and the
[item—quantity] (number of gift certificates, in this case) under the headings "Quantity" and "Price",
respectively. Otherwise, lines 48 through 50 display the quantity and price of the item ordered. Lines 45 or 5
(depending on whether the item is a gift certificate) display the item subtotal (quantity multiplied by price) for
the item under the heading "Extension".

59
60
61
62
63
64
65
66

[/item-list]
</TBODY>
</table>
</FORM>
</center>

[/if]

<!-— END COMPONENT [control component cart_display] ——>

Lines 59 through 64 close out the tags for the component, and line 66 indicates the end of the component
code.

30.8.6. cart_tiny

The cart_tiny component is used in the following pages:

pages/account.html
pages/browse.html
pages/canceled.html
pages/customerservice.htmi
pages/flypage.html
pages/help.html
pages/index.html
pages/logout.html
pages/modular_modify.html
pages/new_account.html
pages/privacypolicy.html
pages/process_return.html
pages/quantity.html
pages/query/check_orders.html
pages/query/order_detail.html
pages/query/order_return.html
pages/saved_carts.html
pages/ship_addresses.html

30.8.7. category_horizontal

Not used in Foundation demo pages or templates.

30.8.6. cart_tiny 133

Interchange Documentation (Full)

30.8.8. category_vertical

The category_vertical component provides a listing of all products in the catalog, organized by prod_group
(e.g., Hand Tools, Ladders). category_vertical is usually displayed in the LEFTSIDE section of the page,
under the search_box_small component.

The category_vertical component is used in the following pages:

pages/aboutus.html
pages/account.html
pages/affiliate/index.html
pages/affiliate/login.html
pages/browse.html
pages/canceled.html
pages/contact.html
pages/customerservice.htmi
pages/flypage.html
pages/help.html
pages/index.html
pages/login.html
pages/logout.html
pages/modular_modify.html
pages/new_account.html
pages/ord/basket.html
pages/privacypolicy.html
pages/process_return.html
pages/quantity.html
pages/query/check_orders.html
pages/query/order_detail.html
pages/query/order_return.html
pages/results.html
pages/results_big.html
pages/returns.html
pages/saved_carts.html
pages/ship_addresses.html
pages/stock-alert-added.html
pages/stock-alert.html
pages/swap_results.html

30.8.8.1. Component Walkthrough —— category_vertical

The remainder of this section is best read while viewing the file
CATROOT/templates/components/cart_display in a text editor.

Lines 1-6: Component Specification

1 [comment]

2 ui_component: category_vertical

3 ui_component_group: Navigation

4 ui_component_label: Vertical category list

5

6 page_class:

7 label: Page class

8 widget: select

9 lookup: which_page

10 db: area

11 help: Defines which sets of items should be displayed
12 advanced: 1

30.8.8. category_vertical 134

Interchange Documentation (Full)

13

14 set_selector:

15 label: Page area selector

16 widget: select

17 db: area

18 lookup: sel

19 help: Defines which sets of items should be displayed
20 advanced: 1

21 [/comment]

22

These lines control what is shown in the Edit page screen of the Administration Tool.

23 <tr><td align="center" class="categorybar">

24

25 <table>

26

27 <!-— BEGIN COMPONENT [control component category_vertical] ——>

Lines 23-25 set up the row and table within that row that will hold the vertical category list. Line 27 identifies
the start of the code for the list.

28 [loop

29 prefix=box

30 search="

31 fi=area

32 st=db

33 tf=sort

34 ac=0

35 ac=0

36 co=yes

37

38 sf=sel

39 op=eq

40 se=[control set_selector left]
41

42 sf=which_page

43 op=rm

44 se=[control page_class all@@MV_PAGE@@]
45

46

Lines 28-45 build a list of product categories obtained through a search of the area table.

47 <tr>

48 <td valign="top" class="categorybar">

49 [box-exec bar_link]area[/box—exec]
50 </td>

51 </tr>

52 <tr>

53 <td valign="top" class="categorybar">

54

55 [set found_cat][/set]

56 [loop prefix=cat

57 search="

58 fi=cat

59 st=db

60 tf=sort

61 tf=name

62 rf=code,name

30.8.8. category_vertical 135

Interchange Documentation (Full)

63 sf=sel

64 se=[box-code]
65 "

66]

67 [cat—-exec bar_link]cat[/cat-exec]

68 [/loop]

69

70 </td>

71 </tr>

72 [/loop]

73

74 </table>

75

76 </td></tr>

77

78 <!-— END COMPONENT [control component category_vertical] ——>

Lines 47-78 generate a list of links based on the products and product categories identified in the search.

30.8.9. cross_horizontal

The cross_horizontal component is used in the following pages:

pages/browse.html
pages/index.html
pages/results.html
pages/results_big.html

The cross_horizontal component is used in the following templates:

templates/foundation/cart
templates/foundation/leftonly
templates/foundation/leftright

30.8.10. cross_vertical
Not used in Foundation demo pages.
The cross_horizontal component is used in the following templates:

templates/foundation/leftright

30.8.11. modular_buy

The modular_buy component is used in the following pages:
pages/flypage.html

The modular_buy component is used in the following templates:

templates/components/modular_update

30.8.9. cross_horizontal 136

Interchange Documentation (Full)

30.8.12. modular_update

The modular_update component is used in the following pages:

pages/modular_modify.html

30.8.13. promo

The promo component is used in the following pages:

pages/contact.html
pages/results_big.html

30.8.14. promo_horizontal

The promo_horizontal component is used in the following pages:

pages/aboutus.html
pages/canceled.html

The promo_horizontal component is used in the following templates:

templates/foundation/cart
templates/foundation/leftonly
templates/foundation/leftright

30.8.15. promo_vertical
Not used in Foundation demo pages.

The promo_horizontal component is used in the following templates:

templates/foundation/leftright

30.8.16. random

The random component is used in the following pages:

pages/browse.html
pages/index.html
pages/ord/basket.html
pages/privacypolicy.html
pages/process_return.html
pages/results.html
pages/swap_results.html

30.8.17. random_horizontal
Not used in Foundation demo pages.

The random_horizontal component is used in the following templates:

30.8.12. modular_update 137

Interchange Documentation (Full)

templates/foundation/cart
templates/foundation/leftonly
templates/foundation/leftright

30.8.18. random_vertical
Not used in Foundation demo pages.

The random_vertical component is used in the following templates:

templates/foundation/leftright

30.8.19. saved_carts_list_small

The saved_carts_list_ small component is used in the following pages:

pages/ord/basket.html

30.8.20. search_box_small

The search_box_small component is used in the following pages:

pages/aboutus.html
pages/account.html
pages/affiliate/index.html
pages/affiliate/login.html
pages/browse.html
pages/canceled.html
pages/contact.html
pages/customerservice.htmi
pages/flypage.html
pages/help.html
pages/index.html
pages/login.html
pages/logout.html
pages/modular_modify.html
pages/new_account.html
pages/ord/basket.html
pages/privacypolicy.html
pages/process_return.html
pages/quantity.html
pages/query/check_orders.html
pages/query/order_detail.html
pages/query/order_return.html
pages/results.html
pages/results_big.html
pages/returns.html
pages/saved_carts.html
pages/ship_addresses.html
pages/stock-alert—added.html
pages/stock-alert.html
pages/swap_results.html

The search_box_small component is used in the following templates:

templates/regions/LEFTONLY_TOP
templates/regions/LEFTRIGHT_TOP

30.8.18. random_ vertical

138

Interchange Documentation (Full)

30.8.21. upsell
Not used in Foundation demo pages.

30.8.22. upsell_horizontal

The upsell_horizontal component is used in the following pages:

pages/flypage.html

The upsell_horizontal component is used in the following templates:

templates/foundation/cart
templates/foundation/leftonly
templates/foundation/leftright

30.8.23. upsell_vertical
Not used in Foundation demo pages.

The upsell_vertical component is used in the following templates:

templates/foundation/leftright

30.8.21. upsell

139

31. The Database Tables

Interchange catalogs are centralized around the database. You can alter any of the standard databases, ad
databases, or remove unneeded databases

The foundation catalog includes the following tables, organized here by content:

* Your site content data
area.txt

cat.txt
downloadable.txt
merchandising.txt
options.txt

pricing.txt
products.txt
Customer data
access.asc
gift_certs.txt
userdb.txt
Transaction-related data
inventory.txt
orderline.txt
order_returns.txt
transactions.txt
Third—party relationship data
affiliate.txt

banner.txt

Site administrative data
component.txt
files.txt

ichelp.txt

icmenu.txt

locale.txt
mv_metadata.asc
route.txt

shipping.asc
variable.txt

Shipping and tax
2ndDayAir.csv
450.csv

country.txt
Ground.csv
NextDayAir.csv
salestax.asc

state.txt

You may also see symbolic links pointing to index tables, for example products.category.txt linking

to products.txt.10. These are automatically generated indexes, in this case into the products table to speed
category searches. See Dictionary Indexing With INDEX in the database documentation for details about
auto-indexing of text databases.

31. The Database Tables 140

Interchange Documentation (Full)

The following dictionary lists and describes each table used in the Foundation demo.

31.1. 2ndDayAir.csv

Shipping table from UPS (http://www.ups.com/using/services/rave/rate/). This and all shipping tables should
be updated periodically.

31.2. 450.csv

Shipping table from UPS for 450xx Zip Code origin. You will probably need to get your own from the UPS
site (http://www.ups.com/using/services/rave/rate/) and clip the headers.

31.3. Ground.csv

Shipping table from UPS (http://www.ups.com/using/services/rave/rate/).

31.4. NextDayAir.csv

Shipping table from UPS (http://www.ups.com/using/services/rave/rate/).

31.5. access.asc

Administrative access table. This table is used by the Administration Tool. For more description on these
fields, see the Interchange Administration Tool guide.

Fields

Field Description
username [Login name or group name (group names begin with ")
password Hashed password

name Administrator's name
last_login Last login time
super Set to 1 if superuser

yes_tables |Tables the user may edit
no_tables |[Tables the user may not edit

upload No Description
acl No Description
export No Description
edit No Description
pages No Description
files No Description
config No Description
reconfig No Description
groups Administrator's group memberships

31.1. 2ndDayAir.csv 141

Interchange Documentation (Full)

meta No Description

no_functions [Explicitly disallowed functions
ves_functiongAllowed functions with permission flags
table_control |[No Description
personal_css|Administrator's personal CSS (for admin screen presentatjon)

31.5.1. username

Example Data

:ausers
‘busers
BigUser
goody
ic

The login name for an administrator or an administration group. Group names are prefixed with a colon (":).
31.5.2. password
Example Data

Ksjs65bMNLjPQ

Hashed password.

31.5.3. name

Example Data

Interchange Site Administrator
Interchange Site Associates
Business Users

2nd Shift

Mr. Jones

Inbound Sales

Descriptive name for the administrator or administration group.
31.5.4. last_login

Example Data
989424489

Last login time (in unix time() format).

31.5.5. super

Boolean value. If true (1), the administrator has Interchange Site Administrator privilege.

31.5.1. username 142

Interchange Documentation (Full)

31.5.6. yes_tables

Example Data

affiliate=vcx component=v gift_certs=v inventory=vx ...
NONE

Tables this administrator or administration group can access. This is a space—delimited list of
'table_name=permission_flags' entries.

31.5.7. no_tables

Example Data

access mv_metadata variable

Tables this administrator or administration group can not use. This is a space—delimited list of tables names

31.5.8. upload

No Description

31.5.9. acl

No Description

31.5.10. export

No Description

31.5.11. edit

No Description

31.5.12. pages

No Description

31.5.13. files

No Description

31.5.14. config
No Description
Example Data

Allowed Values

31.5.6. yes_tables 143

Interchange Documentation (Full)

31.5.15. reconfig

No Description

31.5.16. groups

Example Data

ausers
busers

Allowed Values

Groups the site user belongs to. You can set permissions for groups.

31.5.17. meta

No Description

31.5.18. no_functions

Example Data

orderstats trafficstats

Space—delimited list of functions explicitly not allowed for the site user.

31.5.19. yes_functions

Example Data

item=Ivecd itemtype=Ivc order=Ivca orderstats trafficstats ...
NONE

Functions the site user can perform. This is a space—delimited list of functions, with permission flags if
appropriate.

Usage examples

« dist/lib/Ul/pages/admin/access_permissions.html

31.5.20. table_control

No Description
Usage examples
« dist/lib/Ul/Primitive.pm

« dist/lib/Ul/pages/admin/special/key_violation.html
« dist/lib/Ul/usertag/if _ mm

31.5.15. reconfig 144

Interchange Documentation (Full)

31.5.21. personal_css

Used in the Administration Tool screens to make personal changes to the page presentation. This is done b
creating your own personal CSS (cascading style sheet).

Usage examples

« dist/lib/Ul/pages/admin/preferences.htmi

31.6. affiliate

cat_root/products/affiliate.txt

This table contains data related to your affiliate programs. See also the affiliate_receptor component.

Fields

Field Description

affiliate Affiliate 1D

name Name of affiliate organization

campaigns Campaigns this affiliate participates in
coupon_amounfDiscount for customers from affiliate participating in coupon campaign

join_date When the affiliate signed with you

url Your default URL to use for customers coming from the affiliate site (not the affiliate's
home page)

timeout Timeout in seconds after which purchases are no longer credited to the affiliate

active Boolean, set to 1 for active affiliates

password Affiliate login password

image Affiliate's logo

31.6.1. affiliate

Example Data

consolidated
hardhat

This field contains the unique Affiliate ID.

31.6.2. name

Example Data

Consolidated Diversified
Hardhat Construction

This is the descriptive name of the affiliate.

31.5.21. personal_css 145

Interchange Documentation (Full)

31.6.3. campaigns
Example Data
coupon
This field lists the campaigns that the affiliate participates and enables campaign features and tracks traffic
from advertising campaigns. The foundation catalog implements a coupon campaign in the affiliate_receptol

component. If you want to add campaigns, you will also need to develop the appropriate logic within the
affiliate_receptor component and pages that use it.

31.6.4. coupon_amount
Example Data
5
This is the discount offered customers from the affiliate participating in the coupon campaign.
Note —— This is implemented in the affiliate_receptor component as a flat discount amount. If you wanted a

percentage discount instead, you would modify the [discount] tag in
catalog_root/templates/components/affiliate_receptor (see_the [discount] tag for more detail).

31.6.5. join_date

Example Data

20000827
20000910

This is the date when the affiliate signed with you.

31.6.6. url

Example Data

http://demo.akopia.com/~hardhat
http://www.minivend.com/consolidated/

The value in this field is used to direct visitors coming from the Affiliate to your home page or a page you

have designed specifically for visitors from that Affiliate's site. Note that this should not be the URL of the
Affiliate's home site.

31.6.7. timeout

Example Data

0
3600

31.6.3. campaigns 146

Interchange Documentation (Full)

The value in this field is used to specify the amount of time a customer has to place an order to still give the
Affiliate credit for it. If the customer goes over this amount of time, the Affiliate doesn't get credit for the
customer visit. The timeout delay is measured in seconds, with the value of 0 (zero) disabling it. It is
recommended that you use a value in the thousands to make sure the customer has enough time to shop.

31.6.8. active

This is a boolean value indicating whether the affiliate is active.

31.6.9. password
Example Data
akopia

Password for affiliate login (see catalog_root//pages/affiliate/login.html). Note that the password is stored in
plaintext by default.

31.6.10. image

Example Data

http://demo.akopia.com/~hardhat/images/logo.gif
http://www.minivend.com/consolidated/conslogo.gif

Affiliate's logo image.

31.7. area

cat_root/products/area.txt

This table is used to implement dynamic navigation bars. For example, it is used in the category_horizontal
and category_vertical components. Note the similarity to the cat table, since both area and cat tables supply
data for building links to results pages.

When building entries in a havigation bar, it is the bar_link subroutine in the /dist/catalog_before.cfg
configuration file that actually reads and processes the values from the table.

See also the following catalog and administrative templates:

« cat_root/templates/components/category_horizontal
« cat_root/templates/components/category_vertical

« dist/lib/Ul/pages/admin/layout.html

« dist/lib/Ul/pages/admin/layout_auto.html

« dist/lib/Ul/pages/admin/wizard/do_launch.html

« dist/lib/Ul/pages/admin/wizard/do_save.html

Fields

Field Description

31.6.8. active 147

Interchange Documentation (Full)

code Unique key

sel Space—delimited list of navigation bars to contain the entry
name Display label

which_page [Page class in which the navigation bar may appear

sort Sorting prefix for entry (preempts standard alphanumeric sort)
display_type |How to label links in the navbar (name, icon, url or image)
image Image URL (if appropriate)

image_prop |HTML attributes for output tag (if appropriate)
banner_imagelmage name for use in target page
banner_text |Text for use in target page

link_type Type of links in the navbar (external, internal, simple, complex)

url Target for internal or external link_type

tab Database table file to use with 'simple’ link_type

page Results page to use with 'simple’ link_type

search Search spec used with ‘complex’ link_type

selector The selector used to scan the products table for products in the category
link_template |Overrides template used for building navbar links.

31.7.1. code

Example Data

1

2

3
Unique key.
31.7.2. sel

Example Data
left

Space—delimited list of navigation bars that should contain the entry. Note that comma or null should also
work as a delimiter.

31.7.3. name

Example Data

Hand Tools
Hardware
Ladders
Measuring Tools
Painting Supplies
Safety Equipment
Specials

Tool Storage

31.7.1. code 148

Interchange Documentation (Full)

Label to display.

31.7.4. which_page

Example Data

all

Page class in which the navigation bar may appear.

31.7.5. sort

Example Data

00
03
04
05
06

Lexographic (alphanumeric) sorting prefix. Note use of '03' rather than '3', which would sort after '13". This
controls the order of the categories in your navigation bar.

If this is not set, your navbar entries will sort in alphabetical order.

31.7.6. display_type

Example Data

name
icon
url
image

What to use for the labels in the navigation bar (for example, name, icon, url or image). The navigation bars
the foundation catalog are set up with 'name' display_type.

display type|Link shown as

name Displays name only

icon Displays name and specified image
image Displays image only

url Displays link

31.7.7. image

Image URL for image or icon display_type.

31.7.8. image_prop

For image or icon display_type, this contains the HTML attributes for the HTML that will appear in the
navbar, for example:

31.7.4. which_page 149

Interchange Documentation (Full)

name
31.7.9. banner_image

Example Data
promo_image.gif

This field is not related to banner ads. It is useful if you want to pass to your results page an image that is
specific for the navbar entry (perhaps to display a banner above your results).

If you are using an Interchange search for your links (i.e., 'simple’ or ‘complex’ link_type), then this will add
'va=banner_image=banner_image' to the resulting search specification. This puts the contents of
banner_image into the Values hash of your search results page. You can access it with [value
banner_image] (see the value tag). You will have to modify the standard results page (or set up and specify
your own) in order to display the image.

The foundation catalog does not implement banner_image in the preconfigured navigation bars.

31.7.10. banner_text

Example Data

This Is A Title For Hand Tools

This field is not related to banner ads. It is useful if you want to pass to your results page some text that is
specific for the navbar entry (perhaps to display a title above your results).

If you are using an Interchange search for your links (i.e., 'simple’ or ‘complex’ link_type), then this will add
‘va=banner_text=banner_text' to the resulting search specification. This puts the contents of banner_text
into the Values hash of your search results page. You can access it with [value banner_text] (see the value
tag). You will have to modify the standard results page (or set up and specify your own) in order to display tt
text.

The foundation catalog does not implement banner_text in the preconfigured navigation bars.

31.7.11. link_type

Example Data

none
external
internal
simple
complex

Link type to create in the navigation bar.

|Link typelDescription

31.7.9. banner_image 150

Interchange Documentation (Full)

none No link

external |External link. The HTML specified in url will go directly into the navigation bar.
internal |Internal link. This will be highlit if it is the current page. If you specify both a page and a form for
the link, the url field should contain "page form". See the Search Engine documentation forf more
detail on search forms.
simple [Allows you to specify an Interchange search with a few values. See the bar_link subroutine in the
/dist/catalog_before.cfg configuration file for more detail.
complex |Allows you to fully specify an Interchange search specification. See the bar_link subrouting in the
/dist/catalog_before.cfg configuration file for more detail if you need to use these.

31.7.12. url

Target URL (external link or internal page/search specification). See link_type . The foundation catalog
navigation bars are not set up with link types that use the url field.

31.7.13. tab

Database table file to use with 'simple’ link_type (searchspec fi=tab). The foundation catalog navigation bars
are not set up with link types that use the tab field.

31.7.14. page

Results page to use with 'simple’ link_type (searchspec sp=page). The foundation catalog navigation bars a
not set up with link types that use the page field.

31.7.15. search

Search spec used with ‘complex’ link_type. See the Search Engine documentation for more detail on searct
forms. The foundation catalog navigation bars are not set up with link types that use the search field.

31.7.16. selector

The selector that is used to scan the products table for products in the category. Used with 'simple’
link_type. The foundation catalog navigation bars are not set up with link types that use the selector field.

31.7.17. link_template

Overrides the usual HTML link template for navbar entries. See the bar_link subroutine in the
/dist/catalog_before.cfg configuration file if you need to modify link templates.

The foundation catalog navigation bars are not set up with link types that use the link_template field.

31.8. banner

cat_root/products/banner.txt

The banner ad table. The foundation catalog does not implement any banner ads with this table.

31.7.12. url 151

Interchange Documentation (Full)

You do not need to use this table to display ads served by third parties (for example, doubleclick). Since mo
banner ads on the internet are served by third parties and are not managed by your catalog, you probably w
not need to set up banners here unless you do your own advertising.

See Banner/Ad rotation in the template documentation for a detailed description of the columns and content
the banner table. Also, see the banner tag documentation.

Fields

Field Description
code Key for the item. If the banners are not weighted, this should be a category—specific cpde.
category|Category for set of weighted banners

weight |Display frequency weight for weighted banner

rotate |Boolean: parse banner field for banners to rotate if true (1)
banner |Banner name or list of banners to rotate

31.8.1. code

Example Data

MyBanner
MyBanner2
MyBanner3
default

See Banner/Ad rotation.

31.8.2. category

Example Data

BannerCatl

See Banner/Ad rotation.

31.8.3. weight

Example Data

1
2
7

See Banner/Ad rotation.

31.8.4. rotate

Boolean value. If true (1), rotates banners listed in banner. See Banner/Ad rotation.

31.8.1. code 152

Interchange Documentation (Full)

31.8.5. banner

Example Data

Default banner 1{or}Default banner 2{or}Default banner 3
First MyBanner

Second MyBanner

Third MyBanner

See Banner/Ad rotation.

31.9. cat

cat_root/products/cat.txt

This table contains properties of product categories. Notice the similarity to the area table, since both the ar
and cat tables supply data for building links to results pages.

Fields

Field Description

code Unique key

sel Space—delimited list of foreign keys into area table

name Category name

which_page [Page class in which the category may appear

sort Sorting prefix for entry (preempts standard alphanumeric sort)
display_type |How to label the category links (name, icon, url or image)
image Image URL (if appropriate)

image_prop |HTML attributes for output tag (if appropriate)
banner_imageélmage name for use in target page

banner_text |Text for use in target page

link_type Type of links in the navbar (external, internal, simple, complex)

url Target for internal or external link_type

tab Database table file to use with 'simple’ link_type

page Results page to use with 'simple’ link_type

search Search spec used with ‘complex’ link_type

selector The selector used to scan the products table for products in the category
link_template |Overrides template used for building links

31.9.1. code

Example Data
1
4
5

Unique key.

31.8.5. banner 153

Interchange Documentation (Full)

31.9.2. sel

Example Data

6
89
9

Space—delimited list of foreign key(s) into area table. The category will appear in each navbar section
(defined by a row in the area table) where the key from cat.sel matches the area.code.

For example, the foundation catalog (tools) places Gift Certificates in more than one category of the left
navbar.

31.9.3. name

Example Data

Breathing Protection
Eye Protection

Gift Certificate

Picks & Hatchets
Pliers

Rulers

Sandpaper
Toolboxes

Category name for display.

31.9.4. which_page

The page class. When building links, you can select categories matching a page class. This means you cou
set up your catalog to show a different list of links on page 'foo.html' than on page 'bar.html'.

31.9.5. sort

Example Data

01
03

Lexographic (alphanumeric) sorting prefix. Notice use of '03' rather than '3', which would sort after '13'. You
can use this to control the order of the categories in a list of links.

31.9.6. display_type

Example Data

name
icon
url
image

31.9.2. sel 154

Interchange Documentation (Full)

What to use for the labels in the navigation bar (for example, name, icon, url or image). The links in the
foundation catalog are set up with 'name' display_type.

display type|Link shown as

name Displays name only

icon Displays name and specified image
image Displays image only

url Displays link

31.9.7. image

Image URL for image or icon display_type.

31.9.8. image_prop

For image or icon display_type, this contains the HTML tag attributes for the links, for example:

name
31.9.9. banner_image

Example Data
promo_image.qif

This field is not related to banner ads. It is useful if you want to pass to your results page an image that is
specific for the navbar entry (perhaps to display a banner above your results).

If you are using an Interchange search for your links (i.e., 'simple’ or ‘complex’ link_type), then this will add
‘va=banner_image=banner_image' to the resulting search specification. This puts the contents of
banner_image into the Values hash in your search results page. You can access it with [value
banner_image] (see the value tag). You will have to modify the standard results page (or set up and specify
your own) in order to display the image. For example, you might include the following in your results page:

31.9.10. banner_text

This field is not related to banner ads. It is useful if you want to pass to your results page some text that is
specific for the navbar entry (perhaps to display a title above your results).

If you are using an Interchange search for your links (i.e., 'simple’ or ‘complex’ link_type), then this will add
‘va=banner_text=banner_text' to the resulting search specification. This puts the contents of banner_text
into the Values hash in your search results page. You can access it with [value banner_text] (see the value
tag). You will have to modify the standard results page (or set up and specify your own) in order to display tt
text.

31.9.7. image 155

Interchange Documentation (Full)

31.9.11. link_type

Example Data

none
external
internal
simple
complex

The link type to create.

Link type|Description
none No link
external |External link. The HTML specified in url will go directly into the link.

the link, the url field should contain "page form". See the Search Engine documentation for
detail on search forms.

simple |Allows you to specify an Interchange search with a few values. See the bar_link subrouting
/dist/catalog_before.cfg configuration file for more detail.
complex |Allows you to fully specify an Interchange search specification. See the bar_link subrouting
/dist/catalog_before.cfg configuration file for more detail if you need to use these.

31.9.12. url

Target URL (external link or internal page/search specification). See link_types above.

31.9.13. tab
Example Data
products

Database table file to use with 'simple’ link_type (searchspec fi=tab).

31.9.14. page

Example Data
swap_results

Results page to use with 'simple’ link_type (searchspec sp=page).
31.9.15. search

Example Data

fi=merchandising"Msf=featured"Mse=new
fi=merchandising"Msf=featured"Mse=special*"Msu=yes

31.9.11. link_type 156

internal |Internal link. This will be highlit if it is the current page. If you specify both a page and a form for

more

in the

in the

Interchange Documentation (Full)

Search spec used with ‘complex’ link_type. See the Search Engine documentation for more detail on searct
forms.

Note: The "M’ delimiters in the sample data represents a carriage return character (Control-M, or
hexadecimal 0x0d).

31.9.16. selector

Example Data

category=Breathing Protection
category=Eye Protection
category=Gift Certificate
category=Picks & Hatchets
category=Pliers
category=Rulers
category=Sandpaper
category=Toolboxes

The element that is used to scan the products table for products in the category. Used with 'simple’
link_type.

31.9.17. link_template

Overrides the usual HTML link template for navbar entries. See the bar_link subroutine in the
/dist/catalog_before.cfg configuration file if you need to modify link templates.

31.10. country

A list of countries used to build select boxes and shipping mode choices based on countries.

code
sorder
region
selector
shipmodes
name

31.11. downloadable

This table controls downloadable products. The Marketing Reports data set for the foundation catalog
demonstrates downloadable products. List a product's sku in this table if you want to deliver it through a
download. A customer can then download the file specified in the dI_location field after checkout.
For reference, see the implementation in the following files:

« catalog_root/pages/deliver.html

* catalog_root/etc/receipt.html

« catalog_root/pages/query/order_detail.html

Fields

31.9.16. selector 157

Interchange Documentation (Full)

Field Description
sku Unique key, matches product.sky
dl_location [Location of downloadable file

dl_type MIME type of downloadable file

31.11.1. sku

Example Data
Example Data from the Marketing Reports data set:

00352as
22083da
49503cg
59330rt

59402fw
73358ee
83491vp
90773sh

This is the unique key for this table that is also the common key into the products table.

31.11.2. dl_location

Example Data from 'reports' catalog

download/00352as.pdf
download/22083da.pdf
download/49503cg.pdf
download/59330rt.pdf

download/59402fw.pdf
download/73358ee.pdf
download/83491vp.pdf
download/90773sh.pdf

File location of downloadable product.

31.11.3. dl_type

Example Data from 'reports' catalog
application/pdf

MIME type of downloadable content.

31.12. files.txt

A database where files (pages, etc.) can be kept instead of in the Unix filesystem.

31.13. gift_certs.txt

code
username

31.11.1. sku 158

Interchange Documentation (Full)

order_date
original_amount
redeemed_amount
available_amount
passcode

active

redeemed
update_date

31.14. inventory.txt

sku
Quantity info
guantity
Gets decremented after each sale.
stock_message
The usual shipping time of the product.
Out of stock message:
In stock
Ships in 3-5 days
Ships in 4-6 weeks
Special order
account
Accounting info
Sales account
cogs_account

31.15. locale.txt

code
en_US
de_DE
fr_FR

31.16. merchandising.txt

sku
featured
banner_text
banner_image
blurb_begin
blurb_end

Closer (end text for feature display)
timed_promotion
start_date

Start date
finish_date
upsell_to

Cross-sell SKUs
cross_sell
cross_category
others_bought
times_ordered

31.14. inventory.txt 159

Interchange Documentation (Full)

31.17. mv_metadata

See the following sections in the icadvanced catalog for more information:

« display tag and mv_metadata
* mv_metadata.asc

31.18. options

This table contains data for implementing simple, matrix and modular options.

Simple options are options that a customer can combine arbitrarily, such as size and color. The selected
options might affect price. See the accessories tag for more detail on option values for simple options.

Matrix options are preconfigured combinations of options. For example, if you sell titanium and carbon—fiber
bike frames, but offer only certain combinations of frame material and color, your checkout page might
include a select box with only the following entries:

« Silver Titanium: $1672

« Black Titanium: $1672

» Red Titanium: $1674

« Black Carbon Fiber: $1290

* Yellow Flame Carbon Fiber: $1300

Note that there is no Yellow Flame Titanium offering, for example.
Modular options are like a structured bill of materials, where one product is a master item and other product
are subitems for that master item. The subitems can also be master items to subitems at a lower level. In
addition, subitems may be designated as ‘phantom’, which means that they are placeholders in the hierarch
the structured bill of materials with their own subitems, but are not actual items themselves.
The foundation catalog with the computer data set uses modular options.
For more information, see the following pages and components in the foundation catalog:

« cat_root/pages/flypage.html

« cat_root/templates/components/modular_buy
« cat_root/templates/components/modular_update

Note: Subsequent foundation catalog releases may place simple, matrix, and modular option types in sepatr:
tables.

Fields

Field Description

code Unique ID for the product option

0_master SKU of the master item for the option

sku SKU for the option (foreign key into products table)

31.17. mv_metadata 160

Interchange Documentation (Full)

0_grou Product grouping code

o_sort Sorting prefix for list display

phantom Boolean —— Item is a phantom placeholder (as in structured bill of materials) with subgptions.
0_enable Boolean —— enables suboptions for the option

0_matrix Matrix—type option (preconfigured combinations of attributes)

0_modular |Modular-type option (master/subitem relationship like modular bill of materials)
0_default Default selection for the option group or suboption for a phantom option

o_label Short name for option display

0_value Simple option values (in Interchange option format)
0_widget The HTML widget to use for displaying the option group
o_footer Not used in foundation catalog

0_header Not used in foundation catalog
0_height Height of widget (if applicable)

0_width Width of widget
description |Option/Variant description (for description in display)
price Price of this option/variant

wholesale Dealer price of this option/variant
differential |Differential to add to the base item price when using a phantom bill of materials

weight Weight difference with this option/variant (for shipping)
volume Volume difference with this option/variant

mv_shipmodelNo Description
0_exclude |Option groups to exclude (trumped by o_include). Modular only.
0_include Option groups to include (trumps o_exclude). Modular only.

31.18.1. code

Example Data

1002
1003
1004
1005

Unique ID for the option.

31.18.2. o_master

Example Data

00010

999000
999001
999002

SKU of the master item for the option. The master item is one level up in the modular hierarchy, and must b
one of the following:

* An item in the products table (matching products.sku)

31.18.1. code 161

Interchange Documentation (Full)

« Another option in the options table (matching options.sku)
« A phantom item in the options table.

If an option has a master item, then a customer can not choose that option without having previously selecte
the master item.

The price for a master item is the sum of the master item's price and the price for each of the subitems.
Because the subitems are recursively defined, the top-level item reflects the top level price plus the price of
all selected options.

31.18.3. sku

Example Data

00010
999000
7000015
7000030

The sku for the item or option. This may not be unique for matrix options or if an option that belongs to
multiple o_masters is listed for each master.

31.18.4. o_group

Example Data

—0Ow>

Product group (scanned to see whether it applies to this product or not)

31.18.5. o_sort

Example Data

01
02
03
04
47
48
49
50

Sorting prefix for listing order of options.

31.18.6. phantom

Modular options only.

31.18.3. sku 162

Interchange Documentation (Full)

Boolean —- if true (1), then this is a phantom item acting as a placeholder for other items rather than an actt
product. The item's sku will not match an entry in the products table, though the o_master will match either
the sku of another phantom item in the options table or the sku of an item in the products table.

31.18.7. o_enable

Boolean —— Enables subitems for this item or option. Note that an option with o_enable false may itself still
be a subitem for an option or item above it.

31.18.8. o_matrix

Boolean. Set true (1) for matrix—type options. See the options table in the tools data set for examples of mat
options. Matrix options that are part of a set have the same value for options.sku.

31.18.9. o_modular

Specifies a modular option. See main heading for description of modular options.

31.18.10. o_default

Example Data

1

11002
7000062
7000087

Selects the default option for a group.

31.18.11. o_label

Example Data

Add a second hard drive
Case Color

Case color

Case style

Include tapes

Red

This is the short name for option display.

31.18.12. o value

Example Data

1=One 8GB tape,\r2=Two 8GB tapes,\r=None*

a=0One 8GB tape,\rb=Two 8GB tapes,\r=None*

baby=Baby Tower \rmid=Mid-tower \rfull=Full Tower

baby=Baby tower,\rmid=Mid-tower \rfull=Full tower

red=Passion Red,\rblue=Electric Blue,\rgreen=Sea Green,\rgrey=S...
red=Passion Red,\ryellow=Lemon Yellow,\rblue=Electric Blue,\rgr...

31.18.7. o_enable 163

Interchange Documentation (Full)

red=Rage Red,\ryellow=Honey Yellow

This is an Interchange value set for a simple option. It is typically a comma-—delimited list of labels and value
with *' indicating the default value. See the accessories tag for more detail.

Note that the "\r" characters in the above example represent carriage returns in the actual data ("\r" in perl,
Ctrl-M, or hexadecimal 0D), and the ... indicates a line too long to show.

31.18.13. o_widget
Example Data

select

This determines the HTML Widget type (e.g., a select box). For example, the [options] tag uses this entry
when building HTML widgets in a page. See also the [accessories] tag for available widgets.

31.18.14. o_footer

Example Data

Allowed Values

31.18.15. o_header

Example Data

Allowed Values

31.18.16. o_height

This allows you to set the height of the HTML widget, if appropriate.

31.18.17. o_width

This allows you to set the width of the HTML widget, if appropriate.

31.18.18. description

Example Data

ATX Mid Tower-Grey (3)5.25 (2)3.5 & (1)3.5 Hidden
Enlight ATX Desktop Case (2)5.25 & (2)3.5

Enlight ATX Tower Case (4) 5.25 & (2)3.5

Micro ATX Tower — Honey Yellow

Micro ATX Tower — Moody Blue

Micro ATX Tower — Rage Red

Micro ATX Tower — Smoky Grey

Super Tower Case (6)5.25 & (3)3.5

Longer description to show when displaying the options.

31.18.13. o_widget 164

Interchange Documentation (Full)

31.18.19. price

Example Data

0.00
10
20
29
75

This sets the retail price of the option.

31.18.20. wholesale

Example Data

13
40.00

This sets the dealer price of the option.

31.18.21. differential

Example Data

-209
-40
-79

The phantom bill of materials for an option group can have a differential, which is an amount to add to the
base price of the master product to get to a new base price that accommodates the phantom bill of material
Note that the differential can be negative.

For example, in the computer data set of the foundation catalog, SKU 00011 in the products table is an
$849.95 pre—configured Athlon 800MHz computer that includes a 17" monitor (in this case, SKU 7000087 ir
the products table).

The monitor by itself would otherwise have cost $209. It is much more convenient if you can use the same
option part number and price for each item. To do this, you need a phantom option (in this case, SKU 9991(
in the options table only) with a differential of —209 and the available monitors as suboptions. When you
include the phantom option in the bill of materials for the computer (SKU 00011), the $-209 differential
adjustment makes the price work out properly.

For instance, suppose that a $499 computer is configured as follows:

500 MHz Athlon -— $499
32 MB SDRAM -— ZERO
10 GB disk -— ZERO
TOTAL -— $499

Suppose it costs $90 to upgrade the base computer to 128M of RAM and $150 for a 30 GB hard disk.

31.18.19. price 165

Interchange Documentation (Full)

If you also sell an 128MB 800 MHz $899 computer, and the customer upgrades to the 30 GB hard disk,

800 MHz Athlon -— $899
(memory differential) —— $-90
128 MB RAM -— $90
30 GB disk -- $150
TOTAL --$1039

If you did not have the differential, you would need a different option part number for each item make the
number come out right.

With the differential, you can use the same part number for 128MB RAM no matter what the base part is. Tt

price is always $90 —- there is just a —90 differential when ordered with the 800MHz Athlon, making the
effective price zero.

31.18.22. weight

Example Data

5

Shipping weight of the option. Interchange uses this to calculate shipping cost.

31.18.23. volume

Volume added by the option.

31.18.24. mv_shipmode

No Description

31.18.25. 0_exclude

Modular options only.

Lists the option groups to exclude once the include has been done. Takes the form of a number of wildcard
atoms.

31.18.26. o0_include

Modular options only.

Lists the option groups to include with your item. Takes the form of a number of wildcard atoms.

31.19. order_returns.txt

code
order_number
session
username

31.18.22. weight 166

Interchange Documentation (Full)

rma_number
nitems

total
return_date
update_date

31.20. orderline.txt

Every line item that is actually ordered is detailed in this table. The order as a whole is one record in the
transactions table.

See the page query/check_orders.html for how it can be used. See etc/report for how to add to
it.

code

store_id

order_number

session

username

shipmode

sku

guantity

price

subtotal

shipping

taxable

mv_mi

mv_si

size

color

options

order_date

update_date

status
pending = Pending
shipped = Shipped
backorder = Back ordered
credit = Waiting for credit check
canceled = Cancelled

parent

affiliate

campaign

description

mv_mp

31.21. pricing

This database works in conjunction with the CommonAdjust directive to allow quantity pricing for one
product or for a group of products (sometimes known as mix—and-match). The fields g2, g5, q10,
etc. are for the quantity levels; the price_group field selects the mix—and-match category for the
product.

Fields
Field Description
sku Unique key, shared with products table

31.20. orderline.txt 167

Interchange Documentation (Full)

price_group|Mix—and—-match category
q2 Retail, 2 or more

a5 Retail, 5 or more

ql10 Retail, 10 or more

25 Retail, 25 or more
q100 Retail, 100 or more

w2 Wholesale, 2 or more
w5 Wholesale, 5 or more
w10 Wholesale, 10 or more
w25 Wholesale, 25 or more
w100 Wholesale, 100 or more
31.21.1. sku

Example Data

0528004
0528006
0s28057¢
0528069

Unique key, matching the sku for an entry in products table.

31.21.2. price_group

Example Data
general

This field determines mix—and—match categories if you want to allow mix—and—match quantity pricing (i.e.,
where 5 of these plus 5 of those afford the gq10 price for both these and those).

31.21.3. g2

If set, this will be the price per item when the order quantity is 2 or greater.

31.21.4. 5

If set, this will be the price per item when the order quantity is 5 or greater.

31.21.5. q10

If set, this will be the price per item when the order quantity is 10 or greater.

31.21.6. 925

If set, this will be the price per item when the order quantity is 25 or greater.

31.21.1. sku 168

Interchange Documentation (Full)

31.21.7. q100

If set, this will be the price per item when the order quantity is 100 or greater.
31.21.8. w2

If set, this will be the dealer price per item when the order quantity is 2 or greater.

31.21.9. w5

If set, this will be the dealer price per item when the order quantity is 5 or greater.

31.21.10. wi0

If set, this will be the dealer price per item when the order quantity is 10 or greater.

31.21.11. w25

If set, this will be the dealer price per item when the order quantity is 25 or greater.

31.21.12. wi00

If set, this will be the dealer price per item when the order quantity is 100 or greater.

31.22. products

This is the main table for product data. See also 'The Product Database' section in the database documenta

The sku is also the master key in many of the related tables.

Fields

Field Description

sku Unique product ID

description [Short description for list display

title Full title for book, CD, artwork, etc.
template_pagéNot used in foundation catalog. No description.
comment Longer description for item display (e.g., flypage.htm|)
thumb Thumbnail image

image Regular—sized image

price Retail quantity one price

wholesale Dealer minimum quantity price

prod_group |Product supercategory

category Product category

nontaxable |Boolean. Set true (1) if nontaxable

31.21.7. q100 169

Interchange Documentation (Full)

weight Weight in your units. Should match shipping table.
size List of options used with accessories tag.

color List of options used with accessories tag.

qift_cert Boolean. Set true (1) if this is a gift certificate.
related Deprecated in favor of merchandising.upsell_to
featured Deprecated. Use merchandising table.

inactive Boolean. Set true (1) to inactivate a product

url Not Documented

31.22.1. sku

Example Data

gift_cert
0528004
0528006
0s28057¢

Unique identifier for the product. You should use only characters of the class A-Z a-z 0-9 _ - (i.e.,
matching the regular expression, '[~A-Za-z0-9_]+"). Although Interchange itself does not impose this
restriction, you may have problems with SQL databases, file systems, and URL encoding if you use other
characters. For example, a slash (/) can interfere with URLs and filenames, a colon (:) can interfere with

database representations (or file names on some operating systems), i<etc.>

31.22.2. description

Example Data

Brush Set
Disposable Brush Set
Ergo Roller

Gift Certificate
Painters Brush Set
Painters Ladder
Spackling Knife

Trim Brush

A short description for the product that is used for displaying in the shopping cart, receipt, and order report.

31.22.3. title

Example Data

Brush Set
Disposable Brush Set
Ergo Roller

Gift Certificate
Painters Brush Set
Painters Ladder
Spackling Knife

Trim Brush

31.22.1. sku

170

Interchange Documentation (Full)

This column is not used in the foundation catalog. Previously used in the Art store (simple) demo for a
painting title. You probably want to use description instead.

You should modify the products and other tables to suit your catalog's requirements. You might use this fielc
if you want to show titles for books, music, or other titled merchandise. If you do not use a title that is distinc
from the short description, then you probably do not need this column in the table at all.

31.22.4. template_page
Not used in foundation catalog.

No Description.

31.22.5. comment

Example Data

A must have for all painters! This spackling knife is ergon...
Enjoy the perfect feel and swing of our line of hammers. Thi...
This set includes 2" and 3" trim brushes and our ergonomical...
This set of disposable foam brushes is ideal for any stainin...

This is the field for a long description of the product. If you are using an Interchange text/gdbm database, th
field size is unlimited; if using another type of database, the length will be dependent on the field type
selected. If you are using a SQL database, see the appropriate cat_root/dbconf subdirectory for a place to s
COLUMN_DEF values. See also the database documentation, 'Importing from an ASCII File', for details
about defaults for columns that you do not define.

31.22.6. thumb

Example Data

gift_certificate.qgif
0s28004_b.gif
0s28005_b.gif
0s28006_b.gif

This is the filename for a small (thumbnail) image of the product.

31.22.7. image

Example Data

gift_certificate_large.gif
0s28004.gif
0s28005.gif
0s28006.gif

This is the filename for a regular—sized image of the product, as it should appear in an HTML <img

src="image"> tag. You do not need to specify the path if the image files are in the usual Interchange image
directory.

31.22.4. template_page 171

Interchange Documentation (Full)

31.22.8. price

Example Data

1.00
12.99
14.99
9.99

The quantity—one price of the product. See the wholesale field and the price table for dealer and quantity
pricing.

31.22.9. wholesale

Example Data

1

10
11
12

This is the minimum dealer price for the item. For quantity pricing, see the price table.

31.22.10. prod_group

Example Data

Hand Tools
Hardware
Ladders
Measuring Tools
Miscellaneous
Painting Supplies
Safety Equipment
Tool Storage

Product group (supercategory). This indicates the grouping of product categories, for example in the
navigation bars created from the area table (note the match with the name data in the area table).

31.22.11. category

Example Data

Brushes

Gift Certificate
Hammers
Ladders

Nails
Paintbrushes
Putty Knives
Rollers

This is the category the product should appear in when you select a list. You can put a product in more than
one category, but you may need to accommodate this in display and banner headings. Embedded perl is

31.22.8. price 172

Interchange Documentation (Full)

helpful for this.

31.22.12. nontaxable

Boolean value. If true (1), the sales tax calculation for an order will not include the cost of the product. See
also the salestax tag.

31.22.13. weight

Example Data

1
2
3

This is a numeric value of the weight used for determining shipping costs (with UPS, for example). In the US
this is typically the weight in pounds in order to match the UPS, Fed Ex and other standard shipping tables.

31.22.14. size

Example Data

1, 2", 3"

1, 1.5

1/4", 1/2", 3/4", 1", 2", 3"
100z, 150z, 20 oz

o

6
set

standard, metric

This is where the old Construct Something demo store kept the 'size' options for a product. The foundation
catalog now uses the options table instead to handle product options (also sometimes called product
attributes).

The accessories tag can build HTML widgets from the comma-—delimited list of product options. You

can use a delimiter other than comma (if compatible with the table) as long as you alsg set the delimiter in
the_accessories tag.

You probably do not need this field if you use the options table (for example, if you are building from the
foundation catalog).

31.22.15. color

Another product option column. No longer used in the foundation catalog. See size above for description.

31.22.16. gift_cert

Boolean value. If true (1), specifies that this product is a gift certificate. See also the gift certs table.

31.22.12. nontaxable 173

Interchange Documentation (Full)

31.22.17. related

Used for displaying "upsells," opportunities to purchase an additional item when this one is purchased.
Contains a comma-separated list of SKUs to be offered.

The foundation catalog now instead uses the upsell_to field of the merchandising table for upselling.

31.22.18. featured

Deprecated in favor of the merchandising table.

31.22.19. inactive

If true (1), renders the product inactive (i.e., it will not appear in the catalog).

31.22.20. url

Not Documented

31.23. route.txt

code

attach

continue

commit
commit_tables
counter
credit_card
cyber_mode
email

empty

encrypt
encrypt_program
errors_to
increment
inline_profile
individual_track
individual_track_ext
partial
pgp_cc_key

pgp_key
profile

receipt

reply

report

rollback
rollback_tables
supplant

track

31.24. salestax.asc

31.22.17. related 174

Interchange Documentation (Full)

31.25. shipping.asc

Shipping methods table

31.26. state.txt

State/territory/county information

code
sorder
country
state
name

tax
postcode
shipmodes
tax_name

31.27. transactions.txt

Each individual customer order has an entry in this table. The line items are not entered here, but in the
orderline table.

See the page query/check_orders.html for how it can be used. See etc/report for how to add to
it.

code
store_id
order_number
session
username
shipmode
nitems
subtotal
shipping
handling
salestax
total_cost
fname
Iname
Last Name
company
addressl1
address2
Address line 2
city
state
zip
country
phone_day
Daytime Phone
phone_night
Home Phone
fax
email
b_fname

31.25. shipping.asc 175

Interchange Documentation (Full)

b_lname

Billing Last Name
b_company
b_addressl
b_address2

Billing Address Line 2
b_city
b_state

Billing State
b_zip

Billing Postcode
b_country

Billing Country
b_phone
order_date
order_ymd
order_wday
payment_method
po_number
avs
order_id
update_date
status
affiliate
campaign
parent
archived
deleted
complete
comments

31.28. userdb.txt

The user database used for maintaining customer address information, account information, preferences, at
more. See icdatabase for more information.

username
password
acl
mod_time
s_nickname
company
fname
Iname
addressl
address2
address3
city
state
zip
Postcode
country
Country
phone_day
mv_shipmode
b_nickname
b_fname
b_lname
b_addressl
b_address2

31.28. userdb.txt 176

Interchange Documentation (Full)

b_address3
b_city
b_state
b_zip
b_country
b_phone
Billing Phone
mv_credit_card_type
mv_credit_card_exp_month
mv_credit_card_exp_year
p_nickname
email
fax
phone_night
fax_order
Payment method:
(none) = Credit Card
1 = Fax or Mail
2 = Purchase order
3=CO0OD
address_book
accounts
preferences
carts
owner
file_acl
db_acl
order_numbers
email_copy
mail_list
Mailing lists the customer has joined:
offer = Special offers
newsletter = Newsletter
alert = Alerts and Recalls
upgrade = Upgrades
project_id
account_id
order_dest
credit_limit
inactive
dealer
Dealer:
(none) = No
1=Yes
b_company
feedback
?2??

31.29. variable.txt

Configuration database

code
Variable name
Variable
pref_group
Preferences area

31.29. variable.txt 177

32. HTML Hypertext links

Normally, regular hypertext links are not used in Interchange pages. These kinds of links will not include the
session ID. If the customer follows an external link back to the catalog, the list of products ordered so far wil
have been lost. The area tag is used to generate a hypertext link which includes a session ID.
Instead of:

Shirts

Use:

Shirts

32. HTML Hypertext links 178

33. Images

Inline images are placed in Interchange pages in the normal fashion with . But since
Interchange pages are served by a CGI program, it will by default automatically rewrite relative image links :
absolute ones based on the ImageDir and ImageDirSecure directives.

33. Images 179

34. Browser Cookies

The Foundation store enables the Cookies directive so that users with cookie—capable browsers will retain
session context. Then, standard HREF and Interchange page links can be intermixed without the fear of losi
the shopping basket. Cookie capability is also required to use search caching, page caching, and statically
generated pages. If the user's browser does not support cookies, the cache will be ignored.

If planning to use more than one host name within the same domain for naming purposes (perhaps a secure

server and non-secure server), set the domain with the CookieDomain directive. This must contain at least
two periods (.) as per the cookie specification, and must be located in the same server as the domain.

34. Browser Cookies 180

35. Dependencies in administration

In general, it's a good idea to leave fields empty if you don't want to use them, instead of removing them frot
the database altogether. That way nothing in the administration interface or the Foundation pages will break

Copyright 2001-2002 Red Hat, Inc. Freely redistributable under terms of the GNU General Public License.
line:

35. Dependencies in administration 181

Template Guide

Template Guide 182

36. Introduction

Interchange is designed to build its pages based on templates from a database. This document describes h
to build templates using the Interchange Tag Language (ITL) and explains the different options you can use
a template.

36.1. Overview

The search builder can be used to generate very complex reports on the database, or to help in the constru
of ITL templates. Select a "Base table" that will be the foundation for the report. Specify the maximum
number of rows to be returned at one time, and whether to show only unique entries.

The "Search filter" narrows down the list of rows returned by matching table columns based on various
criteria. Up to three separate conditions can be specified. The returned rows must match all criteria.

Finally, select any sorting options desired for displaying the results, and narrow down the list of columns
returned if desired. Clicking "Run" will run the search immediately and display the results. "Generate
definition" will display an ITL tag that can be placed in a template and that will return the results when
executed.

To build complex order forms and reports, Interchange has a complete tag language with over 80 different
functions called Interchange Tag Language (ITL). It allows access to and control over any of an unlimited
number of database tables, multiple shopping carts, user name/address information, discount, tax, and
shipping information, search of files and databases, and much more.

There is some limited conditional capability with the [if ...] tag, but when doing complex operations,

use of embedded Perl/ASP should be strongly considered. Most of the tests use Perl code, but Interchange
uses the Safe.pm module with its default restrictions to help ensure that improper code will not crash the
server or modify the wrong data.

Perl can also be embedded within the page and, if given the proper permission by the system administrator,
call upon resources from other computers and networks.

36. Introduction 183

37. About Variable Replacement

Variable substitution is a simple and often used feature of Interchange templates. It allows you to set a
variable to a particular value in the catalog.cfg directory. Then, by placing that variable name on a page,
you invoke that value to be used. Before anything else is done on a template, all variable tokens are replace
by variable values. There are three types of variable tokens:

__VARIABLENAME__ is replaced by the catalog variable called VARIABLENAME.
@@VARIABLENAME@ @ is replaced by the global variable called VARIABLENAME.

@_VARIABLENAME_@ is replaced by the catalog variable VARIABLENAME if it exists; otherwise, it is
replaced by the global variable VARIABLENAME.

For more information on how to use the Variable configuration file directive to set global variables in
interchange.cfg and catalog variables in catalog.cfg, see the Interchange Configuration Guide.

37. About Variable Replacement 184

38. Using Interchange Template Tags

This section describes the different template specific tags and functions that are used when building a your
templates.

38.1. Understanding Tag Syntax

Interchange uses a style similar to HTML, but with [square brackets] replacing <chevrons>. The parameters
that can be passed are similar, where a parameter="parameter value" can be passed.

Summary:

[tag parameter] Tag called with positional parameter
[tag parameter=value] Tag called with named parameter
[tag parameter="the value"] Tag called with space in parameter

[tag 1 2 3] Tag called with multiple positional parameters
[tag foo=1 bar=2 baz=3] Tag called with multiple named parameters
[tag foo="2 + 27] Tag called with calculated parameter

[tag foo="[value bar]"] Tag called with tag inside parameter
[tag foo="[value bar]"]
Container text. Container tag.

[tag]

Most tags can accept some positional parameters. This makes parsing faster and is, in most cases, simpler
write.

The following is an example tag:
[value name=city]

This tag causes Interchange to look in the user form value array and return the value of the form parameter
city, which might have been set with:

City: <INPUT TYPE=text NAME=city VALUE="[value city]">

Note: Keep in mind that the value was pre—set with the value of city (if any). It uses the positional style,
meaning name is the first positional parameter for the [value ...] tag. Positional parameters cannot be derive
from other Interchange tags. For example, [value [value formfield]] will not work. But, if the named
parameter syntax is used, parameters can contain other tags. For example:

[value name="[value formfield]"]

There are exceptions to the above rule when using list tags such as [item-list], [loop ...], [sql ...], and more.
These tags, and their exceptions, are explained in their corresponding sections.

Many Interchange tags are container tags. For example:

[set Checkout]
mv_nextpage=ord/checkout
mv_todo=return

[/set]

38. Using Interchange Template Tags 185

Interchange Documentation (Full)

Tags and parameter names are not case sensitive, so [VALUE NAME=something] and [value
name=something] work the same. The Interchange development convention is to type HTML tags in upper
case and Interchange tags in lower case. This makes pages and tags easier to read.

Single guotes work the same as double quotes, and can prevent confusion. For example:
[value name=b_city set="[value city]]

Backticks should be used with extreme caution since they cause the parameter contents to be evaluated as
code using the [calc] tag. For example:

[value name=row_value set="$row_value += 1]
is the same as

[value name=row_value set="[calc]$row_value += 1[/calc]"]

Vertical bars can also be used as quoting characters, but have the unique behavior of stripping leading and
trailing whitespace. For example:

[loop list="code field field2 field3
ki1 Al A2 A3

k2 Bl B2 B3
[loop—-increment][loop—code]

[/loop]

could be better expressed as:

[loop list=|
kiI A1 A2 A3
k2 B1 B2 B3

1]
[loop—-increment][loop—code]
[/loop]

How the result of the tag is displayed depends on if it is a container or a standalone tag. A container tag has
closing tag (for example, [tag] stuff [/tag]). A standalone tag has no end tag (for example, [area
href=somepage]). Note that [page ...] and [order ..] are not container tags. ([/page] and

[forder] are simple macros.)

A container tag will have its output re—parsed for more Interchange tags by default. To inhibit this behavior,
set the attribute reparse to 0. However, it has been found that the default re—parsing is almost always
desirable. On the other hand, the output of a standalone tag will not be re—interpreted for Interchange tag
constructs (with some exceptions, like ([include file]).

Most container tags will not have their contents interpreted (Interchange tags parsed) before being passed t

container text. Exceptions include calc, currency, and seti. All tags accept the interpolate=1 tag
modifier, which causes the interpretation to take place.

38.2. The DATA and FIELD Tags

The [data ...] and [field ...] tags access elements of Interchange databases. They are the form
used outside of the iterating lists, and are used to do lookups when the table, column/field, or key/row is

38.2. The DATA and FIELD Tags 186

Interchange Documentation (Full)

conditional based on a previous operation.

The following are equivalent for attribute names:

table ——> base
col ——>field ——> column
key -->code ——>row

The [field ...] tag looks in any tables defined as ProductFiles, in that order, for the data and returns the
first non—empty value. In most catalogs, where ProductFiles is not defined, i.e., the demo, [field

title 00—0011] is equivalent to [data products title 00-0011]. For example, [field col=foo

key=bar] will not display something from the table "category" because "category" is not in the directive
ProductFiles or there are multiple ProductFiles and an earlier one has an entry for that key.

[data table column key]

named attributes: [data base="database" field="field" key="key" value="value"

op="increment]

Returns the value of the field in any of the arbitrary databases, or from the variable namespaces. If the optic
increment=1 is present, the field will be automatically incremented with the value in value.

If a DBM-based database is to be modified, it must be flagged writable on the page calling the write tag. Fo
example, use [tag flag write]products[/tag] to mark the products database writable.

In addition, the [data ...] tag can access a number of elements in the Interchange session database:

accesses Accesses within the last 30 seconds

arg The argument passed in a [page ...] or [area ...] tag
browser The user browser string
host Interchange's idea of the host (modified by DomainTail)

last_error The last error from the error logging
last_url The current Interchange path_info
logged_in Whether the user is logged in via UserDB
pageCount Number of unique URLs generated
prev_url The previous path_info

referer HTTP_REFERER string

ship_message The last error messages from shipping
source Source of original entry to Interchange
time Time (seconds since Jan 1, 1970) of last access
user The REMOTE_USER string

username User name logged in as (UserDB)

Databases will hide variables, so if a database is hamed "session," "scratch," or any of the other reserved
names it won't be able to use the [data ...] tag to read them. Case is sensitive, so the database could be
called "Session," but this is not recommended practice.

[field name code]
named attributes: [field code="code" hame="fieldname"]
Expands into the value of the field name for the product as identified by code found by searching the produc

database. It will return the first entry found in the series of Product Files in the products database. If this nee
to constrained to a particular table, use a [data table col key] call.

38.2. The DATA and FIELD Tags 187

Interchange Documentation (Full)

38.3. set, seti, scratch and scratchd

Scratch variables are maintained in the user session, which is separate from the form variable values set on
HTML forms. Many things can be controlled with scratch variables, particularly search and order processing
the mv_click multiple variable setting facility, and key Interchange conditions session URL display.

There are three tags that are used to set the scratch space, [set name]value[/set], [seti
name]value[/seti], [tmp name]value[/tmp], and two tags for reading scratch space.

[set variable]value[/set]

named attributes: [set name="variable"] value [/set]

Sets a scratchpad variable to a value.

Most of the mv_* variables that are used for search and order conditionals are in another namespace. They
can be set through hidden fields in a form.

An order profile would be set with:

[set checkout]

name=required Please enter your name.

address=required No address entered.

[/set]

<INPUT TYPE=hidden NAME=mv_order_profile VALUE="checkout">

A search profile would be set with:

[set substring_case]

mv_substring_match=yes

mv_case=yes

[/set]

<INPUT TYPE=hidden NAME=mv_profile VALUE="substring_case">

To do the same as [set foo]bar[/set] in embedded Perl:

[calc]$Scratch—>{foo} = 'bar’; return;[/calc]
[seti variable][value something][/seti]

The same as [set] [/set], except it interpolates the container text. The above is the same as:

[set name=variable interpolate=1][value something][/set]
[tmp name]value[/tmp]
The same as [seti] but it does not persist.
[scratch name]

Returns the contents of a scratch variable to the page. [scratch foo] is the same as, but faster than:
[perl]$Scratch—>{foo}|/perl]

[scratchd]

38.3. set, seti, scratch and scratchd 188

Interchange Documentation (Full)

The same as [scratch name], except it deletes the value after returning it. Same as [scratch foo][set foo][/se!
[if scratch name op* compare*] yes [else] no [/else] [/if]

Tests a scratch variable. See the IF tag for more information.

38.4. loop

Loop lists can be used to construct arbitrary lists based on the contents of a database field, a search, or oth
value (like a fixed list). Loop accepts a search parameter that will do one—click searches on a database tabl
(or file).

To iterate over all keys in a table, use the idiom ([loop search="ra=yes/mI=9999"] [/loop].
ra=yes sets mv_return_all, which means "match everything". mli=9999 limits matches to that many
records. If the text file for searching an Interchange DBM database is not used, set st=db (mv_searchtype).

When using st=db, returned keys may be affected by TableRestrict. See catalog.cfg. Both can be
sorted with [sort table:field:mod —start +number] modifiers. See Sorting.

[loop item item item] LIST [/loop]

named attributes: [loop prefix=label* list="item item item"*

search="se=whatever"*]

Returns a string consisting of the LIST, repeated for every item in a comma-separated or space—separated
This tag works the same way as the [item-list] tag, except for order—item-specific values. It is intended

to pull multiple attributes from an item modifier, but can be useful for other things, like building a
pre—ordained product list on a page.

Loop lists can be nested by using different prefixes:

[loop prefix=size list="Small Medium Large"]
[loop prefix=color list="Red White Blue"]
[color-code]-[size-code]

[/loop]
<pP>
[/loop]

This will output:

Red-Small
White—Small
Blue-Small

Red-Medium
White—Medium
Blue-Medium
Red-Large

White-Large
Blue-Large

The search="args" parameter will return an arbitrary search, just as in a one—click search:

[loop search="se=Americana/sf=category"]
[loop—code] [loop-field title]

38.4. loop 189

Interchange Documentation (Full)

[/loop]
The above will show all items with a category containing the whole world "Americana."
[if-loop—data table field] IF [else] ELSE [/else][/if-loop—field]

Outputs the IF if the field in the table is not empty, and the ELSE (if any) otherwise.

Note: This tag does not nest with other [ifF-loop—data ...] tags.

[if-loop—field field] IF [else] ELSE [/else][/if-loop—field]

Outputs the IF if the field in the products table is not empty, and the ELSE (if any) otherwise.

Note: This tag does not nest with other [if-loop—field ...] tags.

[loop—alternate N] DIVISIBLE [else] NOT DIVISIBLE [/else][/loop—alternate]
Set up an alternation sequence. If the loop—increment is divisible by N, the text will be displayed. If

[else]NOT DIVISIBLE TEXT [/else] is present, then the NOT DIVISIBLE TEXT will be
displayed. For example:

[loop—alternate 2]JEVEN][else]ODD[/else][/loop—alternate]
[loop—alternate 3]BY 3[else]NOT by 3[/else][/loop-alternate]

[/loop—alternate]

Terminates the alternation area.

[loop—change marker]

Same as [item—change], but within loop lists.

[loop—code]

Evaluates to the first returned parameter for the current returned record.

[loop—data database fieldname]

Evaluates to the field name fieldname in the arbitrary database table database for the current item.
[loop—description]

Evaluates to the product description for the current item. Returns the <Description Field> from the first
products database where that item exists.

[loop-field fieldname]
The [loop—field ...] tag is special in that it looks in any of the tables defined as ProductFiles, in that
order, for the data, and returns the value only if that key is defined. In most catalogs, where ProductFiles

is not defined [loop—field title] is equivalent to [loop—data products title].

38.4. loop 190

Interchange Documentation (Full)

Evaluates to the field name fieldname in the database for the current item.

[loop-increment]

Evaluates to the number of the item in the list. Used for numbering items in the list. Starts from one (1).
[loop-last]tags[/loop-last]

Evaluates the output of the ITL tags encased in the [loop-last] tags. If it evaluates to a numerical non-zero
number (for example, 1, 23, or —1), the loop iteration will terminate. If the evaluated number is negative, the
item itself will be skipped. If the evaluated number is positive, the item itself will be shown, but will be last
on the list.

[loop-last][calc]
return -1 if '[loop—field weight]' eq ";
return 1 if 'Jloop-field weight]' < 1;
return O;
[/calc][/loop-last]

If this is contained in your [loop list] and the weight field is empty, a numerical —1 will be output from

the [calc][/calc] tags; the list will end and the item will not be shown. If the product's weight field is
less than 1, a numerical 1 is output. The item will be shown, but it will be the last item on the list.

[loop—next]tags[/loop—next]

Evaluates the output of the ITL tags encased in the [loop—next] tags. If it evaluates to a numerical hon-zero
number (for example, 1, 23, or —1), the loop will be skipped with no output. Example:

[loop—next][calc][loop—field weight] < 1[/calc][/loop—next]

If this is contained in your [loop list] and the product's weight field is less than 1, a numerical 1 will be
output from the [calc][/calc] operation. The item will not be shown.

[loop—price n* noformat*]

Evaluates to the price for the optional quantity n (from the products file) of the current item, with currency
formatting. If the optional "noformat" is set, then currency formatting will not be applied.

[loop—calc]PERL[/loop—calc]
Calls embedded Perl with the code in the container. All [loop-...] tags can be placed inside except for

[loop—filter ...][/loop—filter], [loop—exec routine][/loop—exec], [loop-last][/loop-last], and
[loop—next][/loop—next.

Note: All normal embedded Perl operations can be used, but be careful to pre—open any database tables wi
[perl tables="tables you need"][/perl] tag prior to the opening of the [loop].

[loop—exec routineJargument[/loop—exec]

Calls a subroutine predefined either in catalog.cfg with Sub, or in a [loop...] with [loop—sub
routine]PERL[/loop—sub]. The container text is passed as $_[0], and the array (or hash) value of the current

38.4. loop 191

Interchange Documentation (Full)

rowis $_[1].
[loop—sub routine]PERL[/loop—-sub]

Defines a subroutine that is available to the current (and subsequent) [loop-...] tags within the same page. ¢
Interchange Programming.

38.5. if

[if type field op* compare*]
named attributes: [if type="type" term="field" op="op" compare="compare"]
[if 'type field op* compare?*]
named attributes: [if type="Itype" term="field" op="op" compare="compare"]

Allows the conditional building of HTML based on the setting of various Interchange session and database
values. The general form is:

[if type term op compare]

[then]
If true, this text is printed on the document.
The [then] [/then] is optional in most
cases. If ! is prepended to the type
setting, the sense is reversed and
this text will be output for a false condition.
[/then]

[elsif type term op compare]
Optional, tested when if fails.
[felsif]
[else]
Optional, printed on the document when all above fail.
[felse]

[/if]
The [if] tag can also have some variants:

[if explicit][condition] CODE [/condition]
Displayed if valid Perl CODE returns a true value.

[/if]
Some Perl-style regular expressions can be written, and combine conditions:

[if value name =~ /*mikeli]
This is the if with Mike.
[elsif value name =~ /*sally/i]
This is an elsif with Sally.
[/elsif]
[elsif value name =~ /"barb/i]
[or value name =~ /*mary/i]
This is an elsif with Barb or Mary.
[elsif value name =~ /"pat/i]
[and value othername =~ /*mike/i]
This is an elsif with Pat and Mike.
[/elsif]

38.5. if 192

Interchange Documentation (Full)

[else]
This is the else, no name | know.
[felse]

[/if]

While the named parameter tag syntax works for [if ...], it is more convenient to use the positional

syntax in most cases. The only exception is when you are planning to do a test on the results of another tag

sequence:

This will not work:

[if value name =~ /[value b_name]/]
Shipping hame matches billing name.

[/if]

Do this instead:

[if type=value term=name op="=~" compare="/[value b_name]/"]
Shipping hame matches billing name.
[/if]

As an alternative:

[if type=value term=high_water op="<" compare="[shipping noformat=1]"]
The shipping cost is too high, charter a truck.

[/if]
There are many test targets available. The following is a list of some of the available test targets.

config Directive

The Interchange configuration variables. These are set by the directives in the Interchange configuration file

[if config CreditCardAuto]
Auto credit card validation is enabled.

[/if]

data database::field::key

The Interchange databases. Retrieves a field in the database and returns true or false based on the value.

[if data products::size::99-102]
There is size information.
[else]

No size information.

[lelse]

[/if]

[if data products::size::99-102 =~ /small/i]
There is a small size available.

[else]

No small size available.

[felse]

[/if]

If another tag is needed to select the key, and it is not a looping tag construct, named parameters must be u

38.5. if 193

Interchange Documentation (Full)

[set code]99-102[/set]

[if type=data term="products::size::[scratch code]"]
There is size information.

[else]

No size information.

[lelse]

[/if]
discount

Checks to see if a discount is present for an item.

[if discount 99-102]
This item is discounted.

[/if]
explicit

A test for an explicit value. If Perl code is placed between a [condition][/condition] tag pair, it
will be used to make the comparison. Arguments can be passed to import data from user space, just as witf
the [perl] tag.

[if explicit]

[condition]
$country = $ values =~{country};
return 1 if $country =~ /u\.?s\.?a?/i;
return O;

[/condition]

You have indicated a US address.

[else]

You have indicated a non-US address.

[lelse]

[/if]

The same thing could be accomplished with [if value country =~ /u\.?s\.?a?/i], but there
are many situations where this example could be useful.

file
Tests for the existence of a file. This is useful for placing image tags only if the image is present.

[if file /nome/user/www/images/[item—code].qgif]

[/if]

or

[if type=file term="/home/user/www/images/[item—code].gif"]

[/if]
The file test requires that the SafeUntrap directive contain ftfile (which is the default).
items

The Interchange shopping carts. If not specified, the cart used is the main cart. This is usually used to test t

38.5. if 194

Interchange Documentation (Full)

see if anything is in the cart. For example:

[if items]You have items in your shopping cart.[/if]

[if items layaway]You have items on layaway.[/if]
ordered

Order status of individual items in the Interchange shopping carts. Unless otherwise specified, the cart used
the main cart. The following items refer to a part number of 99-102.

[if ordered 99-102] ... [/if]
Checks the status of an item on order, true if item
99-102 is in the main cart.

[if ordered 99-102 layaway] ... [/if]
Checks the status of an item on order, true if item
99-102 is in the layaway cart.

[if ordered 99-102 main size] ... [/if]
Checks the status of an item on order in the main cart,
true if it has a size attribute.

[if ordered 99-102 main size =~ /largeli] ... [/if]
Checks the status of an item on order in the main cart,
true if it has a size attribute containing 'large’.
THE CART NAME IS REQUIRED IN THE OLD SYNTAX. The new
syntax for that one would be:
[if type=ordered term="99-102" compare="size =~ /large/i"]
To make sure it is the size that is large, and not another attribute, you could use:
[if ordered 99-102 main size eq 'large ... [/if]
[if ordered 99-102 main lines] ... [/if]
Special case —— counts the lines that the item code is

present on. (Only useful, of course, when mv_separate_items
or Separateltems is defined.)

scratch

The Interchange scratchpad variables, which can be set with the [set name]value[/set] element.

[if scratch mv_separate_items]

Ordered items will be placed on a separate line.
[else]

Ordered items will be placed on the same line.
[lelse]

[/if]
session
The Interchange session variables. Of particular interest are logged_in, source, browser, and username.

validcc

38.5. if 195

Interchange Documentation (Full)

A special case, it takes the form [if validcc no type exp_date]. Evaluates to true if the supplied
credit card number, type of card, and expiration date pass a validity test. It performs a LUHN-10 calculation
to weed out typos or phony card numbers.

value

The Interchange user variables, typically set in search, control, or order forms. Variables beginning with mv_
are Interchange special values, and should be tested and used with caution.

variable
See Interchange Variable values.

The field term is the specifier for that area. For example, [if session frames] would return true if the
frames session parameter was set.

As an example, consider buttonbars for frame—based setups. You might decide to display a different button!
with no frame targets for sessions that are not using frames:

[if session frames]
[buttonbar 1]
[else]
[buttonbar 2]
[felse]

[/if]

Another example might be the when search matches are displayed. If using the string [value
mv_match_count] titles found, it will display a plural result even if there is only one match. Use:

[if value mv_match_count != 1]

[value mv_match_count] matches found.
[else]

Only one match was found.
[felse]

[/if]
The op term is the compare operation to be used. Compare operations are the same as they are in Perl:

== numeric equivalence

eq string equivalence

> numeric greater—than

gt string greater—than

< numeric less-than

It string less—than

I= numeric nhon—-equivalence
ne string equivalence

Any simple Perl test can be used, including some limited regex matching. More complex tests should be dot
with [if explicit].

[then] text [/then]

This is optional if not nesting "if" conditions. The text immediately following the [if ..] tag is used as the
conditionally substituted text. If nesting [if ...] tags, use [then][/then] on any outside conditions to

38.5. if 196

Interchange Documentation (Full)

ensure proper interpolation.
[elsif type field op* compare*]

named attributes: [elsif type="type" term="field" op="op" compare="compare"]
Additional conditions for test, applied if the initial [if ..] test fails.

[else] text [/else]

The optional else-text for an if or if—-item—field conditional.

[condition] text [/condition]

Only used with the [if explicit] tag. Allows an arbitrary expression in Perl to be placed inside, with its

return value interpreted as the result of the test. If arguments are added to [if explicit args], those
will be passed as arguments in the [perl] construct.

[/if]

Terminates an if conditional.

38.5. if 197

39. Programming

Interchange has a powerful paradigm for extending and enhancing its functionality. It uses two mechanisms
user—defined tags and user subroutines on two different security levels, global and catalog. In addition,
embedded Perl code can be used to build functionality into pages.

User—defined tags are defined with the UserTag directive in either interchange.cfg or catalog.cfg.
The tags in interchange.cfg are global and they are not constrained by the Safe Perl module as to
which opcodes and routines they may use. The user-defined tags in catalog.cfg are constrained by
Safe. However, if the AllowGlobal global directive is set for the particular catalog in use, its UserTag
and Sub definitions will have global capability.

39.1. Overriding Interchange Routines

Many of the internal Interchange routines can be accessed by programmers who can read the source and fi
entry points. Also, many internal Interchange routines can be overridden:

GlobalSub <<EOS
sub just_for_overriding {
package Vend::Module;
use MyModule;
sub to_override {
&MyModule::do_something_funky($Values—>{my_variable});
}

}
EOS

The effect of the above code is to override the to_override routine in the module Vend::Module. This
is preferable to hacking the code for functionality changes that are not expected to change frequently. In mo
cases, updating the Interchange code will not affect the overridden code.

Note: Internal entry points are not guaranteed to exist in future versions of Interchange.

39.2. Embedding Perl Code

Perl code can be directly embedded in Interchange pages. The code is specified as:

[perl]
$name = $Values—>{name};

$browser = $Session—>{browser};
return "Hi, $name! How do you like your $browser?";
[/perl]

ASP syntax can be used with:

[mvasp]
<%
$name = $Values—>{name};
$browser = $Session—>{browser};
%>
Hi, <%= $name %>!
<%
HTML "How do you like your $browser?";

39. Programming 198

http://www.perl.com/pub/doc/manual/html/lib/Safe.html

Interchange Documentation (Full)

%>
[/mvasp]

The two examples above are essentially equivalent. See the perl and mvasp tags for usage details.

The [perl] tag enforces Safe.pm checking, so many standard Perl operators are not available. This prevents
user access to all files and programs on the system without the Interchange daemon's permissions. See
GlobalSub and User—defined Tags for ways to make external files and programs available to

Interchange.

Named parameters:
See the perl tag for a description of the tag parameters and attributes. These include:

[perl tables="tables—to—open"*
subs=1*
global=1*
no_return=1*
failure="Return value in case of compile or runtime error"*
file="include_file"*]

Required parameters: none

Any Interchange tag (except ones using SQL) can be accessed using the $Tag object. If using SQL queries
inside a Perl element, AllowGlobal permissions are required and and the global=1 parameter must be

set. Installing the module Safe::Hole along with sharing the database table with <tables=tablename> wiill
enable SQL use.

For example:

If the item might contain a single quote

[perl]
$comments = $Values—>{comments};

[/perl]

Important Note: Global subroutines are not subject to the stringent security check from the Safe module.
This means that the subroutine will be able to modify any variable in Interchange, and will be able to write tc
read and write any file that the Interchange daemon has permission to write. Because of this, the subroutine
should be used with caution. They are defined in the main interchange.cfg file, and can't be reached by
from individual users in a multi-catalog system.

Global subroutines are defined in interchange.cfg with the GlobalSub directive, or in user catalogs

which have been enabled through AllowGlobal. Catalog subroutines are defined in catalog.cfg, with

the Sub directive and are subject to the stringent Safe.pm security restrictions that are controlled by the glot
directive SafeUntrap.

The code can be as complex as you want them to be, but cannot be used by operators that modify the file
system or use unsafe operations like "system," "exec," or backticks. These constraints are enforced with the
default permissions of the standard Perl module Safe. Operations may be untrapped on a system-wide bas
with the SafeUntrap directive.

The result of this tag will be the result of the last expression evaluated, just as in a subroutine. If there is a
syntax error or other problem with the code, there will be no output.

39. Programming 199

Interchange Documentation (Full)

Here is a simple one which does the equivalent of the classic hello.pl program:
[perl] my $tmp = "Hello, world!"; $tmp; [/perl]

There is no need to set the variable. It is there only to show the capability.

To echo the user's browser, but within some HTML tags:

[perl]

my $html = '<H5>",

$html .= $Session—>{browser};
$html .= '</H5>";

$html;

[/perl]

To show the user their name and the current time:

[perl]
my $string = "Hi, " . $Values—>{name} ". The time is now ";

$string .= $Tag—>time();
$string;

[/perl]

39.3. ASP-Like Perl

Interchange supports an ASP-like syntax using_the [mvasp] tag.

[mvasp]
<HTML><BODY>
This is HTML.

<% HTML "This is code
"; %>

More HTML.

<% $Document—>write("Code again.
") %>
[/mvasp]

If no closing [/mvasp] tag is present, the remainder of the page will also be seen as ASP.

ASP is simple. Anything between <% and %> is code, and the string %> can not occur anywhere inside.
Anything not between those anchors is plain HTML that is placed unchanged on the page. Interchange
variables, [L][/L], and [LC][/LC] areas will still be inserted, but any Interchange tags will not.

There is a shorthand <% = $foo %>, which is equivalent to <% $Document—>write($foo); %> or <% HTML
$foo; %>

[mvasp]

<HTML><BODY>
This is HTML.

[value name] will show up as [value name].

__VARIABLE__ value is equal to: _ VARIABLE__

<% = "This is code
" %>

39.3. ASP-Like Perl 200

Interchange Documentation (Full)

The _ VARIABLE__ will be replaced by the value of Variable VARIABLE, but [value name] will be
shown unchanged.

Important Note: If using the SQL.::Statement module, the catalog must be set to AllowGlobal in
interchange.cfg. It will not work in "Safe” mode due to the limitations of object creation in Safe. Also,
the Safe::Hole module must be installed to have SQL databases work in Safe mode.

39.4. Error Reporting

If your Perl code fails with a compile or runtime error, Interchange writes the error message from the Perl
interpreter into the catalog's error log. This is usually 'catalog_root/error.log'. Error messages do not appear
on your web page as the return value of the Perl tag or routine.

You will not have direct access to the 'strict’ and ‘warnings' pragmas where Interchange runs your perl
code under Safe (for example, within a [perl] or [mvasp] tag).

39.4. Error Reporting 201

http://www.perl.com/pub/doc/manual/html/lib/Safe.html

40. Interchange Perl Objects

You can access all objects associated with the catalog and the user settings with opcode restrictions based
the standard Perl module Safe.pm. There are some unique things to know about programming with
Interchange.

Under Safe, certain things cannot be used. For instance, the following can not be used when running Safe:
$variable = “cat file/contents’;

The backtick operator violates a number of the default Safe opcode restrictions. Also, direct file opens can n
be used. For example:

open(SOMETHING, "something.txt")
or die;

This will also cause a trap, and the code will fail to compile. However, equivalent Interchange routines can b
used:

This will work if your administrator doesn't have NoAbsolute set
$users = $Tag—>file('/homelyoullist);

This will always work, file names are based in the catalog directory
$users = $Tag—>file('userlist');

The following is a list of Interchange Perl standard objects are:
$CGI

This is a hash reference to %CGl::values, the value of user variables as submitted in the current
page/form. To get the value of a variable submitted as

<INPUT TYPE=hidden NAME=foo VALUE=bar>
use
<% $Document—>write("Value of foo is $CGl->{foo}"); %>

Remember, multiple settings of the same variable are separated by a NULL character. To get the array valu
use $CGI_array.

$CGI_array

This is a hash reference to %CGl::values_array, arrays containing the value or values of user variables
as submitted in the current page/form. To get the value of a variable submitted as

<INPUT TYPE=hidden NAME=foo VALUE="bar">
<INPUT TYPE=hidden NAME=foo VALUE='baz">

use

<% = "The values of foo are", join (' and ', @{$CGI_array->{'foo'}}) %>

40. Interchange Perl Objects 202

Interchange Documentation (Full)

Remember, multiple settings of the same variable are separated by a NULL character. To get the array valu
use $CGI_array.

$Carts

A reference to the shopping cart hash $Vend::Session—>{carts}. The normal default cart is "main". A typical
alias is $ltems.

Shopping carts are an array of hash references. Here is an example of a session cart array containing a ma
and a layaway cart.

{
'main' => [
{
‘code’ =>'00-0011',
‘'mv_ib' => 'products’,
'‘quantity' => 1,
'size' => undef,
‘color' => undef

‘code' =>'99-102',
'mv_ib' => 'products’,
‘quantity' => 2,
'size' => 'L,
‘color' => 'BLUE'

}

1
'layaway' => [

{
‘code’ =>'00-341",
'mv_ib' => 'products’,
‘quantity' => 1,
'size' => undef,
‘color' => undef

}

In this cart array, $Carts—>{main}[1]{code} is equal to 99-102. Normally, it would be equivalent to
$ltems—>[1]{code}.

$Config

A reference to the $Vend::Cfg array. This is normally used with a large amount of the Interchange source
code, but for simple things use something like:

Allow searching the User database this page only
$Config—>{NoSearch} =~ s/\buserdb\b//;

Changes are not persistent —— they are reset upon the next page access.
%Db
A hash of databases shared with the [mvasp tables="foo"] parameter to the tag call. Once the database

is shared, it is open and can be accessed by any of its methods. This will not work with SQL unless
AllowGlobal is set for the catalog.

40. Interchange Perl Objects 203

Interchange Documentation (Full)

To get a reference to a particular table, specify its hash element:
$ref = $Db{products};
The available methods are:

access an element of the table
$field = $ref->field($key, $column);

set an element of the table
$ref->set_field($key, $column_name, $value);

atomic increment of an element of the table
$ref->inc_field($key, $column_name, 1);

see if element of the table is numeric
$is_numeric = $ref->numeric($column_name);

Quote for SQL query purposes
$quoted = $ref->quote($value, $column_name);

Check configuration of the database
$delimiter = $ref->config(DELIMITER');

Find the names of the columns (not including the key)
@columns = $ref->columns();

Insert the key column name

unshift @columns, $ref->config(KEY");

See if a column is in the table
$is_a_column = defined $ref->test_column($column_name);

See if a row is in the table
$is_present = $ref->record_exists($key);

Create a subroutine to return a single column from the table
$sub = $ref->field_accessor($column);
for (@keys) {
push @values, $sub—>($key);
}

Create a subroutine to set a single column in the database
$sub = $ref—>field_settor($column);
for (@keys) {
$sub—>($key, $value);
}

Create a subroutine to set a slice of the database
$sub = $ref->row_settor(@columns);
for (@keys) {
$sub—>($key, @values);
}

Return a complete array of the database (minus the key)
@values = $ref->row($key);

Return a complete hash of the database row (minus the key)
$hashref = $ref->row_hash($key);

Delete a record/row from the table
$ref->delete_record($key);

40. Interchange Perl Objects 204

Interchange Documentation (Full)

%Sq|l

A hash of SQL databases that you shared with the [mvasp tables="foo0"] parameter to the tag call. It
returns the DBI database handle, so operations like the following can be performed:

<%

my $dbh = $Sql{products}
or return HTML "Database not shared.";

my $sth = $dbh->prepare(‘select * from products’)
or return HTML "Couldn't open database.";

$sth—>execute();

my @record,;

while(@record = $sth—>fetchrow()) {
foo();

$sth = $dbh->prepare('select * from othertable’)
or return HTML "Couldn't open database.";
$sth—>execute();
while(@record = $sth—>fetchrow()) {
bar();
}

%>
This will not work with unless AllowGlobal is set for your catalog.
$DbSearch

A search object that will search a database without using the text file. It is the same as Interchange's db
searchtype. Options are specified in a hash and passed to the object. All multiple—field options should be
passed as array references. Before using the $DbSearch object, it must be told which table to search. For
example, to use the table foo, it must have been shared with [mvasp foo].

There are three search methods: array, hash, and list.

array Returns a reference to an array of arrays (best)
hash Returns a reference to an array of hashes (slower)
list Returns a reference to an array of tab—delimited lines

\Example:

$DbSearch—>{table} = $Db{foo};
$search = {
mv_searchspec =>'Mona Lisa/,
mv_search_field => ['title’, 'artist’, 'price'],
mv_return_fields => ['title']
h
my $ary = $DbSearch—>array($search);
if(! scalar @$ary) {
return HTML "No match.\n";
}

for(@%$ary) {

40. Interchange Perl Objects 205

Interchange Documentation (Full)

$Document

This is an object that has several routines associated with it.

HTML $foo; # Append $foo to the write buffer array
$Document—>write($foo); # object call to append $foo to the write

buffer array
$Document—>insert($foo); # Insert $foo to front of write buffer array
$Document->header($foo, $opt); # Append $foo to page header
$Document->send(); # Send write buffer array to output, done

automatically upon end of ASP, clears buffer

and invalidates $Document—>header()
$Document->hot(1); # Cause writes to send immediately
$Document->hot(0); # Stop immediate send
@ary = $Document—>review(); # Place contents of write buffer in @ary
$Document->replace(@ary) # Replace contents of write buffer with @ary
$ary_ref = $Document->ref(); # Return ref to output buffer

$Document—>write($foo)

Write $foo to the page in a buffered fashion. The buffer is an array containing the results of all previous
$Document—>write() operations. If $Document—>hot(1) has been set, the output immediately goes to
the user.

$Document—>insert($foo)

Insert $foo to the page buffer. The following example will output "123"

$Document—>write("23");
$Document->insert("1");
$Document—>send();

while this example will output "231"

$Document—>write("23");
$Document—>write("1");
$Document—>send();

will output "231".
$Document—>header($foo, $opt)

Add the header line $foo to the HTTP header. This is used to change the page content type, cache options,
other attributes. The code below changes the content type (MIME type) to text/plain:

$Document->header("Content-type: text/plain");

There is an optional hash that can be sent with the only valid value being "replace." The code below scrubs
previous header lines:

$Document—>header("Content-type: text/plain”, { replace => 1});
Once output has been sent with $Document->send(), this can no longer be done.
$Document—>hot($foo)

40. Interchange Perl Objects 206

Interchange Documentation (Full)

If the value of $foo is true (in a Perl sense), then all $Document—>write() operations will be immediately sent
until a $Document->hot(0) is executed.

$Document->send()

Causes the document write buffer to be sent to the browser and empties the buffer. Any further
$Document—>header() calls will be ignored. Can be used to implement non—parsed—header operation.

$Document->review()

Returns the value of the write buffer.

@ary = $Document—>review();
$Document—>replace(@new)
Completely replaces the write buffer with the arguments.
$Document—>ref()

Returns a reference to the write buffer.

Remove the first item in the write buffer
my $ary_ref = $Document—>ref();
shift @%ary_ref;

HTML

Writes a string (or list of strings) to the write buffer array. The call

HTML $foo, $bar;

is exactly equivalent to

$Document—>write($foo, $bar);
Honors the $Document—>hot() setting.
$ltems

A reference to the current shopping cart. Unless an Interchange [cart ...] tag is used, it is normally the
same as $Carts—>{main}.

$Scratch

A reference to the scratch values ala [scratch foQ].
<% $Scratch—>{foo} = 'bar'’; %>

is equivalent to:

[set foo]bar[/set]

40. Interchange Perl Objects 207

Interchange Documentation (Full)

$Session

A reference to the session values ala [data session username].
<%
my $out = $Session—>{browser};

$Document—>write($out);
%>

is equivalent to:
[data session browser]

Values can also be set. If the value of [data session source] needed to be changed, for example, set:

<%
$Session—>{source} = 'New_partner’,
%>

$Tag

Using the $Tag object, any Interchange tag including user—defined tags can be accessed.

IMPORTANT NOTE: If the tag will access a database that has not been previously opened, the table name
must be passed in the ASP call. For example:

Named parameters:
[mvasp tables="products pricing"]

or
Positional parameters:

[mvasp products pricing]
Any tag can be called.
<%
my $user = $Session—>{username};
my $name_from_db = $Tag—->data('userdb’, 'name’, $user);

$Document—>write($name_from_db);
%>

is the same as:

[data table=userdb column=name key="[data session username]"]
If the tag has a dash (-) in it, use an underscore instead:

WRONG!

$Tag—>shipping—desc(‘'upsg’);

Right
$Tag—>shipping_desc('upsg");

40. Interchange Perl Objects 208

Interchange Documentation (Full)

There are two ways of specifying parameters. Either use the positional parameters as documented (for an
authoritative look at the parameters, see the %Routine value in Vend::Parse), or specify it all with an option
hash parameter names as in any named parameters as specified in an Interchange tag. The calls

$Tag->data(‘products’, 'title’, '00-0011");
and

my $opt = {
table =>'products',
column => 'title',
key =>'00-0011',
3

$Tag—>data($opt);

are equivalent for the data tag.
If using the option hash method, and the tag has container text, either specify it in the hash parameter body
add it as the next argument. The two calls:

$Tag—>item_list({
'‘body' => "[item—code] [item—field title]",
i
and

$Tag—>item_list({ }, "[item—code] [item—field title]")

are equivalent.
Parameter names are ALWAYS lower case.

$Values

A reference to the user form values ala [value foo].
<% $Document—>write($Values—>{foo}); %>

is equivalent to:
[value foo]

&Log

Send a message to the error log (same as ::logError in GlobalSub or global UserTag).

<%
Log(“error log entry");
%>

It prepends the normal timestamp with user and page information. To suppress that information, begin the
message with a backslash (\).

<%
Log("\\error log entry without timestamp");

40. Interchange Perl Objects 209

Interchange Documentation (Full)

Log(\another error log entry without timestamp);
Log(“error log entry with timestamp");
%>

40. Interchange Perl Objects 210

41. Debugging

No debug output is provided by default. The source files contain commented-out '::logDebug(SOMETHING
statements which can be edited to activate them. Set the value of DebugFile to a file that will be written to:

DebugFile /tmp/icdebug

41.1. Export

Named Parameters: [export table="dbtable"]

Positional Parameters: [export db_table]

The attribute hash reference is passed to the subroutine after the parameters as the last argument. This ma
mean that there are parameters not shown here. Must pass hamed parameter interpolate=1 to cause
interpolation.

Invalidates cache: YES

Called Routine:

ASP/perl tag calls:

$Tag—>export(

table => VALUE,

}
)

OR
$Tag—>export($table, SATTRHASH);
Attribute aliases:

base ==> table
database ==> table

41.2. Time

Named Parameters: [time locale="loc"]

Positional Parameters: [time loc]

The attribute hash reference is passed after the parameters but before the container text argument. This ma
mean that there are parameters not shown here. Must pass nhamed parameter interpolate=1 to cause
interpolation.

This is a container tag, i.e., [time] FOO [/time].

Nesting: NO.

Invalidates cache: NO.

Called Routine:

ASP/perl tag calls:

$Tag—>time(
locale => VALUE,

h
BODY

)
41. Debugging 211

Interchange Documentation (Full)

OR

$Tag—>time($locale, SATTRHASH, $BODY);

41.3. Import

Named Parameters: [import table=table _name type=(TAB|PIPE|CSV|%%|LINE)
continue=(NOTES|UNIX|DITTO) separator=c]

Positional Parameters: [import table_name TAB]

The attribute hash reference is passed after the parameters but before the container text argument. This ma
mean that there are parameters not shown here. Interpolates container text by default>.

This is a container tag, i.e., [import] FOO [/import].

Nesting: NO

Invalidates cache: YES.

Called Routine:

ASP/perl tag calls:

$Tag—>import(

table => VALUE,
type => VALUE,

h
BODY

)
OR

$Tag—->import($table, $type, SATTRHASH, $BODY);
Attribute aliases:

base ==> table
database ==> table

Description:

Import one or more records into a database. The type is any of the valid Interchange delimiter types, with th
default being defined by the setting of the database DELIMITER. The table must already be a defined
Interchange database table; it cannot be created on-the—fly. (Use SQL for on—the—fly tables.)

The type of LINE and continue setting of NOTES is patrticularly useful, for it allows the naming of fields so
that the order in which they appear in the database will not have to be remembered. The following two
imports are identical in effect:

[import table=orders type=LINE continue=NOTES]
code: [value mv_order_number]

shipping_maode: [shipping—description]

status: pending

[/import]

[import table=orders type=LINE continue=NOTES]
shipping_maode: [shipping—description]

status: pending

code: [value mv_order_number]

[/import]

41.3. Import 212

Interchange Documentation (Full)

The code or key must always be present, and is always hamed code. If NOTES mode is not used, import th
fields in the same order as they appear in the ASCII source file. The [import] TEXT [/import] region may
contain multiple records. If using NOTES mode, use a separator, which by default is a form—feed character
("L).

41.4. Log

Named Parameters: [log file=file_name]

Positional Parameters: [log file_name]

The attribute hash reference is passed after the parameters but before the container text argument. This ma
mean that there are parameters not shown here. Must pass nhamed parameter interpolate=1 to cause
interpolation. This is a container tag, i.e., [log] FOO [/log].

Nesting: NO.

Invalidates cache: NO.

Called Routine:

ASP/perl tag calls:

$Tag—>log(

file => VALUE,

h
BODY

)
OR

$Tag—>log($file, SATTRHASH, $BODY);
Attribute aliases:

arg ==> file
41.5. Header

41.6. price, description, accessories

[price code quantity* database* noformat*]

named attributes: [price code="code" quantity="N" base="database" noformat=1*

optionX="value"]

Expands into the price of the product identified by code as found in the products database. If there is more
than one products file defined, they will be searched in order unless constrained by the optional argument
base. The optional argument quantity selects an entry from the quantity price list. To receive a raw number,
with no currency formatting, use the option noformat=1.

If an named attribute corresponding to a product option is passed, and that option would cause a change in
price, the appropriate price will be displayed.

Demo example: The T-Shirt (product code 99-102), with a base price of $10.00, can vary in price dependir
on size and color. S, the small size, is 50 cents less; XL, the extra large size, is $1.00 more, and the color R
is 0.75 extra. There are also quantity pricing breaks (see the demo pricing database. So the following will
be true:

41.4. Log 213

Interchange Documentation (Full)

[price code=99-102
size=L] is $10.00

[price code=99-102
size=XL] is $11.00

[price code=99-102
color=RED
size=XL] is $11.75

[price code=99-102
size=XL
quantity=10] is $10.00

[price code=99-102
size=8] is $9.50

An illustration of this is on the simple flypage template when passed that item code.
[description code table*]

named attributes: [description code="code" base="database"]

Expands into the description of the product identified by code as found in the products database. If there is
more than one products file defined, they will be searched in order unless constrained by the optional
argument table.

[accessories code attribute*, type*, field*, database*, name*, outboard?*]

named attributes: [accessories code="code" arg="attribute*, type*, field*,

database*, name?*, outboard*"]

Initiates special processing of item attributes based on entries in the product database. See Item Attributes 1
a complete description of the arguments.

When called with an attribute, the database is consulted and looks for a comma-separated list of attribute
options. They take the form:

name=Label Text, name=Label Text*

The label text is optional. If none is given, the name will be used.
If an asterisk is the last character of the label text, the item is the default selection. If no default is specified,
the first will be the default. An example:

[accessories TK112 color]

This will search the product database for a field named "color." If an entry "beige=Almond, gold=Harvest
Gold, White*, green=Avocado" is found, a select box like this will be built:

<SELECT NAME="mv_order_color">
<OPTION VALUE="beige">Almond
<OPTION VALUE="gold">Harvest Gold
<OPTION SELECTED>White
<OPTION VALUE="green">Avocado
</SELECT>

In combination with the mv_order_item and mv_order_quantity variables, this can be used to allow
entry of an attribute at time of order.

41.4. Log 214

Interchange Documentation (Full)

41.7. FILE and INCLUDE

These elements read a file from the disk and insert the contents in the location of the tag. [include ...]
will allow insertion of Interchange variables and ITL tags.

[file ...]

named: [file name="name" type="dos|mac|unix"*]

positional: [file name]

Inserts the contents of the named file. The file should normally be relative to the catalog directory. File name
beginning with / or .. are only allowed if the Interchange server administrator has disabled NoAbsolute. The
optional type parameter will do an appropriate ASCII translation on the file before it is sent.

[include file]

named attributes: [include file="name"]
Same as [file name] except interpolates for all Interchange tags and variables.

41.8. Banner/Ad rotation

Interchange has a built—in banner rotation system designed to show ads or other messages according to
category and an optional weighting.

The [banner ...] ITL tag is used to implement it.

The weighting system pre-builds banners in the directory 'Banners,' under the temporary directory. It will
build one copy of the banner for every one weight. If one banner is weighted 7, one 2, and one 1, then a totz
of 10 pre—built banners will be made. The first will be displayed 70 percent of the time, the second 20 percel
and the third 10 percent, in random fashion. If all banners need to be equal, give each a weight of 1.

Each category may have separate weighting. If the above is placed in category tech, then it will behave as
above when placed in [banner category=tech] in the page. A separate category, say art, would have

its own rotation and weighting.

The [banner ...] tag is based on a database table, named banners by default. It expects a total of five
(5) fields in the table:

code
This is the key for the item. If the banners are not weighted, this should be a category specific code.
category

To choose to categorize weighted ads, this contains the category to select. If empty, it will be placed in the
default (or blank) category.

weight

Must be an integer number 1 or greater to include this ad in the weighting. If 0 or blank, the ad will be ignore
when weighted ads are built.

41.7. FILE and INCLUDE 215

Interchange Documentation (Full)

rotate

If the weighted banners are not used, this must contain some value. If the field is empty, the banner will not
displayed. If the value is specifically 0 (zero), then the entire contents of the banner field will be displayed
when this category is used. If it is non—zero, then the contents of the banner field will be split into segments
(by the separator {or}). For each segment, the banners will rotate in sequence for that user only. Obviously,
the first banner in the sequence is more likely to be displayed than the last.

Summary of values of rotate field:

non-zero, hon-blank: Rotating ads

blank: Ad not displayed
0: Ad is entire contents of banner field
banner

This contains the banner text. If more than one banner is in the field, they should be separated by the text
{or} (which will not be displayed).

Interchange expects the banner field to contains the banner text. It can contain more than one banner,
separated by the string '{or}.' To activate the ad, place any string in the field rotate.

The special key "default” is the banner that is displayed if no banners are found. (Doesn't apply to weighted
banners.)

Weighted banners are built the first time they are accessed after catalog reconfiguration. They will not be
rebuilt until the catalog is reconfigured, or the file tmp/Banners/total_weight and
tmp/Banners/<category>/total_weight is removed.

If the option once is passed (i.e., [banner once=1 weighted=1], then the banners will not be rebuilt until the
total_weight file is removed.

The database specification should make the weight field numeric so that the proper query can be made.
Here is the example from Interchange's demo:

Database banner banner.txt TAB
Database banner NUMERIC weight

Examples:
weighted, categorized

To select categorized and weighted banners:
The banner table would look like this:

code category weight rotate banner

t1 tech 1 Click here for a 10% banner
t2 tech 2 Click here for a 20% banner
t3 tech 7 Click here for a 70% banner
al art 1 Click here for a 10% banner
a2 art 2 Click here for a 20% banner
a3 art 7 Click here for a 70% banner

Tag would be:

41.7. FILE and INCLUDE 216

Interchange Documentation (Full)

[banner weighted=1 category="tech"]

This will find *all* banners with a weight >= 1 where the category field is equal to tech. The files will be
made into the director tmp/Banners/tech.

weighted
To select weighted banners:

[banner weighted=1]

This will find *all* banners with a weight >= 1. (Remember, integers only.) The files will be made into the
director tmp/Banners.

code category weight rotate banner
t1 tech 1 Tech banner 1
t2 tech 2 Tech banner 2
t3 tech 7 Tech banner 3
al art 1 Art banner 1
a2 art 2 Art banner 2
a3 art 7 Art banner 3

Each of the above with a weight of 7 will actually be displayed 35 percent of the time.

categorized, not rotating
[banner category="tech"]
This is equivalent to:
[data table=banner col=banner key=tech

The differences are that it is not selected if "rotate" field is blank; if not selected, the default banner is

displayed.
The banner table would look like this:

code category weight rotate banner
tech 0 0 Tech banner

Interchange tags can be inserted in the category parameter, if desired:
[banner category="[value interest]"]

categorized and rotating
[banner category="tech"]

The difference between this and above is the database.
The banner table would look like this:

code category weight rotate banner
tech 0 1 Tech banner 1{or}Tech banner 2
art 0 1 Art banner 1{or}Art banner 2

41.7. FILE and INCLUDE 217

Interchange Documentation (Full)

This would rotate between banner 1 and 2 for the category tech for each user. Banner 1 is always displayed
first. The art banner would never be displayed unless the tag [banner category=art] was used, of

course.

Interchange tags can be inserted in the category parameter, if desired:

[banner category="[value interest]"]
multi-level categorized
[banner category="tech:hw"] or [banner category="tech:sw"]

If have a colon—separated category, Interchange will select the most specific ad available. If the banner
table looks like this:

code category weight rotate banner

tech 0 1 Tech banner 1{or}Tech banner 2
tech:hw 0 1 Hardware banner 1{or}HW banner 2
tech:sw 0 1 Software banner 1{or}SW banner 2

This works the same as single—level categories, except that the category tech:hw will select that banner. Th
category tech:sw will select its own. But, the category tech:html would just get the "tech" banner. Otherwise,
it works just as in other categorized ads. Rotation will work if set non-zero/non—-blank, and it will be inactive
if the rotate field is blank. Each category rotates on its own.

Advanced

All parameters are optional since they are marked with an asterisk (*).
Tag syntax:

[banner
weighted=1*
category=category*
once=1*
separator=sep*
delimiter=delim*
table=banner_table*
a_field=banner_field*
w_field=weight_field*
r_field=rotate_field*

]
Defaults are blank except:

table banner selects table used

a_field banner selects field for banner text
delimiter {or} delimiter for rotating ads

r_field rotate rotate field

separator : separator for multi-level categories
w_field weight rotate field

41.9. Tags for Summarizing Shopping Basket/Cart

The following elements are used to access common items which need to be displayed on baskets and chec
pages.

41.9. Tags for Summarizing Shopping Basket/Cart 218

Interchange Documentation (Full)

* marks an optional parameter

[item—list cart*]

named attributes: [item—list name="cart"]

Places an iterative list of the items in the specified shopping cart, the main cart by default. See Item Lists fot
description.

[/item—list]

Terminates the [item-list] tag.

[nitems cart*]

Expands into the total number of items ordered so far. Takes an optional cart name as a parameter.
[subtotal]

Expands into the subtotal cost, exclusive of sales tax, of all the items ordered so far.

[salestax cart*]

Expands into the sales tax on the subtotal of all the items ordered so far. If there is no key field to derive the
proper percentage, such as state or zip code, it is set to 0. See SALES TAX for more information.

[shipping—description mode*]

named attributes: [shipping—description name="mode"]
The text description of mode. The default is the shipping mode currently selected.

[shipping mode*]

named attributes: [shipping hame="mode"]

The shipping cost of the items in the basket via mode. The default mode is the shipping mode currently
selected in the mv_shipmode variable. See SHIPPING.

[total-cost cart*]

Expands into the total cost of all the items in the current shopping cart, including sales tax, if any.

[currency convert*]

named attributes: [currency convert=1*]
When passed a value of a single number, formats it according to the currency specification. For instance:

[currency]4|/currency]
will display:

4.00

41.9. Tags for Summarizing Shopping Basket/Cart 219

Interchange Documentation (Full)

Uses the Locale and PriceCommas settings as appropriate, and can contain a [calc] region. If the optional
"convert" parameter is set, it will convert according to PriceDivide> for the current locale. If Locale is set to
fr_FR, and PriceDivide for fr_FR is 0.167, using the following sequence:

[currency convert=1] [calc] 500.00 + 1000.00 [/calc] [/currency]
will cause the number 8.982,04 to be displayed.
[fcurrency]

Terminates the currency region.
[cart name]

named attributes: [cart name="name"]

Sets the name of the current shopping cart for display of shipping, price, total, subtotal, and nitems tags. If a
different price is used for the cart, all of the above except [shipping] will reflect the normal price field.

Those operations must be emulated with embedded Perl or the [item-list], [calc], and [currency]

tags, or use the PriceAdjustment feature to set it.

[row nn]

named attributes: [row width="nn"]
Formats text in tables. Intended for use in emailed reports or <PRE></PRE> HTML areas. The parameter n
gives the number of columns to use. Inside the row tag, [col param=value ...] tags may be used.

[/row]
Terminates a [row nn] element.
[col width=nn wrap=yes|no gutter=n align=left|right|input spacing=n]

Sets up a column for use in a [row]. This parameter can only be contained inside a [row nn] [/row]
tag pair. Any number of columns (that fit within the size of the row) can be defined.
The parameters are:

width=nn The column width, including the gutter. Must be
supplied, there is no default. A shorthand method
is to just supply the number as the first parameter,
as in [col 20].

gutter=n The number of spaces used to separate the column (on
the right—hand side) from the next. Default is 2.

spacing=n The line spacing used for wrapped text. Default is 1,
or single-spaced.

wrap=(yes|no) Determines whether text that is greater in length than
the column width will be wrapped to the next line. Default
is yes.

align=(L|R|l) Determines whether text is aligned to the left (the default),

the right, or in a way that might display an HTML text
input field correctly.

41.9. Tags for Summarizing Shopping Basket/Cart 220

Interchange Documentation (Full)

[/col]

Terminates the column field.

41.10. Item Lists

Within any page, the [item-list cart*] element shows a list of all the items ordered by the customer
so far. It works by repeating the source between [item-list] and [/item-list] once for each item
ordered.

Note: The special tags that reference item within the list are not normal Interchange tags, do not take namec
attributes, and cannot be contained in an HTML tag (other than to substitute for one of its values or provide
conditional container). They are interpreted only inside their corresponding list container. Normal Interchang
tags can be interspersed, though they will be interpreted after all of the list—specific tags.

Between the item_list markers the following elements will return information for the current item:
[if-item—data table column]
If the database field column in table table is non—blank, the following text up to the [/if-item—data]

tag is substituted. This can be used to substitute IMG or other tags only if the corresponding source item is
present. Also accepts a [else]else text[/else] pair for the opposite condition.

Note: This tag does not nest with other [if-item-data ...] tags.

[if-item—data table column]

Reverses sense for [if-item—data].

[/if-item—data]

Terminates an [if-item—data table column] element.

[if-item—field fieldname]

If the products database field fieldname is non-blank, the following text up to the [/if-item-field] tag

is substituted. If there are more than one products database table (see ProductFiles), it will check them in or

until a matching key is found. This can be used to substitute IMG or other tags only if the corresponding
source item is present. Also accepts a [else]else text[/else] pair for the opposite condition.

Note: This tag does not nest with other [if-item—field ...] tags.

[if-item—field fieldname]
Reverses sense for [if-item—field].
[/if-item—field]

Terminates an [if-item—field fieldname] element.

41.10. Item Lists 221

Interchange Documentation (Full)

[item—accessories attribute*, type*, field*, database*, name*]

Evaluates to the value of the Accessories database entry for the item. If passed any of the optional argumer
initiates special processing of item attributes based on entries in the product database.

[item—alternate N] DIVISIBLE [else] NOT DIVISIBLE [/else][/item-alternate]
Sets up an alternation sequence. If the item-increment is divisible by N, the text will be displayed. If an

[else]NOT DIVISIBLE TEXT][/else] is present, the NOT DIVISIBLE TEXT will be displayed.
For example:

[item-alternate 2]EVEN[else]ODD[/else][/item—alternate]
[item—alternate 3]BY 3[else]NOT by 3[/else][/item-alternate]

[/item—alternate]

Terminates the alternation area.

[item—code]

Evaluates to the product code for the current item.

[item—data database fieldname]

Evaluates to the field name fieldname in the arbitrary database table database for the current item.
[item—description]

Evaluates to the product description (from the products file) for the current item.

[item—field fieldname]

The [item—field ...] tag is special in that it looks in any of the tables defined as ProductFiles, in that
order, for the data, returning the value only if that key is defined. In most catalogs, where ProductFiles is
not defined (i.e., the demo), [item—field title] is equivalent to [item—data products

tElt\I/(?al]I'uates to the field name fieldname in the products database for the current item. If the item is not found i
the first of the ProductFiles, all will be searched in sequence.

[item—increment]

Evaluates to the number of the item in the match list. Used for numbering search matches or order items in’
list.

[item—-last]tags|/item—last]

Evaluates the output of the Interchange tags encased inside the tags. If it evaluates to a numerical non—zer
number (i.e., 1, 23, or 1), the list iteration will terminate. If the evaluated number is negative, the item itself
will be skipped. If the evaluated number is positive, the item itself will be shown but will be last on the list.

[item—last][calc]
return -1 if '[item—field weight]' eq ";

41.10. Item Lists 222

Interchange Documentation (Full)

return 1 if 'item—field weight]' < 1;
return O;
[/calc][/item-last]

If this is contained in the [item-list] (or [search-list] or flypage) and the weight field is empty, a

numerical —1 will be output from the [calc][/calc] tags; the list will end and the item will not be

shown. If the product's weight field is less than 1, a numerical 1 is output. The item will be shown, but will be
the last item shown. (If it is an [item-list], any price for the item will still be added to the subtotal.)

NOTE: there is no equivalent HTML style.

[item—modifier attribute]

Evaluates to the modifier value of attribute for the current item.

[item—next]tags[/item_next]

Evaluates the output of the Interchange tags encased inside. If it evaluates to a numerical non-zero numbe
(i.e., 1, 23, or —1), the item will be skipped with no output. Example:

[item—next][calc][item—field weight] < 1[/calc][/item—next]
If this is contained in the [item-list] (or [search-list] or flypage) and the product's weight field is
less than 1, a numerical 1 will be output from the [calc][/calc] operation. The item will not be shown. (If it is
an [item-list], any price for the item will still be added to the subtotal.)

[item—price n* noformat*]

Evaluates to the price for quantity n (from the products file) of the current item, with currency formatting. If
the optional "noformat” is set, currency formatting will not be applied.

[discount—price n* noformat*]

Evaluates to the discount price for quantity n (from the products file) of the current item, with currency
formatting. If the optional "noformat" is set, currency formatting will not be applied. Returns regular price if
not discounted.

[item—discount]

Returns the difference between the regular price and the discounted price.

[item—quantity]

Evaluates to the quantity ordered for the current item.

[item—subtotal]

Evaluates to the subtotal (quantity * price) for the current item. Quantity price breaks are taken into account.

[modifier—-name attribute]

Evaluates to the name to give an input box in which the customer can specify the modifier to the ordered ite

41.10. Item Lists 223

Interchange Documentation (Full)

[quantity—name]

Evaluates to the name to give an input box in which the customer can enter the quantity to order.

41.10. Item Lists 224

42. Interchange Page Display

Interchange has several methods for displaying pages:

« Display page by name
If a page with [page some_page] or is called and that
some_page.html exists in the pages directory (PageDir), it will be displayed.

* On-the-fly page
If a page with [page 00-0011] or is called and 00-0011
exists as a product in one of the products databases (ProductFiles), Interchange will use the
special page descriptor flypage as a template and build based on that part number. This is partly for
convenience; the same thing can be accomplished by calling [page your_template
00-0011] and using the [data session arg] to perform the templating. But there is special
logic associated with the PageSelectField configuration attribute to allow pages to be built with
varying templates.

» Determine page via form action and variables
If a form action, in almost all cases the page to display will be determined by the mv_nextpage
form value. Example:

<FORM ACTION="[process]">

<INPUT TYPE=hidden NAME=mv_todo VALUE=return>
<SELECT NAME=mv_nextpage>

<OPTION VALUE=index>Main page

<OPTION VALUE=browse>Product listing

<OPTION VALUE="ord/basket">Shopping cart
</SELECT>

<INPUT TYPE=submit VALUE=Go>

</FORM>

The mv_nextpage dropdown will determine the page the user goes to.

42.1. On—-the—fly Catalog Pages

If an item is displayed on the search list (or order list) and there is a link to a special page keyed on the item
Interchange will attempt to build the page "on the fly." It will look for the special page flypage.html, which is
used as a template for building the page. If [item—field fieldname], [item—price], and similar

elements are used on the page, complex and information—packed pages can be built. The [if-item—field
fieldname] HTML [/if-item—field] pair can be used to insert HTML only if there is a hon—blank

value in a particular field.

Important note: Because the tags are substituted globally on the page, [item—*] tags cannot be used on
the default on—-the—fly page. To use a [search-region] or [item-list] tag, change the default with the prefix
parameter. Example:

[item~—list prefix=cart]
[cart—code] —- title=[cart—data products title]
[/item-list]

To have an on—-the—fly page mixed in reliably, use the idiom [fly-list prefix=fly code="[data
session arg]"] [/flylist] pair.

[fly—list code="product_code" base="table"] ... [/fly—list]

42. Interchange Page Display 225

Interchange Documentation (Full)

Other parameters:
prefix=label Allows [label-code], [label-description]
Defines an area in a random page which performs the flypage lookup function, implementing the tags below

[fly-list code="[data session arg]"]
(contents of flypage.html)
[/fly-list]

If placed around the contents of the demo flypage, in a file named <flypage2.html>, it will make these two
calls display identical pages:

[page 00-0011] One way to display the Mona Lisa [/page]
[page flypage2 00-0011] Another way to display the Mona Lisa [/page]

If the directive PageSelectField is set to a valid product database field which contains a valid Interchange pe
name (relative to the catalog pages directory, without the .html suffix), it will be used to build the on-the—fly

page.
Active tags in their order of interpolation:

[if-item—field field] Tests for a non—empty, non—-zero value in field
[if-item—data db field] Tests for a non—empty, non-zero field in db

[item—code] Product code of the displayed item
[item—accessories args] Accessory information (see accessories)
[item—description] Description field information

[item—price quantity*] Product price (at quantity)
[item—field field] Product database field
[item—data db field] Database db entry for field

42.2. Special Pages

A number of HTML pages are special for Interchange operation. Typically, they are used to transmit error
messages, status of search or order operations, and other out of boundary conditions.

Note: The distributed demo does not use all of the default values.

The names of these pages can be set with the SpecialPage directive. The standard pages and their default
locations:

canceled (special_pages/canceled.html)

The page displayed by Interchange when an order has been canceled by the user.
catalog (special_pages/catalog.html)

The main catalog page presented by Interchange when another page is not specified.
failed (special_pages/failed.html)

If the sendmail program could not be invoked to email the completed order, the failed.html page is displayec

42.2. Special Pages 226

Interchange Documentation (Full)

flypage (special_pages/flypage.html)

If the catalog page for an item was not found when its [item-link] is clicked, this page is used as a
template to build an on-the—fly page. See On-the—fly Catalog Pages.

interact (special_pages/interact.html)

Displayed if an unexpected response was received from the browser, such as not getting expected fields frc
submitting a form. This would probably happen from typos in the html pages, but could be a browser bug.

missing (special_pages/missing.html)
This page is displayed if the URL from the browser specifies a page that does not have a matching .html file
in the pages directory. This can happen if the customer saved a bookmark to a page that was later removed
from the database, for example, or if there is a defect in the code.
Essentially this is the same as a 404 error in HTTP. To deliberately display a 404 error, just put this in
special_pages/missing.htmil:

[tag op=header]Status: 404 missing[/tag]

noproduct (special_pages/noproduct.html)

This page is displayed if the URL from the browser specifies the ordering of a product code which is not in
the products file.

order (ord/basket.html)

This page is displayed when the customer orders an item. It can contain any or all of the customer-entered
values, but is commonly used as a status display (or "shopping basket").

search (results.html)

Contains the default output page for the search engine results. Also required is an input page, which can be
same as search.html or an additional page. By convention Interchange defines this as the page results.

SpecialPage search results
violation (special pages/violation.html)

Displayed if a security violation is noted, such as an attempt to access a page denied by an access_gate.
See UserDB.

42.3. Checking Page HTML

Interchange allows debugging of page HTML with an external page checking program. Because leaving this
enabled on a production system is potentially a very bad performance degradation, the program is set in a tl
global configuration file with the CheckHTML directive. To check a page for validity, set the global directive
CheckHTML to the name of the program (don't do any output redirection). A good choice is the freely
available program Weblint. It would be set in interchange.cfg with:

CheckHTML /usr/local/bin/weblint —s -

42.3. Checking Page HTML 227

Interchange Documentation (Full)

Of course, the server must be restarted for it to be recognized. The full path to the program should be used.
having trouble, check it from the command line (as with all external programs called by Interchange).

Insert [flag type=checkhtml][/tag] at the top or bottom of pages to check, and the output of the
checker should be appended to the browser output as a comment, visible if the page or frame source are
viewed. To do this occasionally, use a Variable setting:

Variable CHECK_HTML [flag type=checkhtml]

and place _ CHECK_HTML__in the pages. Then set the Variable to the empty string to disable it.

42.3. Checking Page HTML 228

43. Forms and Interchange

Interchange uses HTML forms for many of its functions, including ordering, searching, updating account
information, and maintaining databases. Order operations possibly include ordering an item, selecting item
size or other attributes, and reading user information for payment and shipment. Search operations may als
be triggered by a form.

Interchange supports file upload with the multipart/form—data type. The file is placed in memory and
discarded if not accessed with the [value—extended name=filevar file_contents=1] tag or

written with [value—extended name=filevar outfile=your_file_name]. See Extended

Value Access and File Upload.

Interchange passes variables from page to page automatically. Every user session that is started by
Interchange automatically creates a variable set for the user. As long as the user session is maintained, anc
does not expire, any variables you set on a form will be "remembered" in future sessions.

Don't use the prefix mv_ for your own variables. Interchange treats these specially and they may not behave
as you wish. Use the mv_ variables only as they are documented.

Interchange does not unset variables it does not find on the current form. That means you can't expect a
checkbox to become unchecked unless you explicitly reset it.

43.1. Special Form Fields

Interchange treats some form fields specially, to link to the search engine and provide more control over use
presentation. It has a number of predefined variables, most of whose names are prefixed with mv_ to prevel
name clashes with your variables. It also uses a few variables which are post-fixed with integer digits; those
are used to provide control in its iterating lists.

Most of these special fields begin with mv_, and include:

(O = order, S = search, C = control, A = all, X in scratch space)

Name scan Type Description
mv_all_chars ac S Turns on punctuation matching
mv_arg[0-9]+ A Parameters for mv_subroutine (mv_arg0,mv_arg1l,...)

mv_base_directory bd S Sets base directory for search file names
mv_begin_string bs S Pattern must match beginning of field

mv_case cs S Turns on case sensitivity

mv_cartname O Sets the shopping cart name

mv_check A Any form, sets multiple user variables after update
mv_click A Any form, sets multiple form variables before update
mv_click XA Default mv_click routine, click is mv_click_arg
mv_click <name> XA Routine for a click <name>, sends click as arg
mv_click_arg XA Argument name in scratch space

mv_coordinate co S Enables field/spec matching coordination
mv_column_op op S Operation for coordinated search
mv_credit_card* O Discussed in order security (some are read-only)
mv_dict_end de S Upper bound for binary search

mv_dict_fold df S Non-case sensitive binary search

mv_dict_limit di S Sets upper bound based on character position
mv_dict_look dl S Search specification for binary search

43. Forms and Interchange 229

Interchange Documentation (Full)

mv_dict_order do S Sets dictionary order mode

mv_doit A Sets default action

mv_email O Reply-to address for orders

mv_exact_match em S Sets word—-matching mode

mv_failpage fp O,S Sets page to display on failed order check/search

mv_field_file ff S Sets file to find field names for Glimpse
mv_field_names fn S Sets field names for search, starting at 1
mv_first_match fm S Start displaying search at specified match
mv_head_skip hs S Sets skipping of header line(s) in index
mv_index_delim id S Delimiter for search fields (TAB default)
mv_matchlimit ml S Sets match page size

mv_max_matches mm S Sets maximum match return (only for Glimpse)

mv_min_string ms S Sets minimum search spec size
mv_negate ne S Records NOT matching will be found
mv_nextpage np A Sets next page user will go to
mv_numeric nu S Comparison numeric in coordinated search
mv_order_group O Allows grouping of master item/sub item
mv_order_item O Causes the order of an item
mv_order_number O Order number of the last order (read-only)
mv_order_quantity O Sets the quantity of an ordered item
mv_order_profile O Selects the order check profile
mv_order_receipt O Sets the receipt displayed
mv_order_report O Sets the order report sent
mv_order_subject O Sets the subject line of order email
mv_orsearch 0s S Selects AND/OR of search words
mv_profile mp S Selects search profile

mv_range_alpha rg S Sets alphanumeric range searching
mv_range_look rl S Sets the field to do a range check on

mv_range_max rx S Upper bound of range check
mv_range_min rm S Lower bound of range check
mv_record_delim dr S Search index record delimiter
mv_return_all ra S Return all lines found (subject to range search)

mv_return_delim rd S Return record delimiter

mv_return_fields rf S Fields to return on a search

mv_return_file_name rn S Set return of file name for searches
mv_return_spec rs S Return the search string as the only result
mv_save_session C Set to non-zero to prevent expiration of user session
mv_search_field sf S Sets the fields to be searched

mv_search_file fi S Sets the file(s) to be searched

mv_search_line_return Ir S Each line is a return code (loop search)
mv_search_match_count S Returns the number of matches found (read-only)
mv_search_page sp S Sets the page for search display

mv_searchspec se S Search specification

mv_searchtype st S Sets search type (text, glimpse, db or sql)
mv_separate_items O Sets separate order lines (one per item ordered)
mv_session_id id A Suggests user session id (overridden by cookie)
mv_shipmode O Sets shipping mode for custom shipping

mv_sort_field tf S Field(s) to sort on

mv_sort_option to S Options for sort

mv_spelling_errors er S Number of spelling errors for Glimpse
mv_substring_match su S Turns off word—matching mode

mv_successpage O Page to display on successful order check
mv_todo A Common to all forms, sets form action
mv_todo.map A Contains form imagemap
mv_todo.checkout.x O Causes checkout action on click of image
mv_todo.return.x O Causes return action on click of image
mv_todo.submit.x O Causes submit action on click of image
mv_todo.x A Set by form imagemap

mv_todo.y A Set by form imagemap

mv_unique un S Return unique search results only

mv_value va S Sets value on one-click search (va=var=value)

43. Forms and Interchange

230

Interchange Documentation (Full)

43.2. Form Actions

Interchange form processing is based on an action and a todo. The predefined actions at the first level are:

process process a todo
search form-based search
scan path—based search
order order an item

Any action can be defined with ActionMap.

The process action has a second todo level called with mv_todo or mv_doit. The mv_todo takes
preference over mv_doit, which can be used to set a default if no mv_todo is set.

The action can be specified with any of:
page name

Calling the page "search" will cause the search action. process will cause a form process action, etc.
Examples:

<FORM ACTION="/cgi-bin/simple/search" METHOD=POST>
<INPUT NAME=mv_searchspec>
</FORM>

The above is a complete search in Interchange. It causes a simple text search of the default products
database(s). Normally hard—coded paths are not used, but a Interchange tag can be used to specify it for
portability:

<FORM ACTION="[area search]* METHOD=POST>
<INPUT NAME=mv_searchspec>
</FORM>

The tag [process] is often seen in Interchange forms. The above can be called equivalently with:

<FORM ACTION="[process]" METHOD=POST>
<INPUT TYPE=hidden NAME=mv_todo VALUE=search>
<INPUT NAME=mv_searchspec>

</FORM>

mv_action

Setting the special variable mv_action causes the page name to be ignored as the action source. The above
forms can use this as a synonym:

<FORM ACTION="[area foo]" METHOD=post>

<INPUT TYPE=hidden NAME=mv_action VALUE=search>
<INPUT NAME=mv_searchspec>

</FORM>

The page name will be used to set mv_nextpage, if it is not otherwise defined. If mv_nextpage is present
in the form, it will be ignored.

43.2. Form Actions 231

Interchange Documentation (Full)

The second level todo for the process action has these defined by default:

back Go to mv_nextpage, don't update variables

search Trigger a search

submit Submit a form for validation (and possibly a final order)

go Go to mv_nextpage (same as return)

return Go to mv_nextpage, update variables

set Update a database table

refresh Go to mv_orderpage|mv_nextpage and check for
ordered items

cancel Erase the user session

If a page name is defined as an action with ActionMap or use of Interchange's predefined action process,

it will cause form processing. First level is setting the special page name process, or mv_action set to do a
form process, the Interchange form can be used for any number of actions. The actions are mapped by the
ActionMap directive in the catalog configuration file, and are selected on the form with either the mv_todo or
mv_doit variables.

To set a default action for a process form, set the variable mv_doit as a hidden variable:

<INPUT TYPE=hidden NAME=mv_doit VALUE=refresh>
When the mv_todo value is not found, the refresh action defined in mv_doit will be used instead.
More on the defined actions:
back
Goes to the page in mv_nextpage. No user variable update.
cancel
All user information is erased, and the shopping cart is emptied. The user is then sent to mv_nextpage.
refresh
Checks for newly—ordered items in mv_order_item, looking for on—the—fly items if that is defined, then
updates the shopping cart with any changed quantities or options. Finally updates the user variables and
returns to the page defined in mv_orderpage or mv_nextpage (in that order of preference).
return
Updates the user variables and returns to the page defined in mv_nextpage.
search
The shopping cart and user variables are updated, then the form variables are interpreted and the search
specification contained therein is dispatched to the search engine. Results are returned on the defined sear

page (set by mv_search_page or the search page directives).

submit

43.2. Form Actions 232

Interchange Documentation (Full)

Submits the form for order processing. If no order profile is defined with the mv_order_profile variable,

the order is checked to see if the current cart contains any items and the order is submitted.

If there is an order profile defined, the form will be checked against the definition in the order profile and
submitted if the pragma &final is set to yes. If &final is set to no (the default), and the check succeeds, the
user will be routed to the Interchange page defined in mv_successpage, or mv_nextpage. If the check fails,
user will be routed to mv_failpage or mv_nextpage in that order.

43.3. One—click Multiple Variables

Interchange can set multiple variables with a single button or form control. First define the variable set (or
profile, as in search and order profiles) inside a scratch variable:

[set Search by Category]
mv_search_field=category
mv_search_file=categories
mv_todo=search

[/set]

The special variable mv_click sets variables just as if they were put in on the form. It is controlled by a
single button, as in:

<INPUT TYPE=submit NAME=mv_click VALUE="Search by Category">

When the user clicks the submit button, all three variables will take on the values defined in the "Search by
Category" scratch variable. Set the scratch variable on the same form as the button is on. This is
recommended for clarity. The mv_click variable will not be carried from form to form, it must be set on the
form being submitted.

The special variable mv_check sets variables for the form actions <checkout, control, refresh, return,
search,> and <submit>. This function operates after the values are set from the form, including the ones set
mv_click, and can be used to condition input to search routines or orders.

The variable sets can contain and be generated by most Interchange tags. The profile is interpolated for
Interchange tags before being used. This may not always operate as expected. For instance, if the following
was set:

[set check]

[cgi name=mv_todo set=bar hide=1]
mv_todo=search

[if cgi mv_todo eq 'search’]

do something

[/if]

[/set]

The if condition is guaranteed to be false, because the tag interpretation takes place before the evaluation o
the variable setting.

Any setting of variables already containing a value will overwrite the variable. To build sets of fields (as in
mv_search_field and mv_return_fields), comma separation if that is supported for the field must be used.

It is very convenient to use mv_click as a trigger for embedded Perl:

<FORM ...

43.3. One-—click Multiple Variables 233

Interchange Documentation (Full)

<INPUT TYPE=hidden NAME=mv_check VALUE="Invalid Input">

</[FORM>

[set Invalid Input]

[perl]

my $type = $CGI->{mv_searchtype};

my $spell_check = $CGI->{mv_spelling_errors};
my $out =";

if($spell_check and $type eq 'text’) {
$CGI->{mv_todo} = 'return’;
$CGI->{mv_nextpage} = 'special/cannot_spell_check’;

}

return;

[/perl]
[/set]

43.4. Checks and Selections

A "memory" for drop—down menus, radio buttons, and checkboxes can be provided with the [checked]
and [selected] tags.

[checked var_name value]

named attributes: [checked name="var_name" value="value" cgi=0|1 multiple=0|1

default=0|1 case=0|1]

This will output CHECKED if the variable var_name is equal to value. Set the cgi attribute to use cgi
instead of values data. Not case sensitive unless case is set.

If the multiple attribute is defined and set to a non-zero value (1 is implicit) and if the value matches on a
word/non-word boundary, it will be CHECKED. If the default attribute is set to a non-zero value, the box
will be checked if the variable var_name is empty or zero.

[selected var_name value]

named attributes: [selected name="var_name" value="value" cgi=0|1 multiple=0|1

default=0|1 case=0|1]

This will output SELECTED if the variable var_name is equal to value. Set the cgi attribute to use cgi
instead of values data. Not case sensitive unless case is set.

If the multiple argument is present, it will look for any of a variety of values. If the default attribute is
set, SELECT will be output if the variable is empty or zero. Not case sensitive unless case is set.
Here is a drop—down menu that remembers an item—-modifier color selection:

<SELECT NAME="color">

<OPTION [selected name=color value=blue]> Blue
<OPTION [selected name=color value=green]> Green
<OPTION [selected name=color value=red]> Red
</SELECT>

For databases or large lists of items, sometimes it is easier to use [loop list="foo bar"] and its
option parameter. The above can be achieved with:

<SELECT NAME=color>

[loop list="Blue Green Red" option=color]
<OPTION> [loop—code]

[/loop]

43.4. Checks and Selections 234

Interchange Documentation (Full)

</SELECT>

See also the ictags documentation on the [loop] tag.

43.5. Integrated Image Maps

Imagemaps can also be defined on forms, with the special form variable mv_todo.map. A series of map
actions can be defined. The action specified in the default entry will be applied if none of the other
coordinates match. The image is specified with a standard HTML 2.0 form field of type IMAGE. Here is an
example:

<INPUT TYPE=hidden NAME="mv_todo.map" VALUE="rect submit 0,0 100,20">
<INPUT TYPE=hidden NAME="mv_todo.map" VALUE="rect cancel 290,2 342,18">
<INPUT TYPE=hidden NAME="mv_todo.map" VALUE="default refresh">

<INPUT TYPE=image NAME="mv_todo" SRC="url_of_image">

All of the actions will be combined together into one image map with NCSA-style functionality (see the
NCSA imagemap documentation for details), except that Interchange form actions are defined instead of
URLs.

43.6. Setting Form Security

You can cause a form to be submitted securely (to the base URL in the SecureURL directive, that is) by
specifying your form input to be ACTION="[process secure=1]".

To submit a form to the regular non—secure server, just omit the secure modifier.

43.7. Stacking Variables on the Form

Many Interchange variables can be "stacked," meaning they can have multiple values for the same variable
name. As an example, to allow the user to order multiple items with one click, set up a form like this:

<FORM METHOD=POST ACTION="[process]">

<input type=checkbox name="mv_order_item" value="M3243"> Iltem M3243
<input type=checkbox name="mv_order_item" value="M3244"> Iltem M3244
<input type=checkbox name="mv_order_item" value="M3245"> Iltem M3245
<input type=hidden name="mv_doit" value="refresh">

<input type=submit name="mv_junk" value="Order Checked Iltems">
</FORM>

The stackable mv_order_item variable with be decoded with multiple values, causing the order of any
items that are checked.

To place a "delete" checkbox on the shopping basket display:

<FORM METHOD=POST ACTION="[process]">
[item-—list]
<input type=checkbox name="[quantity—name]" value="0"> Delete
Part number: [item—code]
Quantity: <input type=text name="[quantity—name]" value="[item—quantity]">
Description: [item—description]
[/item-list]
<input type=hidden name="mv_doit" value="refresh">

43.5. Integrated Image Maps 235

Interchange Documentation (Full)

<input type=submit name="mv_junk" value="Order Checked Iltems">
</FORM>

In this case, first instance of the variable name set by [quantity—name] will be used as the order quantity,
deleting the item from the form.

Of course, not all variables are stackable. Check the documentation for which ones can be stacked or
experiment.

43.8. Extended Value Access and File Upload

Interchange has a facility for greater control over the display of form variables; it also can parse
multipart/form—data forms for file upload.

File upload is simple. Define a form like:

<FORM ACTION="[process-targetl METHOD=POST ENCTYPE="multipart/form—data">
<INPUT TYPE=hidden NAME=mv_todo VALUE=return>

<INPUT TYPE=hidden NAME=mv_nextpage VALUE=test>

<INPUT TYPE=file NAME=newfile>

<INPUT TYPE=submit VALUE="Go!">

</FORM>

The [value—extended ...] tag performs the fetch and storage of the file. If the following is on the test.html
page (as specified with mv_nextpage and used with the above form, it will write the file specified:

<PRE>
Uploaded file name: [value—extended name=newfile]
Is newfile a file? [value—extended name=newfile yes=Yes no=No test=isfile]

Write the file. [value—extended name=newfile outfile=junk.upload]
Write again with
indication: [value—extended name=newfile

outfile=junk.upload

yes="Written."]

no=FAILED]

And the file contents:
[value—extended name=newfile file_contents=1]
</PRE>

The [value—extended] tag also allows access to the array values of stacked variables. Use the following forn

<FORM ACTION="[process-targetl METHOD=POST ENCTYPE="multipart/form—-data">
<INPUT TYPE=hidden NAME=testvar VALUE="value0">

<INPUT TYPE=hidden NAME=testvar VALUE="valuel">

<INPUT TYPE=hidden NAME=testvar VALUE="value2">

<INPUT TYPE=submit VALUE="Go!">

</FORM>

and page:

testvar element 0: [value—extended name=testvar index=0]
testvar element 1: [value—extended name=testvar index=1]
testvar elements:

joined with a space: [[value—extended name=testvar]|

43.8. Extended Value Access and File Upload 236

Interchange Documentation (Full)

joined with a newline: |[value—extended
joiner="\n"
name=testvar
index="*"]|

first two only: [[value—extended
name=testvar
index="0..1"]|

first and last: |[value—extended
name=testvar
index="0,2"]|

to observe this in action.

The syntax for [value—-extended ...] is:

named: [value—extended
name=formfield
outfile=filename*
ascii=1*
yes="Yes"*
no="No"*
joiner="char|string"*
test="isfile|length|defined"*
index="N|N..N|*"
file_contents=1*
elements=1*]

positional: [value—extended name]

Expands into the current value of the customer/form input field named by field. If there are multiple elements
of that variable, it will return the value at index; by default all joined together with a space.

If the variable is a file variable coming from a multipart/form-data file upload, then the contents of that
upload can be returned to the page or optionally written to the oultfile.

name
The form variable NAME. If no other parameters are present, the value of the variable will be returned. If
there are multiple elements, by default they will all be returned joined by a space. If joiner is present, they
will be joined by its value.

In the special case of a file upload, the value returned is the name of the file as passed for upload.

joiner

The character or string that will join the elements of the array. It will accept string literals such as "\n" or "\r".

test

There are three tests. isfile returns true if the variable is a file upload. length returns the length.
defined returns whether the value has ever been set at all on a form.

index

The index of the element to return if not all are wanted. This is useful especially for pre—setting multiple
search variables. If set to *, it will return all (joined by joiner). If a range, such as 0 .. 2, it will return

43.8. Extended Value Access and File Upload 237

Interchange Documentation (Full)

multiple elements.
file_contents

Returns the contents of a file upload if set to a non-blank, non-zero value. If the variable is not a file, it
returns nothing.

outfile

Names a file to write the contents of a file upload to. It will not accept an absolute file name; the name must
be relative to the catalog directory. If images or other files are to be written to go to HTML space, use the
HTTP server's Alias facilities or make a symbolic link.

ascii

To do an auto—ASCII translation before writing the outfile, set the ascii parameter to a hon—blank,
non-zero value. The default is no translation.

yes

The value that will be returned if a test is true or a file is written successfully. It defaults to 1 for tests and the
empty string for uploads.

no

The value that will be returned if a test is false or a file write fails. It defaults to the empty string.

43.9. Updating Interchange Database Tables with a Form

Any Interchange database can be updated with a form using the following method. The Interchange user
interface uses this facility extensively.

Note: All operations are performed on the database, not the ASCII source file. An [export table_name]
operation will have to be performed for the ASCII source file to reflect the results of the update. Records in
any database may be inserted or updated with the [query] tag, but form—based updates or inserts may also
performed.

In an update form, special Interchange variables are used to select the database parameters:
mv_data_enable (scratch)

\IMPORTANT: This must be set to a non-zero, non—-blank value in the scratch space to allow data set
functions. Usually it is put in an mv_click that precedes the data set function. For example:

[set update_database]

[if type=data term="userdb::trusted::[data session username]"]
[set mv_data_enable]l[/set]

[else]
[set mv_data_enable]O[/set]

[lelse]

[/if]

43.9. Updating Interchange Database Tables with a Form 238

Interchange Documentation (Full)

[/set]
<INPUT TYPE=hidden NAME=mv_click VALUE=update_database>

mv_data_table

The table to update.

mv_data_key

The field that is the primary key in the table. It must match the existing database definition.
mv_data_function

UPDATE, INSERT or DELETE. The variable mv_data_verify must be set true on the form for a
DELETE to occur.

mv_data_verify

Confirms a DELETE.

mv_data_fields

Fields from the form which should be inserted or updated. Must be existing columns in the table in question.
mv_update_empty

Normally a variable that is blank will not replace the field. If mv_update_empty is set to true, a blank
value will erase the field in the database.

mv_data_filter_(field)

Instantiates a filter for (field), using any of the defined Interchange filters. For example, if
mv_data_filter_foo is set to digits, only digits will be passed into the database field during the set
operation. A common value might be "entities", which protects any HTML by translating < into <, " into
", etc.

The Interchange action set causes the update. Here are a pair of example forms. One is used to set the key
access the record (careful with the name, this one goes into the user session values). The second actually
performs the update. It uses the [loop] tag with only one value to place default/existing values in the form
based on the input from the first form:

<FORM METHOD=POST ACTION="[process]">
<INPUT TYPE=HIDDEN name="mv_doit" value="return">
<INPUT TYPE=HIDDEN name="mv_nextpage" value="update_proj">
Sales Order Number <INPUT TYPE=TEXT SIZE=8
NAME="update_code"
VALUE="[value update_code]">
<INPUT TYPE=SUBMIT name="mv_submit" Value="Select">
</[FORM>
<FORM METHOD=POST ACTION="[process]">
<INPUT TYPE=HIDDEN NAME="mv_data_table" VALUE="ship_status">
<INPUT TYPE=HIDDEN NAME="mv_data_key" VALUE="code">
<INPUT TYPE=HIDDEN NAME="mv_data_function" VALUE="update">
<INPUT TYPE=HIDDEN NAME="mv_nextpage" VALUE="updated">

43.9. Updating Interchange Database Tables with a Form 239

Interchange Documentation (Full)

<INPUT TYPE=HIDDEN NAME="mv_data_fields"
VALUE="code,custid,comments,status">
<PRE>

[loop arg="[value update_code]"]
Sales Order <INPUT TYPE=TEXT NAME="code SIZE=10 VALUE="[loop—code]">
Customer No. <INPUT TYPE=TEXT NAME="custid" SIZE=30
VALUE="[loop-field custid]">
Comments <INPUT TYPE=TEXT NAME="comments"
SIZE=30 VALUE="[loop-field comments]">
Status <INPUT TYPE=TEXT NAME="status"
SIZE=10 VALUE="[loop—field status]">
[/loop]
</PRE>

<INPUT TYPE=hidden NAME="mv_todo" VALUE="set">
<INPUT TYPE=submit VALUE="Update table">
</FORM>

The variables in the form do not update the user's session values, so they can correspond to database field
names without fear of corrupting the user session.

43.9.1. Can | use Interchange with my existing static catalog pages?

Yes, but you probably won't want to in the long run. Interchange is designed to build pages based on
templates from a database. If all you want is a shopping cart, you can mix standard static pages with
Interchange, but it is not as convenient and doesn't take advantage of the many dynamic features Interchan
offers.

That being said, all you usually have to do to place an order link on a page is:

Order!

Replace /cgi—bin/construct with the path to your Interchange link.

43.9.1. Can | use Interchange with my existing static catalog pages? 240

44. Internationalization

Interchange has a rich set of internationalization (I18N) features that allow conditional message display,
differing price formats, different currency definitions, price factoring, sorting, and other settings. The
definitions are maintained in the catalog.cfg file through the use of built-in POSIX support and Interchange's
Locale directive. All settings are independent for each catalog and each user visiting that catalog, since
customers can access the same catalog in an unlimited number of languages and currencies.

44.1. Configuring the Locale

It is recommended to use the ScratchDefault directive for setting the catalog's default locale:

ScratchDefault mv_locale de_DE

44.2. Setting the Locale

The locale could be set to fr_FR (French for France) in one of two ways:
[setlocale locale=locale* currency=Ilocale* persist=1*]

Immediately sets the locale to locale, and will cause it to persist in future user pages if the persist is set

to a non-zero, non—-blank value. If the currency attribute is set, the pricing and currency-specific locale
keys and Interchange configuration directives are modified to that locale. If there are no arguments, it sets it
back to the user's default locale as defined in the scratch variables mv_locale and mv_currency.

This allows:

Dollar Pricing:

[setlocale en_US]

[item-—list]

[item—code]: [item—price]

[/item-list]

Franc Pricing:

[setlocale fr_FR]

[item-—list]

[item—code]: [item—price]

[/item-list]

[comment] Return to the user's default locale [/comment]
[setlocale]

[page process/locale/fr_FR/page/catalog]

This is the same as [page catalog], except when the link is followed it will set the locale to fr_ FR
before displaying the page. This is persistent.

[page process/locale/fr_FR/currency/en_US/page/catalog]

This is the same as [page catalog], except when the link is followed it will set the locale to fr_ FR and
the pricing/number display to the locale en_US before displaying the page. This is persistent.

44, Internationalization 241

Interchange Documentation (Full)

Once the locale is persistently set for a user, it is in effect for the duration of their session.

44.3. Interchange Locale Settings

The Locale directive has many possible settings that allow complete internationalization of page sets and
currencies. The Locale directive is defined in a series of key/value pairs with a key that contains word
characters only being followed by a value. The value must be enclosed in double quotes if it contains
whitespace. In this example, the key is Value setting.

Locale fr_FR "Value setting" "Configuration de valeur"
Locale de_DE "Value setting" Werteinstellung

When accessed using the special tag [L]Value setting[/L], the value Configuration de

valeur will be displayed only if the locale is set to fr_FR. If the locale is set to de_DE, the string
Werteinstellung will be displayed. If it is neither, the default value of Value setting will be
displayed.

The [L] and [/L] must be capitalized. This is done for speed of processing as well as easy differentiation in
text.

Another, way to do this is right in the page. The [LC] ... [[LC] pragma pair permits specification of
locale—dependent text.

[LC]
This is the default text.
[fr_FR] Text for the fr_FR locale. [/fr_FR]
[de_DE] Text for the de_DE locale. [/de_DE]
[/LC]

You can also place an entirely new page in place of the default one if the locale key is defined. When a loca
is in force, and a key named HTMLsuffix is set to that locale, Interchange first looks for a page with a suffix
corresponding to the locale. For example:

Catalog home page

If a page index.html exists, it will be the default. If the current locale is fr_FR, a page "index.fr_FR" exists,
and Locale looks like this:

Locale fr_FR HTMLsuffix .fr_FR

Then, the .fr_FR page will be used instead of the .html page. For a longer series of strings, the
configuration file recognizes:

Locale fr_FR <<EOF
{

"Value setting",
"Configuration de valeur",

"Search",
"Recherche"

}
EOF

44 3. Interchange Locale Settings 242

Interchange Documentation (Full)

This example sets two string substitutions. As long as this is a valid Perl syntax describing a series of setting
the text will be matched. It can contain any arbitrary set of characters that don't contain [L] and [/L]. If
using double quotes, string literals like \n and \t are recognized.

A database can also be used to set locale information. Locale information can be added to any database in
catalog.cfg file, and the values in it will overwrite previous settings. For more information, see
LocaleDatabase. The [L]default text[/L] is set before any other page processing takes place. It is
equivalent to the characters "default text" or the appropriate Locale translation for all intents and purposes.
Interchange tags and Variable values can be embedded.

Because the [L] message [/L] substitution is done before any tag processing, the command
[L][item—data table field][/L] will fail. There is an additional [loc] message [/loc]

UserTag supplied with the distribution. It does the same thing as [L] [/L] except it is programmed after all
tag substitution is done. See the interchange.cfg.dist file for the definition.

Note: Be careful when editing pages containing localization information. Even changing one character of the
message can change the key value and invalidate the message for other languages. To prevent this, use:

[L key]The default.[/L]
The key msg_key will then be used to index the message. This may be preferable for many applications.

A localize script is included with Interchange. It will parse files included on the command line and
produce output that can be easily edited to produce localized information. Given an existing file, it will merge
new information where appropriate.

44.4. Special Locale Keys for Price Representation

Interchange honors the standard POSIX keys:

mon_decimal_point or decimal_point
mon_thousands_sep or thousands_sep
currency_symbol or int_currency_symbol
frac_digits or p_cs_precedes

See the POSIX setlocale(3) man page for more information. These keys will be used for formatting prices at
approximates the number format used in most countries. To set a custom price format, use these special ke

price_picture
Interchange will format a currency number based on a "picture” given to it. The basic form is:
Locale en_US price_picture "$ ### #i# #iH ##"

The en_US locale, for the United States, would display 4452.3 as $ 4,452.30. The same display can be
achieved with:

Locale en_US mon_thousands_sep ,
Locale en_US mon_decimal_point .
Locale en_US p_cs_precedes 1
Locale en_US currency_symbol $

44.4. Special Locale Keys for Price Representation 243

Interchange Documentation (Full)

A common price_picture for European countries would be ###.### . ### ##, which would display that
same number as 4.452,30. To add a franc notation at the end for the locale fr_FR, use the setting:

Locale fr_FR price_picture "## ### ## fr"

IMPORTANT NOTE: The decimal point in use, set by mon_decimal_point, and the thousands
separator, set by mon_thousands_sep must match the settings in the price_picture. The frac_digits
setting is not used in this case. It is derived from the location of the decimal (if any).

The same setting for fr_FR above can be achieved with:

Locale fr_FR mon_thousands_sep .
Locale fr_FR mon_decimal_point ,
Locale fr_FR p_cs_precedes 0
Locale fr_FR currency_symbol fr

If the number of digits is greater than the # locations in the price_picture, the digits will be changed to
asterisks. An overflow number above would show as **.*** ** fr,

picture

Same as price_picture, but sets the value returned if the [currency] tag is not used. If the number of
digits is greater than the # locations in the picture, the digits will be changed to asterisks, displaying
something like ** *** **,

44.5. Dynamic Locale Directive Changes

If a Locale key is set to correspond to an Interchange catalog.cfg directive, that value will be set when
the locale is set.

PageDir

To use a different page directory for different locales, set the PageDir key. For example, to have two
separate language page sets, French and English, set:

Establish the default at startup
PageDir english

Locale fr_FR PageDir francais
Locale en_US PageDir english

ImageDir

To use a different image directory for different locales, set the ImageDir key. To have two separate
language button sets, French and English, set:

Establish the default at startup

ImageDir /images/english/

Locale fr_FR ImageDir /images/francais/
Locale en_US ImageDir /images/english/

ImageDirSecure

44.5. Dynamic Locale Directive Changes 244

Interchange Documentation (Full)

See ImageDir.
PriceField

To use a different field in the products database for pricing based on locale, set the PriceField locale
setting. For example:

Establish the default at startup
PriceField price
Locale fr_FR PriceField prix

The default will always be price, but if the locale fr_FR is set, the PriceField directive will change to
prix to give prices in francs instead of dollars.

If PriceBreaks is enabled, the prix field from the pricing database will be used to develop the
guantity pricing.

Note: If no Locale settings are present, the display will always be price, regardless of what was set in
PriceField. Otherwise, it will match PriceField.

PriceDivide

Normally used to enable penny pricing with a setting of 100, PriceField can be used to do an automatic
conversion calculation factor based on locale.

Default at startup is 1 if not set
Franc is strong these days!
Locale fr_FR PriceDivide .20

The price will now be divided by .20, making the franc price five times higher than the dollar.
PriceCommas

This controls whether the mon_thousands_sep will be used for standard currency formatting. This setting
will be ignored if you are using price_picture. Set the value to 1 or 0, to enable or disable it. Do not use
yes or no.

Default at startup is Yes if not set
PriceCommas Yes

Locale fr_ FR PriceCommas 0
Locale en_US PriceCommas 1

UseModifier

Changes the fields from the set shopping cart options.

Default at startup is 1 if not set
Franc is strong these days!
UseModifier format

Locale fr_FR UseMaodifier formats

If a previous setting was made for an item based on another locale, it will be maintained.

PriceAdjustment

44.5. Dynamic Locale Directive Changes 245

Interchange Documentation (Full)

Changes the fields set by UseModifier that will be used to adjust pricing for an automatic conversion
factor based on locale. For example:

Default at startup
PriceAdjustment format
Locale fr_FR PriceAdjustment formats

TaxShipping,SalesTax
Same as the standard directives.
DescriptionField

This changes the field accessed by default with the [item—description] and [description code]
tags. For example

Establish the default at startup
DescriptionField description
Locale fr_FR DescriptionField desc_fr

The [locale] tag

Standard error messages can be set based on Locale settings. Make sure not to use any of the predefined |
It is safest to begin a key with msg_ . The default message is set between the [locale key] and
[/locale] tags. See the example above.

44.6. Sorting Based on Locale

The Interchange [sort database:field] keys will use the LC_COLLATE setting for a locale
provided that:

» The operating system and C compiler support locales for POSIX, and have the locale definitions set.
» The locale setting matches any configured locales.

If this arbitrary database named letters:

code letter
00-0011 f
99-102 ¢é
19-202 a

and this loop:

[loop 19-202 00-0011 99-102]

[sort letters:letter]

[loop—data letters letter] [loop—code]
[/loop]

used the default C setting for LC_COLLATE, the following would be displayed:

a 19-202
f 00-0011
é 99-102

44.6. Sorting Based on Locale 246

Interchange Documentation (Full)

If the proper LC_COLLATE settings for locale fr_FR were in effect, then the above would become:

a 19-202
é 99-102
f 00-0011

44.7. Placing Locale Information in a Database

Interchange has the capability to read its locale information from a database, hamed with the
LocaleDatabase directive. The database can be of any valid Interchange type. The locales are in columns,
and the keys are in rows. For example, to set up price information:

key en_US fr_FR de_DE
PriceDivide 1 1590 .58
mon_decimal_point . , ,
mon_thousands_sep ,
currency_symbol $ frs DM
ps_cs_precedes 1 0 0

This would translate to the following:

Locale en_US PriceDivide 1
Locale en_US mon_decimal_point .
Locale en_US mon_thousands_sep ,
Locale en_US currency_symbol $
Locale en_US ps_cs_precedes 1

Locale fr_FR PriceDivide .1590
Locale fr_FR mon_decimal_point ,
Locale fr_FR mon_thousands_sep
Locale fr_FR currency_symbol " frs"
Locale fr_FR ps_cs_precedes 0

Locale de_DE PriceDivide .58
Locale de_DE mon_decimal_point
Locale de_DE mon_thousands_sep
Locale de_DE currency_symbol "DM "
Locale de_DE ps_cs_precedes 1

These settings append and overwrite any that are set in the catalog configuration files, including any include
files.

Important note: This information is only read during catalog configuration. It is not reasonable to access a
database for translation or currency conversion in the normal course of events.

Copyright 2001-2002 Red Hat, Inc. Freely redistributable under terms of the GNU General Public License.
line:

44.7. Placing Locale Information in a Database 247

Interchange Databases

Interchange Databases 248

45. Databases and Interchange

Interchange can use GDBM, DB_File, SQL, LDAP, or in—-memory databases. In most cases, these different
database formats should operate the same when called by Interchange's access methods.

Also, Interchange does not require an external SQL database. If you have a small database and do not wan
integrate your own tool set, you might want to use Interchange's internal database. However, the order
management functions of Interchange will be slower and not as robust without an SQL database. SQL is
strongly recommended for at least the orderline, transactions, and userdb tables.

Keeping a database in an SQL manager makes it easier to integrate Interchange with other tools. Interchan

can be used to maintain a spreadsheet containing product information through modifying the file
products.txt as needed. References to SQL, DBI, and DBD can be ignored.

45.1. Text Source Files

Interchange reads delimited text files to obtain data. However, the text files are not the database. They are t
source information for the database tables.

By default, all database source files are located in the products subdirectory of the catalog directory. The
main products database is in the products/products.txt file in the supplied demo catalog.

Note: If you are using one of the internal database methods, any changes made to the ASCII source file will
be reflected in the database in the next user session. If the product database contains less than a thousand
records, updates will be instantaneous. If the product database is larger, updates will take longer. Use the
Nolmport reference tag to stop auto updating.

In the following configuration directive:
Database products products.txt TAB

the products table will obtain its source information from the file products.txt. What is done with it
depends on the type of underlying database being used. The different types and their behavior are describe
below:

GDBM

The database source file is checked to see if it is newer than the actual database file, products.gdbm. If it
is, the database table is re-imported from the file.

This behavior can be changed in a few ways. If files should not be imported unless the .gdbm file disappear:
set the Nolmport directive:

Nolmport products

If the database source file is only to be imported at catalog start—up time, use the IMPORT_ONCE modifier:

Database products IMPORT_ONCE 1

GDBM is the default database type if the GDBM_File Perl module is installed (as it is on LINUX).

45. Databases and Interchange 249

Interchange Documentation (Full)

DB_File

The database source file is checked to see if it is newer than the actual database file, products.db. If it is,
the database table is re—imported from the file. You can change this behavior in the same way as GDBM_Fi
described above.

DB_File is the default database type if the GDBM_File Perl module is not installed. This is common on
FreeBSD. To specify DB_File as your database type, set it in catalog.cfg with a Database directive:

Database products DB_FILE 1
DBI/SQL

If a file named products.sql is in the same directory as products.txt, the database table will
not be imported from the ASCII source. If there is no products.sql, the following will occur:
DBI/SQL imports will only happen at catalog configuration time.

Interchange will connect to the SQL database using the specified DSN. (DBI parameter meaning "Database
Source Name".)

The table will be dropped with "DROP TABLE products;". This will occur without warning. NOTE: This can
be prevented in several ways. See Nolmport External or the SQL documentation for more information.

The table will be created. If there are COLUMN_DEF specifications in catalog.cfg, they will be used.
Otherwise, the key (first field in the text file by default) will be created with a char(16) type and all other
fields will be created as char(128). The table creation statement will be written to the error.log file.

The text source file will be imported into the SQL database. Interchange will place the data in the columns.
Data typing must be user—configured. This means that if "none" is placed in a field, and it is defined as a
numeric type, the database import will not succeed. And if it does not succeed, the catalog will not become
active.

In-Memory
Every time the catalog is configured, the products.txt file is imported into memory and forms the

database. Otherwise, the database is not changed. The in-memory database is the default database if there
no GDBM_File or DB_File Perl module installed; specify it with:

Database products MEMORY 1

45.2. Interchange Database Conventions

This section describes naming and file usage conventions used with Interchange.

Note: Throughout the documentation, the following terms and their definitions are used interchangeably:

key, code

A reference to the database key. In Interchange, this is usually the product code or SKU, which is the part
number for the product. Other key values may be used to generate relationships to other database tables.
It is recommended that the key be the first column of the ASCII source file, since Interchange's import,
export, and search facilities rely on this practice.

field, column

45.2. Interchange Database Conventions 250

Interchange Documentation (Full)

The vertical row of a database. One of the columns is always the key and it is usually the first one.
table, database

A table in the database. Because Interchange has evolved from a single-table database to an access meth
for an unlimited number of tables (and databases, for that matter), a table will occasionally be referred to as
database. The only time the term database refers to something different is when describing the concept as i
relates to SQL, where a database contains a series of tables. While Interchange cannot create SQL databa:
it can drop and create tables with that database if given the proper permissions.

If necessary, Interchange can read the data to be placed in tables from a standard ASClI-delimited file. All
the ASCII source files are kept in the products directory, which is normally in the catalog directory (where
catalog.cfg is located). The ASCII files can have *M (carriage return) characters, but must have a new line
character at the end of the line to work. NOTE: Mac users uploading files must use ASCIlI mode, not binary
mode.

Interchange's default ASCII delimiter is TAB.

Note: The items must be separated by a single delimiter. The items in this document are lined up for reading
convenience.

TAB

Fields are separated by ~l characters. No whitespace is allowable at the beginning of the line.

code description price image
SH543 Men's fine cotton shirt 14.95 shirts.jpg

PIPE

Fields are separated by pipe | characters. No whitespace is allowable at the beginning of the line.

code|description|price|image
SH543|Men'’s fine cotton shirt|14.95|shirts.jpg

CSsv

Fields are enclosed in quotes, separated by commas. No whitespace should be at the beginning of the line.

"SH543","Men’'s fine cotton shirt","14.95","shirts.jpg"

Note: Using the default TAB delimiter is recommended if you plan on searching the ASCII source file of the
database. PIPE works fairly well, but CSV delimiter schemes might cause problems with searching.

IMPORTANT NOTE: Field names are usually case—sensitive. Use consistency when naming or you might
encounter problems. All lower or all upper case names are recommended.

45.2. Interchange Database Conventions 251

Interchange Documentation (Full)

Interchange uses one mandatory database, which is referred to as the products database. In the
supplied demo catalog, it is called products and the ASCII source is kept in the file products.txt

in the products directory. This is also the default file for searching with the THE SEARCH ENGINE.
Interchange also has a two of standard, but optional, databases that are in fixed formats:
shipping.asc

The database of shipping options that is accessed if the CustomShipping directive is in use. This

is a fixed—format database, and must be created as specified. For more information, see the Shippin
ITL tag in the Interchange Tag Reference Guide.

salestax.asc

The database of sales tax information if the [salestax] tag is to be used. A default is supplied. NOTE:
Caution, these things change! This is a fixed—format database, and must be created as specified. See Sales
Tax.

These are never stored in SQL or DBM.

45.3. The Product Database

Each product being sold should be given a product code, usually referred to as SKU, a short code that
identifies the product on the ordering page and in the catalog. The products.txt file is a ASCll-delimited list
of all the product codes, along with an arbitrary number of fields which must contain at least the fields
description and price (or however the PriceField and DescriptionField directives have

been set). Any additional information needed in the catalog can be placed in any arbitrary field. See
Interchange Database Capability for details on the format.

Field names can be case-sensitive depending on the underlying database type. Unless there are fields with
names "description" and "price" field, set the PriceField and DescriptionField directives to use the
[item—price] and [item—description] tags.

The product code, or SKU, must be the first field in the line, and must be unique. Product codes can contain
the characters A-Za-z0-9, along with hyphen (=), underscore (_), pound sign/hash mark (#), slash (/), and
period (.). Note that slash (/) will interfere with on—-the—fly page references. Avoid if at all possible.

The words should be separated by one of the approved delimiting schemes (TAB, PIPE, or CSV), and are
case-sensitive in some cases. If the case of the "description" or "price" fields have been modified, the
PriceField and DescriptionField directives must be appropriately set.

Note: CSV is not recommended as the scheme for the products database. It is much slower than TAB- or
PIPE-delimited, and dramatically reduces search engine functionality. No field-specific searches are
possible. Using CSV for any small database that will not be searched is fine.

IMPORTANT NOTE: The field names must be on the first line of the products.txt file. These field

names must match exactly the field names of the [item—field] tags in the catalog pages, or the
Interchange server will not access them properly. Field names can contain the characters A-Za-z0-9 and
underscore ().

More than one database may be used as a products database. If the catalog directive, ProductFiles, is set
space—separated list of valid Interchange database identifiers, those databases will be searched (in the orde
specified) for any items that are ordered, or for product information (as in the [price code] and [field

45.3. The Product Database 252

Interchange Documentation (Full)

code] tags).

When the database table source file (i.e., products.txt) changes after import or edit, a DBM database is
re—built upon the next user access. No restart of the server is necessary.

If changing the database on-the—fly, it is recommended that the file be locked while it is being modified.
Interchange's supplied import routines do this.

45.4. Multiple Database Tables

Interchange can manage an unlimited number of arbitrary database tables. They use the TAB delimiter by
default, but several flexible delimiter schemes are available. These are defined by default:

Typel DEFAULT - uses default TAB delimiter
Type 2 LINE
Each field on its own line, a blank line
separates the record. Watch those carriage
returns! Also has a special format when CONTINUE
is set to be NOTES.
Type3 %%
Fields separated by a \n%%\n combination, records by
\n%%%\n (where \n is a newline). Watch those carriage
returns!

Typed CSV
Type5 PIPE
Type 6 TAB
Type 7 reserved
Type8 SQL

The databases are specified in Database directives, as:

Database arbitrary arbitrary.csv CSV

This specifies a Type 4 database, the ASCII version of which is located in the file arbitrary.csv, and the
identifier it will be accessed under in Interchange is "arbitrary." The DBM file, if any, will be created in the
same directory if the ASCII file is newer, or if the DBM file does not exist. The files will be created as
arbitrary.db or arbitrary.gdbm, depending on DBM type.

The identifier is case sensitive, and can only contain characters in the class [A-Za-z0-9_]. Fields are
accessed with the [item_data identifier field] or [data identifier field key] elements. NOTE: Use of
lower—case letters is strongly recommended.

If one of the first six types is specified, the database will automatically be built in the default Interchange DB
style. The type can be specified with DB_FILE, GDBM, or MEMORY, if the type varies from that default.
They will coexist with an unlimited number of DBI databases of different types.

In addition to the database, the session files will be kept in the default format, and are affected by the
following actions.

The order of preference is:

GDBM

45.4. Multiple Database Tables 253

Interchange Documentation (Full)

This uses the Perl GDBM_File module to build a GDBM database. The following command will indicate if
GDBM is in Perl:

perl —e 'require GDBM_File and print "| have GDBM.\n"

Installing GDBM_File requires rebuilding Perl after obtaining the GNU GDBM package, and is beyond the
scope of this document. LINUX will typically have this by default; most other operating systems will need to
specifically build in this capability.

DB_File (Berkeley DB)

This uses the DB_File module to build a Berkeley DB (hash) database. The following command will
indicate if DB_File is in Perl:

perl —e 'require DB_File and print "I have Berkeley DB.\n"

Installing DB_File requires rebuilding Perl after obtaining the Berkeley DB package, and is beyond the
scope of this document. BSDI, FreeBSD, and LINUX will typically have it by default; most other operating
systems will need to specifically build this in.

If using DB_File, even though GDBM_File is in Perl, set the environment variable MINIVEND_DBFILE

to a true (non-zero, non-blank) value:

csh or tcsh
setenv MINIVEND_DBFILE 1

sh, bash, or ksh
MINIVEND_DBFILE=1 ; export MINIVEND_DBFILE

Then, re—start the server.
Or, to set a particular table to use Berkeley DB, the DB_FILE class in catalog.cfg can be specified:

Database arbitrary DB_FILE 1
In-memory

This uses Perl hashes to store the data directly in memory. Every time the Interchange server is restarted, it
will re—import all in—-memaory databases for every catalog.

If this is used, despite the presence of GDBM_File or DB_File, set the environment variable
MINIVEND_NODBM as above or specify the memory type in the Database directive:

Database arbitrary MEMORY 1

Note: The use of memory databases is hot recommended.

45.5. Character Usage Restrictions

To review, database identifiers, field names, and product codes (database keys) are restricted in the charac
they may use. The following table shows the restrictions:

Legal characters

Database identifiers A-Za-z0-9 _

45.5. Character Usage Restrictions 254

Interchange Documentation (Full)

Field names A-Za-z0-9 _
Database keys (product code/SKU) A-Za-z0-9 _#-./
Database values Any (subject to field/record delimiter)

Some SQL databases have reserved words which cannot be used as field names; Interchange databases d
have this restriction.

For easy HTML compatibility, it is not recommended that a / be used in a part number if using the flypage
capability. It can still be called [page href=flypage arg="S/KU"].

45.6. Database Attributes

Especially in SQL databases, there are certain functions that can be set with additional database attributes.
text import, the CONTINUE extended database import attribute allows additional control over the format of
imported text.

Note: CONTINUE applies to all types except CSV. (Do not use NOTES unless using type LINE.)

CONTINUE

One of UNIX, DITTO, LINE, NONE, or NOTES. The default, NONE, is to simply split the line/record
according to the delimiter, with no possible spanning of records. Setting CONTINUE to UNIX appends the
next line to the current when it encounters a backslash (\) at the end of a record, just like many UNIX
commands and shells.

DITTO is invoked when the key field is blank. It adds the contents of following fields to the one above,
separated by a new line character. This allows additional text to be added to a field beyond the 255 characte
available with most spreadsheets and flat—file databases.

Example in catalog.cfg:

Database products products.txt TAB
Database products CONTINUE DITTO

Products.asc file:

code price description
00-0011 500000 The Mona Lisa, one of the worlds great masterpieces.
Now at a reduced price!

The description for product 00-0011 will contain the contents of the description field on both lines,
separated by a new line.

Note: Fields are separated by tabs, formatted for reading convenience.

This will work for multiple fields in the same record. If the field contains any non—empty value, it will be
appended.

LINE is a special setting so a multi-line field can be used. Normally, when using the LINE type, there is only
data on one line separated by one blank line. When using CONTINUE LINE, there may be some number of
fields which are each on a line, while the last one spans multiple lines up until the first blank line.

Example in catalog.cfg:

45.6. Database Attributes 255

Interchange Documentation (Full)

Database products products.txt LINE
Database products CONTINUE LINE

Products.asc file:

code
price
description

00-0011

500000

The Mona Lisa, one of the worlds great masterpieces.
Now at a reduced price!

00-0011a
1000
A special frame for the Mona Lisa.

NOTES reads a Lotus Notes "structured text" file. The format is any number of fields, all except one of whicl
must have a field name followed by a colon and then the data. There is optional whitespace after the colon.
Records are separated by a settable delimiting character which goes on a line by itself, much like a "here
document." By default, it is a form feed ("L) character. The final field begins at the first blank line and
continues to the end of the record. This final field is named notes_field, unless set as mentioned below.
Interchange reads the field names from the first paragraph of the file. The key field should be first, followed
by other fields in any order. If one (and only one) field name has whitespace, then its name is used for the
notes_field. Any characters after a space or TAB are used as the record delimiter.

If there are none, then the delimiter returns to the default form feed (*L) and the field name reverts to
notes_field. The field in question will be discarded, but a second field with whitespace will cause an

import error. Following records are then read by name, and only fields with data in them need be set. Only tl
notes_field may contain a new line. It is always the last field in the record, and begins at the first blank

line.

The following example sets the delimiter to a tilde (~) and renames the notes_field to description.

Example in catalog.cfg:

Database products products.txt LINE
Database products CONTINUE NOTES

Products.asc file:

code

title

price

image
description ~
size

color

title: Mona Lisa
price: 500000
code: 00-0011
image: 00-0011.jpg

The Mona Lisa, one of the worlds great masterpieces.
Now at a reduced price!

title: The Art Store T-Shirt
code: 99-102

45.6. Database Attributes 256

Interchange Documentation (Full)

size: Medium, Large*, XL=Extra Large
color: Green, Blue, Red, White*, Black
price: 2000

Extra large 1.00 extra.

EXCEL

Microsoft Excel is a widely—used tool to maintain Interchange databases, but has several problems with its

standard TAB-delimited export, like enclosing fields containing commas in quotes, generating extra carriage
returns embedded in records, and not including trailing blank fields. To avoid problems, use a text—qualifier
of none.

Set the EXCEL attribute to 1 to fix these problems on import:

Database products EXCEL 1
This is normally used only with TAB—delimited files.
LARGE

Interchange databases containing many records can result in a noticeable slowdown when displayed by the
Set the LARGE attribute to 1 to avoid this problem:

Database transactions LARGE 1

In this case the Ul supplies only input boxes to search records in the database instead of drawing all the
records from the database, sorting them and creating more lists.

45.7. Dictionary Indexing With INDEX

Interchange will automatically build index files for a fast binary search of an individual field. This type of
search is useful for looking up the author of a book based on the beginning of their last name, a book title
based on its beginning, or other similar situations.

Such a search requires a dictionary ordered index with the field to be searched contained in the first field an
the database key (product code) in the second field. If the INDEX field modifier is specified, Interchange
will build the index upon database import:

Database products products.txt TAB
Database products INDEX title

If the title field is the fourth column in the products database table, a file products.txt.4 will be
built, containing two tab—separated fields something like:

American Gothic 19-202
Mona Lisa 00-0011
Sunflowers 00-342
The Starry Night 00-343

Options can be appended to the field name after a colon (:). The most useful will be f, which does a
case-insensitive sort. The mv_dict_fold option must be added to the search in this case.

45.7. Dictionary Indexing With INDEX 257

Interchange Documentation (Full)

Another option is ¢, which stands for "comma index." To index on comma-separated sub—fields within a
field, use the :c option:

Database products products.txt TAB
Database products INDEX category:c

This can get slow for larger databases and fields. Interchange will split the field on a comma (stripping
surrounding whitespace) and make index entries for each one. This allows multiple categories in one field
while retaining the fast category search mechanism. It might also be useful for a keywords field.

The fast binary search is described in greater detail in THE SEARCH ENGINE below.

45.8. MEMORY for Memory—Only Databases

Interchange's memory-based databases are the fastest possible way to organize and store frequently used
To force a database to be built in memory instead of DBM, use the MEMORY modifier:

Database country country.asc TAB
Database country MEMORY 1

Obviously, large tables will use a great deal of memory, and the data will need to be re-imported from the
ASCII source file at every catalog reconfiguration or Interchange restart. The big advantage of using
MEMORY is that the database remains open at all times and does not need to be reinitialized at every
connect. Use it for smaller tables that will be frequently accessed.

The MEMORY modifier forces IMPORT_ONCE.

45.9. IMPORT_ONCE

The IMPORT_ONCE modifier tells Interchange not to re—import the database from the ASCII file every time
it changes. Normally, Interchange does a comparison of the database file modification time with the ASCII
source every time it is accessed, and if the ASCII source is newer it will re—import the file.

IMPORT_ONCE tells it only to import on a server restart or catalog reconfiguration:

Database products products.txt TAB
Database products IMPORT_ONCE 1

SQL databases don't normally need this. They will only be imported once in nhormal operation. Also see
Nolmport for a way to guarantee that the table will never be imported.

IMPORT_ONCE is always in effect for MEMORY databases. A catalog reconfiguration is required to force a
change.

45.10. Importing in a Page

To add a data record to a database as a result of an order or other operation, use Interchange's [import
...] tag.

[import table type*] RECORD [/import]

45.8. MEMORY for Memory-Only Databases 258

Interchange Documentation (Full)

Named parameters:

[import table=table_name
file=filename*
type=(TAB|PIPE|CSV|%%|LINE)*
continue=(NOTES|UNIX|DITTO)*
separator=c*]

Import one or more records into a database. The type is any of the valid Interchange delimiter types, with th
default being TAB. The table must already be a defined Interchange database table. It cannot be created
on-the—fly. If on—-the—fly functionality is need, it is time to use SQL.

The import type selected need not match the type the database was specified. Different delimiters may be
used.

The type of LINE and continue setting of NOTES is patrticularly useful, for it allows fields to be named
and not have to be in any particular order of appearance in the database. The following two imports are
identical in effect:

[import table=orders]
code: [value mv_order_number]
shipping_mode: [shipping—description]
status: pending
[/import]

[import table=orders]
shipping_mode: [shipping—description]

status: pending
code: [value mv_order_number]
[/import]

The code or key must always be present, and is always hamed code. If NOTES mode is not used, the fields
must be imported in the same order as they appear in the ASCII source file.

The file option overrides the container text and imports directly from a named file based in the catalog
directory. To import from products.txt, specify file="products/products.txt". If the
NoAbsolute directive is set to Yes in interchange.cfg, only relative path names will be allowed.

The [import] TEXT [/import] region may contain multiple records. If using NOTES mode, a
separator must be used, which, by default, is a form—feed character (“L). See Import Attributes for more
information.

45.11. Exporting from a Database

To export an existing database to a file suitable for searching by Interchange, create a page that contains a
[tag export ...][/tag] element. Perhaps a better method is to define the same sort of tags in an
OrderProfile, and use forms and buttons to access the profile.

45.12. Write Control

Interchange databases can be written in the normal course of events, either using the [import ...] tag or
with a tag like [data table=table column=field key=code value=new-value]. To control
writing of a global database, or to a certain catalog within a series of subcatalogs, or make one read only, se

45.11. Exporting from a Database 259

Interchange Documentation (Full)

the following:

To enable write control:

Database products WRITE_CONTROL 1

Once this is done, to make a database read only, which won't allow writing even if [tag flag
write]products|/tag] is specified:

Database products READ_ONLY 1

To have control with [tag flag write]products[/tag]:
Database products WRITE_TAGGED 1

To limit write to certain catalogs, set:

Database products WRITE_CATALOG simple=0, sample=1

The "simple" catalog will not be able to write, while "sample" will if [tag flag
write]products|/tag] is enabled. If a database is to always be writable, without having to specify
[tag flag write] ... [/tag], then define:

Database products WRITE_ALWAYS 1

The default behavior of SQL databases is equivalent to WRITE_ALWAYS, while the default for
GDBM_File, DB_File, and Memory databases is equivalent to:

Database products WRITE_CONTROL 1
Database products WRITE_TAGGED 1

45.13. Global Databases

If a database is to be available to all catalogs on the Interchange server, it may be defined in
interchange.cfg. Any catalog running under that server will be able to use it. It is writable by any
catalog unless WRITE_CONTROL is used.

45.13. Global Databases

260

46. SQL Support

Interchange can use any of a number of SQL databases through the powerful Perl DBI/DBD access methoo
This allows transparent access to any database engine that is supported by a DBD module. The current list
includes mSQL, MySQL, Solid, PostgreSQL, Oracle, Sybase, Informix, Ingres, Dbase, DB2, Fulcrum, and
others. Any ODBC (with appropriate driver) should also be supported.

No SQL database is included with Interchange, but there are a number widely available on the Internet. Mos
commonly used with Interchange are PostgreSQL, MySQL, and Oracle. It is beyond the scope of this
document to describe SQL or DBI/DBD. Sufficient familiarity is assumed.

In most cases, Interchange cannot perform administrative functions, like creating a database or setting acce
permissions. This must be done with the tools provided with a SQL distribution. But, if given a blank databas
and the permission to read and write it, Interchange can import ASCI! files and bootstrap from there.

46.1. SQL Support via DBI

The configuration of the DBI database is accomplished by setting attributes in additional Database directive:
after the initial defining line as described above. For example, the following defines the database arbitrary a:
a DBI database, sets the data source (DSN) to an appropriate value for an mSQL database named miniven
on port 1114 of the local machine:

Database arbitrary arbitrary.asc SQL
Database arbitrary DSN dbi:mSQL:minivend:localhost:1114

As a shorthand method, include the DSN as the type:

Database arbitrary arbitrary.asc dbi:mSQL:minivend:localhost:1114
Supported configuration attributes include (but are not limited to):
DSN
A specification of the DBI driver and its data source. To use the DBD::mSQL driver for DBI, use:

dbi:mSQL:minivend:othermachine.my.com:1112

where mSQL selects the driver (case IS important), minivend selects the database,
othermachine.my.com selects the host, and 1112 is the port. On many systems,
dbi:mSQL:minivend will work fine. Of course, the minivend database must already exist.
This is the same as the DBI_DSN environment variable, if the DSN parameter is not set. Then, the value of
DBI_DSN will be used to try and find the proper database to connect to.

USER

The user name used to log into the database. It is the same as the environment variable DBI_USER. If a us
name is not needed, just don't set the USER directive.

PASS

46. SQL Support 261

Interchange Documentation (Full)

The password used to log into the database. It is the same as the environment variable DBI_PASS. If a
password is not needed, just don't set the PASS directive.

COLUMN_DEF

A comma-separated set of lines in the form NAME=TYPE(N), where NAME is the name of the
field/column, TYPE is the SQL data type reference, and N is the length (if needed). Most Interchange fields
should be the fixed-length character type, something like char(128). In fact, this is the default if a type is not
chosen for a column. There can be as many lines as needed. This is not a DBI parameter, it is specific to
Interchange.

NAME

A space-separated field of column names for a table. Normally not used. Interchange should resolve the
column names properly upon query. Set this if a catalog errors out with "dbi: can't find field names" or the
like. The first field should always be code. This is not a DBI parameter, it is specific to Interchange. All
columns must be listed, in order of their position in the table.

NUMERIC

Tells Interchange not to quote values for this field. It allows numeric data types for SQL databases. It is
placed as a comma-separated field of column names for a table, in no particular order. This should be defin
if a numeric value is used because many DBD drivers do not yet support type queries.

UPPERCASE

Tells Interchange to force field names to UPPER case for row accesses using the [item—data ...],
[loop—-data ...], [item-field ..., etc. Typically used for Oracle and some other SQL
implementations.

DELIMITER

A Interchange delimiter type, either TAB,CSV,PIPE,%%,LINE or the corresponding numeric type. The
default for SQL databases is TAB. Use DELIMITER if another type will be used to import. This is not a DBI
parameter. It is specific to Interchange.

KEY

The keying default of code in the first column of the database can be changed with the KEY directive. Don't
use this unless prepared to alter all searches, imports, and exports accordingly. It is best to just accept the
default and make the first column the key for any Interchange database.

ChopBlanks, LongReadLen, LongTruncOK, RaiseError, etc.

Sets the corresponding DBI attribute. Of particular interest is ChopBlanks, which should be set on drivers
which by default return space—padded fixed-length character fields (Solid is an example).
The supported list as of this release of Interchange is:

ChopBlanks

CompatMode
LongReadLen
LongTruncOk

46. SQL Support 262

Interchange Documentation (Full)

PrintError
RaiseError
Warn

Issue the shell command perldoc DBI for more information.

Here is an example of a completely set up DBI database on MySQL, using a comma-separated value input
setting the DBI attribute LongReadLen to retrieve an entire field, and changing some field definitions from
the default char(128):

Database products products.csv dbi:mysql:minivend
Database products USER minivend
Database products PASS nevairbe
Database products DELIMITER CSV

Set a DBI attribute
Database products LongReadLen 128

change some fields from the default field type of char(128)

Only applies if Interchange is importing from ASCII file

If you set a field to a numeric type, you must set the

NUMERIC attribute

Database products COLUMN_DEF "code=char(20) NOT NULL primary key"
Database products COLUMN_DEF price=float, discount=float

Database products COLUMN_DEF author=char(40), titte=char(64)
Database products COLUMN_DEF nontaxable=char(3)

Database products NUMERIC price

Database products NUMERIC discount

MySQL, DBI, and DBD::mysqgl must be completely installed and tested, and have created the database
minivend, for this to work. Permissions are difficult on MySQL. if having trouble, try starting the MySQL
daemon with safe_mysqld ——skip—grant-tables & for testing purposes.

To change to ODBC, the only changes required might be:

Database products DSN dbi:ODBC:TCP/IP localhost 1313
Database products ChopBlanks 1

The DSN setting is specific to a ODBC setup. The ChopBlanks setting takes care of the space—padding in

Solid and some other databases. It is not specific to ODBC. Once again, DBI, DBD::ODBC, and the
appropriate ODBC driver must be installed and tested.

46.2. SQL Access Methods

An Interchange SQL database can be accessed with the same tags as any of the other databases can. Arbi
SQL queries can be passed with the [query sql="SQL STATEMENT"] ITL tag.

46.3. Importing from an ASCII File
When importing a file for SQL, Interchange by default uses the first column of the ASCII file as the primary

key, with a char(16) type, and assigns all other columns a char (128) definition. These definitions can
be changed by placing the proper definitions in COLUMN_DEF Database directive attribute:

Database products COLUMN_DEF price=char(20), nontaxable=char(3)

46.2. SQL Access Methods 263

Interchange Documentation (Full)

This can be set as many times as desired, if it will not fit on the line.

Database products COLUMN_DEF price=char(20), nontaxable=char(3)
Database products COLUMN_DEF description=char(254)

To create an index automatically, append the information when the value is in quotes:
Database products COLUMN_DEF "code=char(14) primary key"

The field delimiter to use is TAB by default, but can be changed with the Database DELIMITER directive:

Database products products.csv dbi:mSQL:minivend:localhost:1114
Database products DELIMITER CSV

To create other secondary keys to speed sorts and searches, do so in the COLUMN_DEF:
Database products COLUMN_DEF "author=char(64) secondary key"

Or use external database tools. NOTE: Not all SQL databases use the same index commands.

To use an existing SQL database instead of importing, set the Nolmport directive in catalog.cfg to include ar
database identifiers not to be imported:

Nolmport products inventory

WARNING: If Interchange has write permission on the products database, be careful to set the Nolmport
directive or create the proper .sql file. If that is not done, and the database source file is changed, the SQL
database could be overwritten. In any case, always back up the database before enabling it for use by
Interchange.

46.2. SQL Access Methods 264

47. Managing DBM Databases
47.1. Making the Database

The DBM databases can be built offline with the offline command. The directory to be used for output is
specified either on the command line with the —d option, or is taken from the catalog.cfg directive
OfflineDir —— offline in the catalog directory by default. The directory must exist. The source ASCII

files should be present in that directory, and the DBM files are created there. Existing files will be
overwritten.

offline —c catalog [—d offline_dir]

Do a perldoc VENDROOT/bin/offline for full documentation.

47.2. Updating Individual Records

If it takes a long time to build a very large DBM database, consider using the bin/update script to change
just one field in a record, or to add from a corrections list.

The database is specified with the —n option, or is 'products' by default.

The following updates the products database price field for item 19-202 with the new value 25.00:
update —c catalog —f price 25.00

More than one field can be updated on a single command line.
update —c catalog —f price —=f comment 25.00 "That pitchfork couple"

The following takes input from file, which must be formatted exactly like the original database, and
adds/corrects any records contained therein.

update —c catalog -i file

Invoke the command without any arguments for a usage message describing the options.

47. Managing DBM Databases 265

48. The Search Engine

Interchange implements a search engine which will search the product database (or any other file) for items
based on customer input. It uses either forms or link—based searches that are called with the special page n
scan. The search engine uses many special Interchange tags and variables.

If the search is implemented in a link or a form, it will always display formatted results on the results page, a
Interchange page that uses some combination of the [search-region], [search-list],

[more-list], [more], and other Interchange tags to format and display the results. The search results are
usually a series of product codes/SKUs or other database keys, which are then iterated over similar to the
[item—list].

Note: Examples of search forms and result pages are included in the demos.

Two search engine interfaces are provided, and five types of searching are available. The default is a
text—based search of the first products database source file (i.e., products.txt). A binary search of a
dictionary—ordered file can be specified. An optional Glimpse search is enabled by placing the command
specification for Glimpse in the catalog.cfg directive Glimpse. There is a range—based search, used in
combination with one of the above. And finally, there is a fully—coordinated search with grouping.

The default, a text based search, sequentially scans the lines in the target file. By default it returns the first
field (delineated by the delimiter for that database) for every line matching the search specification. This
corresponds to the product code, which is then used to key specific accesses to the database.

The text—-based search is capable of sophisticated field—specific searches with fully-independent
case-sensitivity, substring, and negated matching.

48.1. The Search Form

A number of variables can be set on search forms to determine which search will be used, what fields in the
database it will search, and what search behavior will be.

Here is a simple search form:

<FORM ACTION="[area search]" METHOD=POST>
<INPUT TYPE="text" SIZE="30" NAME="mv_searchspec">
<INPUT TYPE="submit" VALUE="Search">

</[FORM>

When the "Search" submit button is pressed (or <ENTER> is pressed), Interchange will search the
products.txt file for the string entered into the text field mv_searchspec, and return the product code
pertaining to that line.

The same search for a fixed string, say "shirt," could be performed with the use of a hot link, using the speci
scan URL:

[page search="se=shirt"]See our shirt collection![/page]

The default is to search every field on the line. To match on the string "shirt" in the product database field
"description," modify the search:

48. The Search Engine 266

Interchange Documentation (Full)

<INPUT TYPE="hidden" NAME="mv_search_field" VALUE="description">
In the hot-linked URL search:

[page search="
se=shirt
sf=category
"|See our shirt collection![/page]

To let the user decide on the search parameters, use checkboxes or radiobox fields to set the fields:

Search by author

<INPUT TYPE="checkbox" NAME="mv_search_field" VALUE="author">
Search by title

<INPUT TYPE="checkbox" NAME="mv_search_field" VALUE="title">

Fields can be stacked. If more than one is checked, all checked fields will be searched.

48.2. Glimpse

To use the Glimpse search, the Glimpse index must be built based on files in the ProductDir, or wherever th
files to be searched will be located. If the catalog is in /var/lib/interchange/foundation, the
command line to build the index for the products file would be:

chdir /var/lib/interchange/foundation/products
glimpseindex —b —H . products.txt

There are several ways to improve search speed for large catalogs. One method that works well for large
products.txt files is to split the products.txt file into small index files (in the example, 100 lines)
with the split(1) UNIX/POSIX command. Then, index it with Glimpse:

split =100 products.txt index.txt.
glimpseindex —H /var/lib/interchange/foundation/products index.txt.*

This will dramatically increase search speeds for large catalogs, at least if the search term is relatively uniqu
If it is a common string, in a category search, for example, it is better to use the text-based search.

To search for numbers, add the —n option to the Glimpse command line.

Note: A large catalog is one of more than several thousand items; smaller ones have acceptable speed in al
of the search modes.

If the Glimpse executable is not found at Interchange startup, the Glimpse search will be disabled and the
regular text-based search used instead.

There are several things to watch for while using Glimpse, and a liberal dose of the Glimpse documentation
suggested. In particular, the spelling error capability will not work in combination with the field—specific
search. Glimpse selects the line, but Interchange's text—-based search routines disqualify it when checking t
see if the search string is within one of the specified fields.

To use field—specific searching on Glimpse, tell it what the field names are. If the search is on the products
database (file), nothing is needed for the default is to use the field names from the products database. If it is

48.2. Glimpse 267

Interchange Documentation (Full)

some other field layout, specify the file to get the field names from with mv_field_file (ff).

48.3. Fast Binary Search

Fast binary searching is useful for scanning large databases for strings that match the beginning of a line.
They use the standard Perl module Search::Dict, and are enabled through use of the mv_dict_look,
mv_dict_end, mv_dict_limit, mv_dict_fold, and mv_dict_order variables.

The field to search is the first field in the file, the product code should be in the second field, delimited by
TAB. Set the mv_return_fields=1 to return the product code in the search.

The search must be done on a dictionary—ordered pre—built index, which can be produced with the databas
INDEX modifier. See Dictionary indexing with INDEX.

If using the mv_dict_look parameter by itself, and the proper index file is present, Interchange will set the
options:

mv_return_fields=1
mv_dict_limit=-1

This will make the search behave much like the simple search described above, except it will be much faste
on large files and will match only from the beginning of the field. Here is an example. A title index has
been built by including in catalog.cfg:

Database products INDEX title

Note: The ASCII source file must be "touched" to rebuild the index and the database.

Now, specify in a form:

<FORM ACTION="[process href=search]* METHOD=POST>
<INPUT TYPE=hidden NAME=mv_dict_limit VALUE=title>
<INPUT NAME=mv_dict_look>

</[FORM>

orin a URL:

[page search="dI=Van Gogh/di=title"]

This search is case—sensitive. To do the same thing case-insensitively:

Database products INDEX title:f

<FORM ACTION="[process href=search]* METHOD=POST>
<INPUT TYPE=hidden NAME=mv_dict_limit VALUE=title>
<INPUT TYPE=hidden NAME=mv_dict fold VALUE=1>
<INPUT NAME=mv_dict_look>

</[FORM>

[page search="dI=Van Gogh/di=title/df=1"]

48.3. Fast Binary Search 268

Interchange Documentation (Full)

48.4. Coordinated and Joined Searching

Interchange will do a complete range of tests on individual columns in the database. To use this function, se
mv_coordinate to Yes (co=yes in the one—click syntax). In order to use coordinated searching, the
number of search fields must equal the number of search strings.

To make sure that is the case, use the mv_search_map variable. It allows variables to be mapped to others
in the search specification. For example:

<INPUT TYPE=hidden NAME=mv_search_map VALUE="
mv_searchspec=searchl
mv_searchspec=search2
mv_searchspec=search3
">
<INPUT TYPE=hidden NAME=mv_search_field VALUE=title>
<INPUT TYPE=hidden NAME=mv_search_field VALUE=artist>
<INPUT TYPE=hidden NAME=mv_search_field VALUE=category>
Artist: <INPUT NAME=searchl VALUE="">
Title: <INPUT NAME=search2 VALUE="">
Genre: <INPUT NAME=search3 VALUE="">

Even if the user leaves one blank, the search will work.

Leading/trailing whitespace is stripped from all lines in the mv_search_map variable, so it can be
positioned as shown for convenience.

Coordinated searches may be joined with the output of another table if set one of the mv_search_field
values is set to a table:column pair. Note that this will slow down large searches considerably unless

there is another search specification, as the database must be accessed for every search line If there is a s
field that qualifies for a regular expression search function, or conducting a binary search with
mv_dict_look, or are not doing an OR search, the penalty should not be too great as only matching lines
will cause an access to the database.

Individual field operations can then be specified with the mv_column_op (or op) parameter. The operations
include:

operation string numeric equivalent
equal to eq == =
not equal ne 1= <>
greater than gt >
less than It <
less than/equal to le <=
greater than/equal to ge >=
regular expression rm =~, LIKE
regular expression NOT rn I~
exact match em
An example:

[page search="
co=yes
sf=title
se=Sunflowers
op=em

48.4. Coordinated and Joined Searching 269

Interchange Documentation (Full)

sf=artist
se=Van Gogh
op=rm
"] Sunflowers, Van Gogh

[page search="
co=yes

sf=title
se=Sunflowers
nu=0

op=!~

sf=artist
se=Van Gogh
op=rm

nu=0

sf=inventory:qty
se=1
0p:>:
nu=1
"] Any in stock except Sunflowers, Van Gogh

Note that in the second example, nu=0 must be specified even though that is the default. This is to set the
proper correspondence. To avoid having to do this, use Interchange's option array feature:

[page search.0="
sf=title
se=Sunflowers
op=!~

search.1="
sf=artist
se=Van Gogh

search.2="
sf=inventory:qty
se=1
op=>=
nu=1

] Any in stock except Sunflowers, Van Gogh
The co=yes is assumed when specifying a multiple search.
The second search will check the stock status of the painting provided there is an inventory table as in
some of the Interchange demo catalogs. If the gty field is greater than or equal to 1, the product will be
picked. If out of stock, it will not be found.
It always helps to have an rm type included in the search. This is used to pre—screen records so that databe

accesses only need be made for already—matching entries. If accesses must be made for every record, larg
searches can get quite slow.

48.5. Specifying a Text—Based Search with SQL Syntax

If the Perl SQL::Statement module is installed, SQL syntax can be specified for the text-based search.

48.5. Specifying a Text-Based Search with SQL Syntax 270

Interchange Documentation (Full)

This is not the same as the external SQL database search, treated below separately. This works on the ASC(
text source file, not on the actual database.

This syntax allows this form setup:

Artist: <INPUT NAME="artist">
Title: <INPUT NAME="title">
<INPUT TYPE=hidden NAME="mv_sql_query"
VALUE="
SELECT code FROM products
WHERE artist LIKE artist
AND title LIKE title">

If the right hand side of an expression looks like a column, i.e., is not quoted, the appropriate form variable i
substituted. (If used in a one—click, the corresponding scratch variable is used instead.) The assumption is
reversed for the left—hand side. If it is a quoted string, the column name is read from the passed values.
Otherwise, the column name is literal.

Search for: <INPUT NAME="searchstring">

Searchin <INPUT TYPE="radio" NAME="column" VALUE="title"> title
<INPUT TYPE="radio" NAME="column" VALUE="artist"> artist
<INPUT TYPE=hidden NAME="mv_sql_query"
VALUE="SELECT code FROM products WHERE 'column’ LIKE searchstring">

Once again, this does not conduct a search on an SQL database, but formats a corresponding text-based
search. Parentheses will have no effect, and an OR condition will cause all conditions to be OR. The search
above would be similar to:

[page search="
co=yes
sf=artist
op=rm
se=[value artist]
sf=title
op=rm
se=[value title]

Search for [value artist], [value title]
[/page]

[page search="
co=yes
sf=[value column]
op=rm
se=[value searchstring]

Search for [value searchstring]
in [value column]

[/page]

48.6. Range Searching

Range searching allows qualification of search returns with a field that must be within a certain numeric or
alphanumeric range. To use it, set the mv_range_look variable to the products database field, or a
column/field number for another file. Then, set the corresponding mv_range_min and mv_range_max
variables with a selectable field.

48.6. Range Searching 271

Interchange Documentation (Full)

<INPUT TYPE="hidden" NAME="mv_range_look" VALUE="price">
Search on Price
Min <SELECT NAME="mv_range_min">
<OPTION value=0 SELECTED> Free
<OPTION value=1000000> $1,000,000
<OPTION value=10000000> $10,000,000
<OPTION value=20000000> $20,000,000
<OPTION value=40000000> $40,000,000
</SELECT>

Max <SELECT NAME="mv_range_max">
<OPTION value=0 SELECTED> no object
<OPTION value=1000000> $1,000,000
<OPTION value=10000000> $10,000,000
<OPTION value=20000000> $20,000,000
<OPTION value=40000000> $40,000,000
</SELECT>

The value of 0 for mv_range_max is equivalent to infinity if doing a numeric search. This makes it
impossible to search for a ceiling of 0 with a negative mv_range_min.

The fields are stackable, so more than one range to check can be set. The order is significant, in the sense
the array of field names and minimum/maximum values must be kept in order to achieve correspondence.

The optional mv_range_alpha specification allows alphanumeric range matching for the corresponding
field. If it is set, and the fields are stacked, they must all be set. The mv_case field does apply if it is set.
Otherwise, the comparison is without regard to case.

If ONLY a range search is required, all lines with mv_return_all=yes must be selected in order to make

the search operate. Range—only searches will be quite slow for large databases since every line must be
scanned. It should be quite usable for catalogs of less than 10,000 items in size on a fast machine. Using it
combination with another search technigue (in the same query) will yield faster search returns.

48.7. One—Click Searches

Interchange allows a search to be passed in a URL, as shown above. Just specify the search with the speci
page parameter search or special page scan. Here is an example:

[page search="
se=Impressionists
sf=category

Il]
Impressionist Paintings

[/page]

This is the same:
[page scan se=Impressionists/sf=category]
Impressionist Paintings
['page]

Here is the same thing from a home page (assuming /cgi—bin/vlink is the CGI path for Interchange's vlink):

Impressionist Paintings

48.7. One—Click Searches 272

Interchange Documentation (Full)

The two-letter abbreviations are mapped with these letters:

ac mv_all_chars

bd mv_base_directory
bs mv_begin_string

ck mv_cache_key

co mv_coordinate

Ccs mv_case

cv mv_verbatim_columns
de mv_dict_end

df mv_dict_fold

di mv_dict_limit

dl mv_dict_look

DL mv_raw_dict_look
do mv_dict_order

dr mv_record_delim
em mv_exact_match
er mv_spelling_errors
ff mv_field_file

fi mv_search_file

fm mv_first_match

fn mv_field_names

hs mv_head_skip

ix mv_index_delim

Ib mv_search_label

If mv_like_field

lo mv_list_only

Ir mv_search_line_return
Is mv_like_spec

ma mv_more_alpha
mc mv_more_alpha_chars
md mv_more_decade
ml mv_matchlimit

mm mv_max_matches
MM mv_more_matches
mp mv_profile

ms mv_min_string

ne mv_negate

ng mv_negate

np mv_nextpage

nu mv_numeric

op mv_column_op

0s mv_orsearch

pf prefix

ra mv_return_all

rd mv_return_delim

rf mv_return_fields

rg mv_range_alpha

rl mv_range_look

rm mv_range_min

rn mv_return_file_name
rr mv_return_reference
rs mv_return_spec

rX mv_range_max

se mv_searchspec

sf mv_search_field

Sg mv_search_group
si mv_search_immediate
sm mv_start_match
sp mv_search_page
sq mv_sql_query

sr mv_search_relate

48.7. One—Click Searches

273

Interchange Documentation (Full)

st mv_searchtype

su mv_substring_match
tf mv_sort_field

to mv_sort_option

un mv_unique

va mv_value

These can be treated just the same as form variables on the page, except that they can't contain a new line.
using the multi-line method of specification, the characters will automatically be escaped for a URL.

IMPORTANT NOTE: An incompatibility in earlier Interchange catalogs is specifying [page
scan/se=searchstring]. This is interpreted by the parser as [page

scan/se="searchstring"] and will cause a bad URL. Change this to [page scan
se=searchstring], or perhaps better yet:

[page search="
se=searchstring

]
A one—click search may be specified in three different ways.
Original

To do an OR search on the fields category and artist for the strings "Surreal" and "Gogh," while matching
substrings, do:

[page scan se=Surreal/se=Gogh/os=yes/su=yes/sf=artist/sf=category]
Van Gogh —— compare to surrealists

[/page]

In this method of specification, to replace a / (slash) in a file name (for the sp, bd, or fi parameter), the
shorthand of :: must be used, i.e., sp=results::standard. (This may not work for some browsers, so put the p
in the main pages directory or define the page in a search profile.)

Multi-Line

Specify parameters one to a line, as well.

[page scan
se="Van Gogh"
sp=lists/surreal
os=yes
su=yes
sf=artist
sf=category
] Van Gogh —— compare to surrealists [/page]

Any "unsafe" characters will be escaped. To search for trailing spaces (unlikely), quote.
Ampersand

Substitute & for / in the specification and be able to use / and quotes and spaces in the specification.

[page href=scan se="Van Gogh"&sp=lists/surreal&os=yes&su=yes&sf=artist&sf=category]
Van Gogh —— compare to surrealists

48.7. One—Click Searches 274

Interchange Documentation (Full)

[/page]

Any "unsafe" characters will be escaped.

48.8. Setting Display Options with mv_value

A value can be specified that will be set in the link with the mv_value parameter. It takes an argument of
var=value, just as setting a normal variable in an Interchange profile. Actually mv_value is a misnomer,
it will almost never be used in a form where variable values can be set. Always specify it in a one—click
search with va=var=value. Example:

[page href=scan
arg="se=Renaissance
se=Impressionists
va=category_name=Renaissance and Impressionist Paintings
os=yes"|Renaissance and Impressionist Paintings[/page]

Display the appropriate category on the search results page with [value category name].

48.9. In-Page Searches

To specify a search inside a page with the [search-region parameters*] tag. The parameters are
the same as the one—click search, and the output is always a newline—separated list of the return objects, b
default, a series of item codes.

The [loop ...] tag directly accepts a search parameter. To search for all products in the categories
"Americana" and "Contemporary," do:

[loop search="
se=Americana
se=Contemporary
os=yes
sf=category9

Artist: [loop—field artist]

Title: [loop—field title]<P>
[/loop]

The advantage of the in—page search is that searches can be embedded within searches, and there can be
straight unchanging links from static HTML pages.

To place an in—page search with the full range of display in a normal results page, use the
[search-region] tag the same as above, except that [search-list], [more-list], and [more]
tags can be placed within it. Use them to display and format the results, including paging. For example:

[search-region more=1
search="
se=Americana
sf=category
ml=2
]
[more-list][more][/more-list]
[search-list]
[page [item—code]]

48.8. Setting Display Options with mv_value 275

Interchange Documentation (Full)

[item—field title]<A>, by [item—field artist]
[/search-list]
[no—match]

Sorry, no matches for [value mv_searchspec].
[/no—match]
[/search-region]

Note: The [item—code] above does not need to be quoted because it is replaced before the [page ...] tag is
interpolated. If building large lists, this is worth doing because unquoted tags are twice as fast to parse.

To use the same page for search paging, make sure to set the sp=page parameter.

48.10. Search Profiles

An unlimited number of search profiles can be predefined that reside in a file or files. To use this, make up &
series of lines like:

mv_search_field=artist
mv_search_field=category
mv_orsearch=yes

These correspond to the Interchange search variables that can be set on a form. Set it right on the page tha
contains the search.

[set artist_profile]
mv_search_field=artist
mv_search_field=category
mv_orsearch=yes

[/set]

This is the same:

[set artist_profile]
sf=artist
sf=category
os=yes

[/set]

Then, in the search form, set a variable with the name of the profile:
<INPUT TYPE=hidden NAME=mv_profile VALUE=artist_profile>
In a one—click search, use the mp modifier:
[page scan se=Leonardo/mp=artist_profile]A left—handed artist[/page]
They can also be placed in a file. Define the file name in the SearchProfile directive. The catalog must
be reconfigured for Interchange to read it. The profile is named by placing a name following a __ NAME__
pragma:

__NAME___title_search

The _ NAME__ must begin the line, and be followed by whitespace and the name.

48.10. Search Profiles 276

Interchange Documentation (Full)

The special variable mv_last stops interpretation of search variables. The following variables are always
interpreted:

mv_dict_look
mv_searchspec
mv_range_look
mv_range_min
mv_range_max

Other than that, if mv_last is set in a search profile, and there are other variables on the search form, they
will not be interpreted.

To place multiple search profiles in the same file, separate them with __ END___, which must be on a line by
itself.

48.11. Search Reference

The supplied simple/srchform.html and simple/results.html pages show example search

forms. Modify them to present the search in any way desired. Be careful to use the proper variable names fc
passing to Interchange. It is also necessary to copy the hidden variables as—is. They are required to interpre
the request as a search.

Note: The following definitions frequently refer to field name and column and column number. All are the
references to the columns of a searched text file as separated by delimiter characters.

The field names can be specified in several ways.

ProductFiles

If the file to be searched is left empty in the search form or definition (it is set with mv_search_file

(fi)), the text files associated with the products databases will be searched, and field names are already
available as named in the first line of the file(s). This is defined to be products.txt in the Interchange
demo catalogs.

Be careful if using SQL! If the database is changed and not exported with [tag export

products][/tag], searches will not be successful.

Other database files

If the file or files to be searched are ASCII delimited files, and have field names specified on the first line of
the file, Interchange will read the first line (of the first file) and determine the field names.

Other files

If the file or files to be searched are ASCII delimited files, but don't have field names specified on the first
line of the file, set the variable mv_field_names to a comma-separated list of field names as they will be
referenced.

Fields can also always be specified by an integer column number, with O as the first column.

mv_all_chars

48.11. Search Reference 277

Interchange Documentation (Full)

Scan abbreviation: ac=[1]0]. Set this if searching is anticipated for lots of punctuation characters that might |
special characters for Perl. The characters ()[]\$" are included.

mv_base_directory

Scan abbreviation: bd=/directory/name. In the text search, set to the directory from which to base file
searches. File names without leading / characters will be based from there. In the Glimpse search, passed t
Glimpse with the —H option, and Glimpse will look for its indices there. Default is ProductDir.

If an absolute path directory is used, for security enable it in the users session with:

[set /directory/name]l[/set]
This prevents users from setting an arbitrary value and viewing arbitrary files.
mv_begin_string

If this is set, the string will only match if it is at the beginning of a field. The handling is a bit different for the
default AND search compared to the OR search. With OR searches all words are searched for from the
beginning of the field, with AND searches all are.

This is a multiple parameter. If mv_coordinate is in force, it should be set as many times as necessary to
match the field/searchstring combination. If set only once, it applies to all fields. If set more than once but nc
as many times as the fields, it will default to off.

mv_case

If this item is set to No, the search will return items without regard to upper or lower case. This is the default
Set to Yes if case should be matched. Implement with a checkbox <INPUT TYPE=CHECKBOX> field.

If stacked to match the mv_search_field and mv_searchspec variables, and mv_coordinate is

set, it will operate only for the corresponding field.

mv_coordinate

If this item is set to Yes, and the number of search fields equals the number of search specs, the
search will return only items that match field to spec. (The search specifications are set by stacked
mv_searchspec and mv_search_field variables.)

Case sensitivity, substring matching, and negation all work on a field-by field basis according to the
following:

If only one instance of the option is set, it will affect all fields.

If the number of instances of the option is greater than or equal to the number of search specs, all will be us
independently. Trailing instances will be ignored.

If more than one instance of the options are set, but fewer than the number of search specifications, the def
setting will be used for the trailing unset options.

If a search specification is blank, it will be removed and all case—sensitivity/negation/substring options will b
adjusted accordingly.

mv_dict_end

If the string at the beginning of a line lexically exceeds this value, matching will stop. Ignored without
mv_dict_look.

48.11. Search Reference 278

Interchange Documentation (Full)

mv_dict_fold

Make dictionary matching case—insensitive. Ignored without mv_dict_look.

Note: This is the reverse sense from mv_case.

mv_dict_limit

Automatically set the limiting string (mv_dict_end) to be one character greater than the mv_dict_look
variable, at the character position specified. A value of 1, for instance, will set the limiting string to "fprsythe"
if the value of mv_dict_look is "forsythe". A useful value is —1, which will increment the last character
(setting the mv_dict_end to "forsythf" in our example). This prevents having to scan the whole file once a
unique match is found.

Note: The order of this and the mv_dict_end variable is significant. Each will overwrite the other.

If this is set to a non—numeric value, an automatic mode is entered which looks for a dictionary—indexed file
that corresponds to the file name plus .field, where field is whatever mv_dict_limit is set to. The

actual value of mv_dict_limit is set to —1. If the file does not exist, the original file is silently used. Also, the
value of mv_return_fields is set to 1 to correspond to the location of the key in the auto—indexed file.

To illustrate:

<INPUT TYPE=hidden NAME=mv_dict_limit VALUE=category>
<INPUT TYPE=hidden NAME=mv_search_file VALUE="products.txt">

is equal to:

<INPUT TYPE=hidden NAME=mv_dict_limit VALUE="-1">
<INPUT TYPE=hidden NAME=mv_search_file VALUE="products.txt.category">
<INPUT TYPE=hidden NAME=mv_return_fields VALUE="1">

The real utility would be in a form construct like

Search for

<SELECT NAME=mv_dict_limit>

<OPTION> author

<OPTION> title

</SELECT> beginning with <INPUT NAME=mv_dictlook>

which would allow automatic binary search file selection.

Combined with the INDEX attribute to the Database directive, this allows fast binary search qualification
combined with regular mv_searchspec text searches.

mv_dict_look

The string at which to begin matching at in a dictionary—based search. If not set, the mv_dict_end,
mv_dict_fold, and mv_dict_case variables will be ignored. May be set in a search profile based on

other form variables.

mv_dict_order

48.11. Search Reference 279

Interchange Documentation (Full)

Make dictionary matching follow dictionary order, where only word characters and whitespace matter.
Ignored without mv_dict_look.

mv_doit

This must be set to search to make this a search page.

mv_exact_match

Normally Interchange searches match words, as opposed to sentences. This behavior can be overridden wi
mv_exact_match, which when set will place quotes around any value in mv_searchspec or

mv_dict_look.

mv_field_names

Deprecated in favor of in-list sorting. Defines the field names for the file being searched. This guarantees th
they will be available, and prevents a disk access if using named fields on a search file (that is not the prodt

database ASCII source, where field names are already known). This must be exactly correct, or it will result
anomalous search operation. Usually passed in a hidden field or search profile as a comma-separated list.

Note: Use this on the product database only if planning on both pre—sorting with mv_sort_field and then
post-sorting with [sort]field:opt[/sort].

mv_first_match

Normally Interchange will return the first page of a search. If this variable is set, it will start the search return
at the match specified, even if there is only one page. If set to a value greater than the number of matches, |
will act as if no matches were found.

mv_head_skip

Normally Interchange searches all lines of an index/product file but the first. Set this to the number of lines t
skip at the beginning of the index. Default is 1 for the text search, which skips the header line in the product
file. Default is O for a Glimpse search.

mv_index_delim

Sets the delimiter for counting fields in a search index. The default is TAB.

mv_matchlimit

The page size for matches that are returned. If more matches than mv_matchlimit are found, the search pac
mechanism will be employed if the proper [more-list] is present. Can be implemented as a scrolling list
(INPUT TYPE=SELECT) or radiobox (INPUT TYPE=RADIO) field.

mv_max_matches

The maximum number of records that will be returned in a search. Default is 2000. This only applies to
Glimpse. Use mv_matchlimit to set the search page size.

48.11. Search Reference 280

Interchange Documentation (Full)

mv_min_string

Sets the minimum size of a search string for a search operation. Default is 4 for the Glimpse search, and 1 f
the text search.

mv_negate

Specifies that records NOT matching the search criteria will be returned. Default is no. It is not operative for
the Glimpse search.

If stacked to match the mv_search_field and mv_searchspec variables, and mv_coordinate is

set, it will operate only for the corresponding field.

mv_orsearch

If this item is set to Yes, the search will return items matching any of the words in searchspec. The
default is No.

mv_ profile

Selects one of the pre-defined search specifications set by the SearchProfile directive. If the special
variable within that file, mv_last, is defined, it will prevent the scanning of the form input for further search
modifications. The values of mv_searchspec and mv_dict_look are always scanned, so specify this to

do the equivalent of setting multiple checkboxes or radioboxes with one click, while still reading the search
input text.

mv_range_alpha

Sets the type of match, numeric or alphanumeric, for the range search in its corresponding range field. The
search will return true, assuming it is greater than the mv_range_min specification, if the field searched is
less than or equal to mv_range_mayx, in an alphanumeric sense.

mv_range_look

This sets a field to scan for a range of numbers. It must be accompanied with corresponding mv_range_min
and mv_range_max variables. It can be specified with either a field name or a column number.

mv_range_max
Sets the high bound for the range search in its corresponding range field. The search will return true, assum
it is greater than the mv_range_min specification, if the field searched is less than or equal to
mv_range_max. To set the bound at infinity, or whatever your integer limit is, set mv_range_min to 0.
mv_range_min

Sets the low bound for the range search in its corresponding range field. The search will return true, assumi
it is less than the mv_range_max specification, if the field searched is less than or equal to

mv_range_min.

mv_record_delim

48.11. Search Reference 281

Interchange Documentation (Full)

Sets the delimiter for counting records in a search index. The default is newline, which works for the product
and most line-based index files.

mv_return_fields

The field(s) that should be returned by the match, specified either by field name or by column number,
separated by commas. Do not list the same field more than once per search. Specify 0 as the first field to be
returned if searching the products database, since that is the key for accessing database fields.

As with SQL queries, you can use the *' shortcut to return all fields. For example:
[loop search="fi=nation/ra=yes/rf=*"]
when used with a hypothetical 'nation’ table would be equivalent to:
[loop search="
fi=nation
ra=yes

rf=code,sorder,region,name,tax

]
as well as:

[loop search="fi=nation/ra=yes/rf=0,1,2,3,4"]
and:

[query sqgl="select * from nation"][/query]

However, you probably rarely need to use every single field in a row. For maximum maintainability and
execution speed the best practice is to list by name only the fields you want returned.

mv_return_spec

Returns the string specified as the search (i.e., the value of mv_searchspec) as the one and only match.
Typically used in a SKU/part number search.

mv_search_field

The field(s) to be searched, specified either by column name or by column number.

If the number of instances matches the number of fields specified in the mv_searchspec variable and
mv_coordinate is set to true, each search field (in order specified on the form) will be matched with each
search spec (again in that order).

mv_search_file

In the text search, set this variable to the file(s) to be scanned for a match. The default, if not set, is to scan
default ProductFiles (i.e., products.txt). If set multiple times in a form (for a text search), will cause a search
all the files. One file name per instance.
In the Glimpse search, follows the Glimpse wildcard—based file name matching scheme. Use with caution al
a liberal dose of the Glimpse man page.

48.11. Search Reference 282

Interchange Documentation (Full)

mv_search_match_count
Set by the search to indicate the total number of matches found.
mv_search_page

The Interchange—style name of the page that should display the search results. This overrides the default ve
of search.

mv_searchspec

The actual search string that is typed in by the customer. It is a text INPUT TYPE=TEXT field, or can be put
in a select (drop—down) list to enable category searches. If multiple instances are found, they will be
concatenated just as if multiple words had been placed in a text field.

The user can place quotes around words to specify that they match as a string. To enable this by default, us
the mv_exact_match variable.

If mv_dict_look has a value, and mv_searchspec does not, then mv_searchspec will be set to the

value of mv_dict_look.

If the number of instances matches the number of fields specified in the mv_search_field variable and
mv_coordinate is set to true, each search field (in order specified on the form) will be matched with each
search spec (again in that order).

mv_searchtype

If set to Glimpse, selects the Glimpse search (if Glimpse is defined).

If set to db, iterates over every row of the database (not the associated text source file).

If set to sql, same as db.

If set to text, selects the text—based search.

When using st=db, returned keys may be affected by TableRestrict. See CATALOG.CFG.

Defaults to text if Glimpse is not defined; defaults to Glimpse if it is defined. This can allow use of both
search types if that is desirable. For instance, searching for very common strings is better done by the
text—based search. An example might be searching for categories of items instead of individual items.

mv_sort_field

The file field(s) the search is to be sorted on, specified in one of two ways. If the file(s) to be searched have
header line (the first line) that contains delimiter—separated field names, it can be specified by field name. It
can also be specified by column number (the code or key is specified with a value of 0, for both types). Thes
can be stacked if coming from a form or placed in a single specification separated by commas.

Note: If specifying a sort for the product database, mv_field_names must be specified if doing a
fieldname—-addressed post-sort.

mv_sort_option

The way that each field should be sorted. The flags are r, n, and f, reverse, numeric, and case-insensitive
respectively. These can be stacked if coming from a form or placed in a single specification separated by
commas. The stacked options will be applied to the sort fields as they are defined, presuming those are
stacked.

48.11. Search Reference 283

Interchange Documentation (Full)

mv_spelling_errors

The number of spelling errors that will be tolerated. Ignored unless using Glimpse. For a large table, limit thi
to two.

mv_substring_match

If mv_substring_match is set to Yes, matches on substrings as well as whole words. Typically set this
for dictionary—based searches.

If stacked to match the mv_search_field and mv_searchspec variables and mv_coordinate is set,

it will operate only for the corresponding field.

mv_unique

If set to a true value, causes the sort to return only unique results. This operates on whatever the search ret
is, as defined by mv_return_fields.

mv_value

This is normally only used in the one—click search (va=var=value). It allows setting of a session variable
based on the clicked link, which makes for easy definition of headers and other display choices. (If had
trouble using mv_searchspec for this before, this is what is needed.)

48.12. The Results Page

Once a search has been completed, there needs to be a way of presenting the output. By default, the
SpecialPage search is used. It is set to results in the distribution demo, but any number of search
pages can be specified by passing the value in the search form specified in the variable mv_search_page.

On the search page, some special Interchange tags are used to format the otherwise standard HTML. Each
the iterative tags is applied to every code returned from the search. This is normally the product code, but
could be a key to any of the arbitrary databases. The value placed by the [item—code] tag is set to the first
field returned from the search.

The basic structure looks like this:

[search-region]
[search-list]

your iterating code, once for each match
[/search-list]
[no—match]

Text / tags to be output if no matches found (optional but recommended)
[/no—match]
[more-list]

More / paging area (optional)
[/more-list]
[/search-region]

Tip for catalogs upgraded from Minivend 3: A [search-list][/search-list] must always be
surrounded by a [search-region][/search-region] pair. This is a change from Minivend 3.

[search-list]

48.12. The Results Page 284

Interchange Documentation (Full)

Starts the representation of a search list. Interchange tags can be embedded in the search list, yielding a tal
or formatted list of items with part number, description, price, and hyperlinks to order or go to its catalog

page.
The example tags shown have an item- prefix, which is the default. Set any prefix desired with the prefix
parameter to [search-region]:

[search-region prefix=my]
[search-list]

SKU: [my-code]

Title: [my—data products title]
[/search-list]
[/search-region]

The standard set of Interchange iterative ITL tags are available. They are interpolated in this order:

[item—-alternate N] true [else] false [/else] [/item—alternate]
[if-item—param named_field] true [else] false [/else] [/if-item—param]
[item-param named_field]
[if-item—pos N] true [else] false [/else] [/if-item—pos]
[item—pos N]
[if-item—field products_field] true [else] false [/else] [/if-item—field]
[item—field products_column]
[item—increment]
[item—accessories]
[item—code]
[item—description]
[if-item—data table column] true [else] false [/else] [/if-item—data]
[item—data table column]
[item—price N* noformat=1*]
[item—calc] [/item—calc]
[item—-change marker]
[condition]variable text[/condition]
true
[else] false [/else]
[/item-change marker]
[item—last] condition [/item—last]
[item—next] condition [/item—next]

Note: those that reference the shopping cart do not apply, i.e., [item—quantity], [item—-modifier ...] and friends

[/search-list]
Ends the search list.
[no—match]

Starts the region of the search results page that should be returned if there is no match (and no error) for the
search. If this is not on the page, the special page nomatch will be displayed instead.

[/no—-match]
Ends the no match region.

[sort database:field:option* database:field:option*]

48.12. The Results Page 285

Interchange Documentation (Full)

Sorts the search list return based on database fields. If no options are supplied, sorts according to the returr
code. See SORTING.
This is slow, and it is far better to pre—sort the return in the search specification.

[item—-change marker]

Active only within [search-list][/search-list].

Along with the companion [/item—change marker], surrounds a region which should only be output

when a field (or other repeating value) changes its value. This allows indented lists similar to database repo
to be easily formatted. The repeating value must be a tag interpolated in the search process, such as
[item—field field] or [item—data database field].

Of course, this will only work as expected when the search results are properly sorted.

The marker field is mandatory, and is also arbitrary, meaning that any marker can be selected as long as it
matches the marker associated with [/item—-change marker]. The value to be tested is contained within

a [condition]value[/condition] tag pair. The [item—change marker] tag also processes an

[else] [/else] pair for output when the value does not change. The tags may be nested as long as the
markers are different.

The following is a simple example for a search list that has a field category and subcategory

associated with each item:

<TABLE>
<TR><TH>Category</TH><TH>Subcategory</TH><TH>Product</TH></TR>
[search-list]
<TR>
<TD>
[item—change cat]

[condition][item—field category][/condition]

[item—field category]
[else]

[felse]
[/item-change cat]
</TD>
<TD>
[item—change subcat]

[condition][item—field subcategory][/condition]

[item—field subcategory]
[else]

[felse]
[/item—-change subcat]
</TD>
<TD> [item—field name] </TD>
[/search-list]
</TABLE>

The above should output a table that only shows the category and subcategory once, while showing the nar
for every product. (The will prevent blanked table cells if using a border.)

[/item—change marker]

Companion to [item—change marker].

48.12. The Results Page 286

Interchange Documentation (Full)

[matches]

Replaced with the range of match numbers displayed by the search page. Looks something like "1-50". Ma
sure to insert this item between a [more-list] and [/more-list] element pair.

[match—-count]

Replaced with the total number of matches. This tag works even on [query] searches where [value
mv_search_match_count] isn't set unless the query is applied to a non—-SQL database. Make sure to
insert this item between a [more-list] and [/more-list] element pair.

[more-list next_img* prev_img* page_img* border* border_current*]

Starts the section of the search page which is only displayed if there are more matches than specified in
mv_matchlimit. If there are less matches than the number in mv_matchlimit, all text/html between the
[more_list] and [/more_list] elements is stripped.

Use in conjunction with the [more] element to place pointers to additional pages of matches.

If the optional arguments next_img, prev_img, and/or page_img are present, they represent image files
that will be inserted instead of the standard 'Next,' 'Previous,' and page number. If prev_img is none, then
no previous link will be output. If page_img is none, then no links to pages of matches will be output.
These are URLSs, are substituted for with ImageDir and friends, and will be encased in IMG tags. Lastly,
border is the border number to put.

In addition, if page_img is used, it will be passed an argument of the digit that is to be represented. This
would allow an image generator program to be used, generating page numbers on the fly. The border and
border_selected values are integers indicating the border that should be put around images in the
page_img selection. The <border_selected> is used for the current page if set.

\Examples:

[more-list next.gif prev.gif page_num.cgi 3] causes anchors of:

Previous
Pagel
Page 2
Next

[more-list next.gif prev.gif page_num.cgi] causes anchors of:

Previous

Page1l
Page 2
Next

[more-list next.gif prev.gif 0 0] causes anchors of:

Previous
Page1l
Page 2
Next

To set custom text for the "Previous" and "Next" usually used, define the next_img, prev_img, and
page_img with [next—anchor][/next—anchor], [prev—anchor][/prev—anchor] and
[page—anchor][/page—anchor]. The string $PAGES$ will be replaced with the page number in the
latter. The same example:

48.12. The Results Page 287

Interchange Documentation (Full)

[more-list 0 0 0]

[next-anchor] Forward [/next—anchor]
[prev—anchor] Back [/prev—anchor]
[page—anchor] Page $PAGES$ [/page—anchor]
[more]

[/more-list]

will display Forward Page 1 Page 2 Back for 2 pages.

As shown, pass a 0 for the arguments of each to tell Interchange to look for the assignments.

If have many pages of matches and don't wish to have all displayed at once, set
[decade—next][/decade—next] and [decade—prev][/decade—prevV]. If set them empty, a
search with 31 pages will display pages 21-30 like:

Previous 123456 7 89 10 [more>>] Next

and pages 11-20 like:

Previous [<<more] 11 12 13 14 15 16 17 18 19 20 [more>>] Next

If set to [decade—next](higher)[/decade—next] and
[decade—prev](lower)[/decade—prev], the following will be displayed:

Previous (lower) 11 12 13 14 15 16 17 18 19 20 (higher) Next
Of course, image—-based anchors can be used as well.
[/more-list]
Companion to [more-list].
[more]

Inserts a series of hyperlinks that will call up the next matches in a series. They look like this:

Previous 1 2 345 6 Next

The current page will not be a hyperlink. Every time the new link is pressed, the list is re—built to correspond

to the current page. If there is no Next or Previous page, that link will not be shown.

See the search.html file for examples. Make sure to insert this item between a [more-list] and

[fmore-list] element pair.

[process—search]

Outputs the complete URL for a search, including Interchange session tags. Used as the ACTION value for

the search form. This is exactly the same as [area search].

48.12. The Results Page

288

49. Sorting

Interchange has standard sorting options for sorting the search lists, loop lists, and item lists based on the
contents of database fields. In addition, it adds list slices for limiting the displayed entries based on a start
value and chunk size (or start and end value, from which a chunk size is determined). All accept a standard
format sort tag which must be directly after the list call:

[loop 4 32 1]
[sort =2 +2]
[loop—code]
[/loop]
[search-list]
[sort products:category:f]
[item—price] [item—description]

[/search-list]
[item-—list]
[sort products:price:rn]
[item—price] [item—code]

[/item-list]
[loop search="ra=yes"]
[sort products:category products:title]

[loop—field category] [loop—field title]

[/loop]

All sort situations, [search list], [loop list], [tag each table], and [item-list], take
options of the form:

[sort database:field:option* -n +n =n-n ...]
database

The Interchange database identifier. This must be supplied and should normally be 'products' if using the
default name for the database.

field

The field (column) of the database to be sorted on.
option

None, any, or combinations of the options:

f case-insensitive sort (folded) (mutually exclusive of n)
n numeric order (mutually exclusive of f)
r reverse sort

-n
The starting point of the list to be displayed, beginning at 1 for the first entry.

+n

49. Sorting 289

Interchange Documentation (Full)

The number of entries to display in this list segment.
=n-n

The starting and ending point of the list display. This is an alternative to —n and +n. They should be specifiec
in only one form. If both are specified, the last one will take effect.

Don't really put ... in. This means that many sort levels are specified. Lots of sort levels with large
databases will be quite slow.

Multiple levels of sort are supported, and database boundaries on different sort levels can be crossed.
Cross—database sorts on the same level are not supported. If using multiple product databases, they must k
sorted with embedded Perl. This is actually a feature in some cases, all items in a used database can be
displayed before or after new ones in products.

Examples, all based on the simple demo:

Loop list

[loop 00—-0011 19-202 34-101 99-102]
[sort products:title]

[loop—code] [loop—field title]

[/loop]

Will display:

34-101 Family Portrait
00-0011 Mona Lisa

19-202 Radioactive Cats
99-102 The Art Store T-Shirt

\Alternatively:

[loop 00—-0011 19-202 34-101 99-102]
[sort products:title -3 +2]

[loop—code] [loop—field title]

[/loop]

\Displays:

19-202 Radioactive Cats
99-102 The Art Store T-Shirt

The tag [sort products:title =3-4] is equivalent to the above.
Search list

A search of all products (i.e., http://yoursystem.com/cgi—bin/simple/scan/ra=yes):

[search-list]
[sort products:artist products:title:rf]
[item—field artist] [item—field title]

49. Sorting 290

Interchange Documentation (Full)

[/search-list]
will display:

Gilded Frame

Grant Wood American Gothic

Jean Langan Family Portrait
Leonardo Da Vinci Mona Lisa
Salvador Dali Persistence of Memory
Sandy Skoglund Radioactive Cats
The Art Store The Art Store T-Shirt
Vincent Van Gogh The Starry Night
Vincent Van Gogh Sunflowers

Note the reversed order of the title for Van Gogh and the presence of the accessory item Gilded Frame at tf
front of the list. It has no artist field and, as such, sorts first).
Adding a slice option:

[search-list]

[sort products:artist products:title:rf =6-10]
[item—field artist] [item—field title]

[/search-list]

will display:

Sandy Skoglund Radioactive Cats
The Art Store The Art Store T-Shirt
Vincent Van Gogh The Starry Night
Vincent Van Gogh Sunflowers

If the end value/chunk size exceeds the size of the list, only the elements that exist will be displayed, startin
from the start value.

Shopping cart

[item-—list]

[sort products:price:rn]
[item—price] [item—code]

[/item-list]

will display the items in the shopping cart sorted on their price, with the most expensive shown first. NOTE:
This is based on the database field and doesn't take quantity price breaks or discounts into effect. Modifier
values or quantities cannot be sorted.

Complete database contents

[tag each products]
[sort products:category products:title]
[loop—field category] [loop—field title]

[tag]

A two level sort that will sort products based first on their category, then on their title within the category.

Note that large lists may take some time to sort. If a product database contains many thousands of items, u:
the [tag each products] sort is not recommended unless planning on caching or statically building

49. Sorting 291

Interchange Documentation (Full)

pages.

49. Sorting 292

50. Shipping

Interchange has a powerful custom shipping facility that performs UPS and other shipper lookups, as well a:
flexible rule—based facility for figuring cost by other methods.

50.1. Shipping Cost Database

The shipping cost database (located in ProductDir/shipping.asc) is a tab—separated ASCI| file with six fields
code, text description, criteria (quantity or weight, for example), minimum number, maximum number, and
cost. None of the fields are case—sensitive.

To define the shipping database in a catalog configuration file, set the Variable MV_SHIPPING to what
would be its contents.

To set the file to be something other than shipping.asc in the products directory, set the Special
directive:

Special shipping.asc /home/user/somewhere/shipping_defs

There are two styles of setting which can be mixed in the same file. The first is line—based and expects six c
more TAB-separated fields. They would look like:

default No shipping weight 0 99999999 0

upsg UPS Ground weight 0 O e Nothing to ship!
upsg UPS Ground weight 0 150 u Ground [default zip 98366] 3.00
upsg UPS Ground weight 150 999999 e @ @TOTAL@@ lbs too heavy for UPS

The second is a freeform method with a mode: Description text introducing the mode line. The
special encoding is called out by indented parameters. The below is identical to the above:

upsg: UPS Ground
criteria weight
min 0
max 0
cost e Nothing to ship!

min 0

max 150

cost u

table 2ndDayAir
geo zip
default_geo 98366
adder 3

min 150

max 999999
cost e @@TOTAL@@ Ibs too heavy for UPS

The second format has several advantages. Multiple lines can be spanned with the <<HERE document forn
like so:

upsg: UPS Ground
criteria <<EOF

50. Shipping 293

Interchange Documentation (Full)

[perl]
return 'weight' if $Values—>{country} eq 'US’;
return 'weight' if ! $Values—>{country};
Return blank, don't want UPS
return ",

[/perl]
EOF

The definable fields are, in order, for the tab—separated format:

MODE

The unique identifier for that shipping method. It may be repeated as many times as needed.
DESCRIPTION

Text to describe the method (can be accessed on a page with the [shipping—description] element).
CRITERIA

Whether shipping is based on weight, quantity, price, etc. Valid Interchange tags can be placed in the field t
do a dynamic lookup. If a number is returned, that is used as the accumulated criteria. That is, the total of
weight, quantity, or price as applied to all items in the shopping cart.

See Criteria Determination below.

MINIMUM

The low bound of quantity/weight/criteria this entry applies to.

MAXIMUM

The high bound of quantity/weight/criteria this entry applies to. The first found entry is used in case of ties.

COST

The method of developing cost. It can be a number which will be used directly as the shipping cost, or a
function, determined by a single character at the beginning of the field:

f Formula (ITL tags OK, evaluated as Perl)

X Multiplied by a number

[uA-Z] UPS-style lookup

m Interchange chained cost lookup (all items summed together)
i Interchange chained cost lookup (items summed individually)

NEXT

The next field supplies an alternative shipping mode to substitute if the cost of the current one is zero.
ZONE

The UPS zone that is being defined.

QUERY

50. Shipping 294

Interchange Documentation (Full)

Interchange tags which will return a SQL query to select lines matching this specification. The current mode
is replaced with this selection. If there is a query parameter of ?, it will be replaced with the mode name.

QUAL
The geographic qualification (if any) for this mode.
PERL

Perl code that is read and determines the criterion, not the cost. Use the cost option with "f* as the prelim to
supply Perl code to determine cost.

TOTAL
Set to the accumulated criterion before passing to Perl.
OPT

Used to maintain UPS and freeform options. Normally these are set by separate lines in the shipping
definition.

50.2. Criteria Determination

The criteria field varies according to whether it is the first field in the shipping file exactly matching the mode
identifier. In that case, it is called the main criterion. If it is in subsidiary shipping lines matching the mode
(with optional appended digits), it is called a qualifying criterion. The difference is that the main criterion
returns the basis for the calculation (i.e., weight or quantity), while the qualifying criterion determines
whether the individual line may match the conditions.

The return must be one of:

guantity

The literal value quantity as the main criterion will simply count the number of items in the shopping cart anc
return it as the accumulated criteria. If using a database table field named quantity, use the

table::field notation.

o <field name> or <table>::<field name>

A valid database field (column) name as main criterion will cause the number of items in the shopping cart t
be multiplied by the value of the field for each item to obtain the accumulated criteria. If the table is not
supplied, defaults to the first ProductFiles table.

on.nn

Where n.nn is any number, it will be directly used as the accumulated criteria. This can be effectively

returned from a Perl subroutine or Interchange [calc][item-list] ... [/item-list][/calc]
to create custom shipping routines.

50.2. Criteria Determination 295

Interchange Documentation (Full)

IMPORTANT NOTE: The above only applies to the first field that matches the shipping mode exactly.
Following criteria fields contain qualifier matching strings.

50.3. Shipping Calculation Modes

There are eight ways that shipping cost may be calculated. The method used depends on the first character
the cost field in the shipping database.

N.NN (digits)
If the first character is a digit, a number is assumed and read directly as the shipping cost.
e

If the first character is an e, a cost of zero is returned and an error message is placed in the session value
ship_message (i.e., [data session ship_message] or $Session—>{ship_message}).

f

If the character f is the first, Interchange will first interpret the text for any Interchange tags and then interpre
the result as a formula. It is read as Perl code; the entire set of Interchange objects may be referenced with
code.

[

Specifies a chained shipping lookup which will be applied to each item in the shopping cart.

m

Specifies a chained shipping lookup which will be applied to the entire shopping cart.

u

Calls the UPS-style lookup. Can pre—define as many as desired. Though if want to do the hundreds availab
it is best done on-the—fly.

X

If an x is first, a number is expected and is applied as a fixed multiplier for the accumulated criterion
(@@TOTAL@@).

A-Z

If the first character is a capital letter, calls one of the 26 secondary UPS-style lookup zones. (Deprecated
now that zones can be named directly).

50.4. How Shipping is Calculated

1. The base code is selected by reading the value of mv_shipmode in the user session. If it has not

50.3. Shipping Calculation Modes 296

Interchange Documentation (Full)

been explicitly set, either by means of the DefaultShipping directive or by setting the variable on a
form (or in an order profile), it will be default.

The mv_shipmode must be in the character class [A-Za-z0-9_]. If there are spaces, commas, or nu
in the value, they will be read as multiple shipping modes.

. The modes are selected from the d

The criterion field is found. If it is quantity, it is the total quantity of items on the order form. If it is
any other name, the criterion is calculated by multiplying the return value from the product database
field for each item in the shopping cart, multiplied by its quantity. If the lookup fails due to the
column or row not existing, a zero cost will be returned and an error is sent to the catalog error log. I
a number is returned from an Interchange tag, that number is used directly.

Entries in the shipping database that begin with the same string as the shipping mode are examined
none is found, a zero cost is returned and an error is sent to the catalog error log.

Note: The same mode name may be used for all lines in the same group, but the first one will contain the m:
criteria.

. The value of the accumulated criteria is examined. If it falls within the minimum and maximum, the

cost is applied.

.If the cost is fixed, it is simply added.
.If the cost field begins with an x, the cost is multiplied by the accumulated criterion, i.e., price,

weight, etc.

.If the cost field begins with f, the formula following is applied. Use @@TOTAL@ @ as the value of

the accumulated criterion.

5. If the cost field begins with u or a single letter from A-Z, a UPS-style lookup is done.
6.
7.

If the cost field begins with s, a Perl subroutine call is made.

If the cost field begins with e, zero cost is returned and an error placed in the session ship_message
field, available as [data session ship_message].

Here is an example shipping file using all of the methods of determining shipping cost.

Note: The columns are lined up for reading convenience. The actual entries should have one tab between

fields.

global Option n/a 0 0 g PriceDivide

rpsg RPS quantity 0 0 R RPS products/rps.csv

rpsg RPS quantity 05 7.00

rpsg RPS quantity 6 10 10.00

rpsg RPS quantity 11 150 x.95

usps US Post price 00 O

usps US Post price 0 50 f7+(1*@@TOTAL@@ /10)

usps US Post price 50 100 f12+(.90* @@TOTAL@@ / 10)
usps US Post price 100 99999 f @@TOTAL@@ * .05

upsg UPS weight [value state] 0 O e Nothing to ship.

upsg UPS AKHI 0 150 u upsg [default zip 980] 12.00 round
upsg UPS 0 150 u Ground [default zip 980] 2.00 round
upsg UPS 1509999 e @@TOTAL@@ Ib too heavy for UPS
upsca UPS/CA weight 0 0 ¢ CUPS_Canada products/can.csv
upsca UPS/CA weight -1 -1 o PriceDivide=0

upsca UPS/CA weight 0 150 C upsca [default zip A7G] 5.00

50.3. Shipping Calculation Modes 297

Interchange Documentation (Full)

upsca UPS/CA weight 150 99999 e @@TOTAL@@ Ib too heavy for UPS
global

This is a global option setting, called out by the g at the beginning. PriceDivide tells the shipping routines to
multiply all shipping settings by the PriceDivide factor, except those explicitly set differently with the o
individual modifier. This allows currency conversion. (Currently the only option is PriceDivide.)

rpsg

If the user selected RPS, (code rpsg) and the quantity on the order was 3, the cost of 7.00 from the second
line would be applied. If the quantity were 7, the next entry from the third rpsg line would be selected for a
cost of 10.00. If the quantity were 15, the last rpsg would be selected and the quantity of 15 multiplied by
0.95, for a total cost of 14.25.

usps

The next mode, usps, is a more complicated formula using price as the criteria. If the total price of all items
in the shopping cart (same as [subtotal] without quantity price breaks in place) is from 1 to 50, the cost

will be 7.00 plus 10 percent of the order. If the total is from 50.01 to 100, the cost will be 12.00 plus 9 percer
of the order total. If the cost is 100.01 or greater, 5 percent of the order total will be used as the shipping cos

upsg

The next, upsg, is a special case. It specifies a UPS lookup based on the store's UPS zone and two require
values (and two optional arguments):

1. Weight

2. The zip/postal code of the recipient of which only
the first three digits are used.

3. A fixed amount to add to the cost found in the UPS
tables (use 0 as a placeholder if specifying roundup)

4. If set to 'round," will round the cost up to the next
integer monetary unit.

If the cost returned is zero, the reason will be placed as an error message in the session variable ship_mes:
(available as [data session ship_message]).

UPS weights are always rounded up if any fraction is present.

The routines use standard UPS lookup tables. First, the UPS Zone file must be present. That is a standard |
document specific to the retailer's area that must be obtained from UPS. It is entered into and made availab
to Interchange in TAB—delimited format. (As of March 1997, use the standard .csv file distributed by UPS or
their Web site at www.ups.com.) Specify it with the UpsZoneFile directive. It is usually named something
like NNN.csv, where NNN is the first three digits of the originating zip code. If placed in the products
directory, the directive would look like:

UPSZoneFile products/450.csv

Second, obtain the cost tables from UPS (again, get them from www.ups.com) and place them into an
Interchange database. That database, its identifier specified with the first argument (Ground in the example)
the cost specification, is consulted to determine the UPS cost for that weight and rate schedule.

In the example below, use a database specification like:

Database Ground Ground.csv CSV

50.3. Shipping Calculation Modes 298

Interchange Documentation (Full)

A simple shipping cost qualification can be appended to a UPS lookup. If any additional parameters are
present after the five usual ones used for UPS lookup, they will be interpreted as a Perl subroutine call. The
syntax is the same as if it was encased in the tag [perl sub] [/perl], but the following substitutions

are made prior to the call:

@@COST@@ is replaced with whatever the UPS lookup returned
@@GEOC@@ is replaced with the zip (or other geo code)
@@ADDER@@ is replaced with the defined adder

@@TYPE@@ is replaced with the UPS shipping type
@@TOTAL@@ is replaced with the total weight

The example above also illustrates geographic qualification. If the value of the form variable state on the
checkout form is AK or HI, the U.S. states Alaska and Hawaii, a $10.00 additional charge (over and above tl
normal $2.00 handling charge) is made. This can also be used to select on country, product type, or any oth
gualification that can be encoded in the file.

upsca

The next entry is just like the UPS definition except it defines a different lookup zone file

(products/can.csv) and uses a different database, upsca. It also disables the global PriceDivide option

for itself only, not allowing currency conversion. Otherwise, the process is the same.

Up to 27 different lookup zones can be defined in the same fashion. If one of the cost lines (the last field) in
the shipping.asc file begins with a c, it configures another lookup zone which must be lettered from A

to Z. It takes the format:

¢ X name file* length* multiplier*

where X is the letter from A-Z. The name is used internally as an identifier and must be present. The option
file is relative to the catalog root (like UpsZoneFile is). If it is not present, the file equal to name in the
products directory (ProductDir) will be used as the zone file. If the optional digit length is present, that
determines the number of significant digits in the passed postal/geo code.

When the optional multiplier is present, the weight is multiplied by it before doing the table lookup. This
allows shipping weights in pounds or kilograms to be adapted to a table using the opposite as the key.
Remember, the match on weight must be exact, and Interchange rounds the weight up to the next even unit
To define the exact equivalent of the UPS lookup zone, do the following:

¢ U UPS products/450.csv 3 1

The only difference is that the beginning code to call the lookup is upper—case U instead of lower—case u.

50.5. More On UPS-Style Lookup

The UPS-style lookup uses two files for its purposes, both of which need to be in a format like UPS
distributes for US shippers.

The zone file is a file that is usually specific to the originating location. For US shippers shipping to US
locations, it is named for the first three digits of the originating zip code with a CSV extension. For example,
450.csv.

It has a format similar to:

low - high, zone,zone,zone,zone

50.5. More On UPS-Style Lookup 299

Interchange Documentation (Full)

The low entry is the low bound of the geographic location; high is the high bound. (By geographic location,
the zip code is meant.) If the first digits of the zip code, compared alphanumerically, fall between the low an

high values, that zone is used as the column name for a lookup in the rate database. The weight is used as
row key.

The first operative row of the zone file (one without leading quotes) is used to determine the zone column
name. In the US, it looks something like:

Dest. ZIP,Ground,3 Day Select,2nd Day Air,2nd Day Air A.M.,Next Day Air Saver,Next Day Air
Interchange strips all non—-alpha characters and comes up with:
DestZIP,Ground,3DaySelect,2ndDayAir,2ndDayAirAM,NextDayAirSaver,NextDayAir

Therefore, the zone column (shipping type) that would be used for UPS ground would be "Ground," and tha
is what the database should be nhamed. To support the above, use a shipping.asc line that reads:

upsg UPS Ground weight 0 150 u Ground [default zip 983]

and a catalog.cfg database callout of:

Database Ground Ground.csv CSV

These column names can be changed as long as they correspond to the identifier of the rate database.

The rate database is a standard Interchange database. For U.S. shippers, UPS distributes their rates in a fa
standard comma-separated value format, with weight being the first (or key) column and the remainder of tt
columns corresponding to the zone which was obtained from the lookup in the zone file.

To adapt other shipper zone files to Interchange's lookup, they will need to fit the UPS US format. (Most of

the UPS international files don't follow the U.S. format). For example, the 1998 Ohio-US to Canada file
begins:

Canada Standard Zone Charts from Ohio

Locate the zone by cross-referencing the first three
characters of the destination Postal Code in the Postal
Range column.

Postal Range Zone

AOA A9Z 54
BOA B9Z 54
COA C9Zz 54
EOA E9Z 54
GOA GOA 51
GOB GOL 54

GOM GOS 51
GOT GOW 54

It will need to be changed to:

Destination,canstnd
AOA-A9Z, 54
BOA-B9Z, 54
COA-C9Z, 54
EOA-E9Z, 54

50.5. More On UPS-Style Lookup 300

Interchange Documentation (Full)

GOA-GOA, 51
GOB-GOL, 54
GOM-GOS, 51
GOT-GOwW, 54

Match it with a canstnd CSV database that looks like this:

Weight,51,52,53,54,55,56
1,7.00,7.05,7.10,11.40,11.45,11.50
2,7.55,7.65,7.75,11.95,12.05,12.10
3,8.10,8.15,8.40,12.60,12.70,12.85
4,8.65,8.70,9.00,13.20,13.30,13.55
5,9.20,9.25,9.75,13.85,13.85,14.20
6,9.70,9.85,10.35,14.45,14.50,14.90
7,10.25,10.40,11.10,15.15,15.15,15.70
8,10.80,10.95,11.70,15.70,15.75,16.35
9,11.35,11.55,12.30,16.40,16.45,17.20

It is called out in catalog.cfg with:

Database canstnd canstnd.csv CSV

With the above, a 4—pound shipment to postal code E5C 4TL would yield a cost of 13.20.

50.6. Geographic Qualification

If the return value in the main criterion includes whitespace, the remaining information in the field is used as
qualifier for the subsidiary shipping modes. This can be used to create geographic qualifications for shipping
as in:

upsg UPS Ground weight [value state] O 0 e No items selected
upsg UPS Ground AKHI 0 150 u Ground [value zip] 12.00
upsg UPS Ground 0 150 u Ground [value zip] 3.00

If upsg is the mode selected, the value of the user session variable state is examined to see if it matches
the geographic qualification on a whole-word boundary. If it is AK or HI, UPS Ground with an adder of 12
will be selected. If it "falls through," UPS Ground with an adder of 3 will be selected.

50.7. Handling Charges

Additional handling charges can be defined in the shipping file by setting the form variable mv_handling

to a space, comma, or null-separated set of valid shipping modes. The lookup and charges are created in
same fashion, and the additional charges are added to the order. (The user is responsible for displaying the
charge on the order report or receipt with a [shipping handling] tag, or the like.) All of the shipping

modes found in mv_handling will be applied. If multiple instances are found on a form, the accordingly
null-separated values will all be applied. NOTE: This should not be done in an item-list unless the multiple
setting of the variables is accounted for.

To only process a handling charge once, do the following:

[item-—list]
[if-item—field very_heavy]
[perl values]
return " if $Values—>{mv_handling} =~ /very_heavy/;

50.6. Geographic Qualification 301

Interchange Documentation (Full)

return "<INPUT TYPE=hidden NAME=mv_handling VALUE=very_heavy>",

[/perl]
[/if-item—field]
[/item-list]

A non-blank/non-zero value in the database field will trigger Perl code which will only set mv_handling
once.

50.8. Default Shipping Mode

If a default shipping mode other than default is desired, enter it into the DefaultShipping directive:

DefaultShipping upsg

This will make the entry on the order form checked by default when the user starts the order process, if it is
put in the form:

<INPUT TYPE=RADIO NAME=mv_shipmode VALUE=upsg [checked mv_shipmode upsg]>

To force a choice by the user, make mv_shipmode a required form variable (with RequiredFields or in an
order profile) and set DefaultShipping to zero.

50.8. Default Shipping Mode 302

51. User Database

Interchange has a user database function which allows customers to save any pertinent values from their
session. It also allows the setting of database or file access control lists for use in controlling access to page
and databases on a user-by-user basis.

The database field names in the user database correspond with the form variable names in the user sessior
there is a column named address, when the user logs in the contents of that field will be placed in the form
variable address, and will be available for display with [value address]. Similarly, the database

value is available with [data table=userdb column=address key=username].

The ASCII file for the database will not reflect changes unless the file is exported with [tag export
userdb][/tag]. It is not advisable to edit the ASCII file, as it will overwrite the real data that is in the

DBM table. User logins and changes would be lost. Note: This would not happen with SQL, but editing the
ASCII file would have no effect. It is recommended that the Nolmport configuration directive be set
accordingly.

The field names to be used are not set in concrete. They may be changed with options. Fields may be adde
subtracted at any time. Most users will choose to keep the default demo fields for simplicity sake, as they
cover most common needs. As distributed in the demo, the fields are:

code

accounts

acl

address
address_book
b_address

b_city

b_country

b_name
b_nickname
b_phone

b_state

b_zip

carts

city

country

db_acl

email

email_copy

fax

fax_order

file_acl
mv_credit_card_exp_month
mv_credit_card_exp_year
mv_credit_card_info
mv_credit_card_type
mv_shipmode

name
order_numbers
p_nickname
password
phone_day
phone_night
preferences
S_nickname

state

51. User Database 303

Interchange Documentation (Full)
time
zip

A few of those fields are special in naming, though all can be changed via an option. A couple of the fields a
reserved for Interchange's use.

Note: If not running with PGP or other encryption for credit card numbers, which is never recommended, it is
important that the mv_credit_card_info field be removed from the database.

The special database fields are:

accounts Storage for billing accounts book
address_book Storage for shipping address book
b_nickname Nickname of current billing account
carts Storage for shopping carts

p_nickname Nickname for current preferences
preferences Storage for preferences

s_nickname Nickname for current shipping address

db_acl Storage for database access control lists
file_acl Storage for file access control lists
acl Storage for simple integrated access control

If not defined, the corresponding capability is not available.

Note: The fields accounts, address_book, carts, and preferences should be defined as a BLOB
type, if using SQL. This is also suggested for the acl fields if those lists could be large.

Reserved fields include:

code The username (key for the database)
password Password storage
time Last time of login

51.1. The [userdb ...] Tag

Interchange provides a [userdb ...] tag to access the UserDB functions.

[userdb
function=function_name
username="username"*
assign_username=1
username_mask=REGEX*
password="password"*
verify="password"*
oldpass="old password"*
crypt="1|0"*
shipping="fields for shipping save"
billing="fields for billing save"
preferences="fields for preferences save"
ignore_case="1|0"*
force_lower=1
paraml=value*
param2=value*

51.1. The [userdb ...] Tag 304

Interchange Documentation (Full)

* Optional
It is normally called in an mv_click or mv_check setting, as in:

[set Login]
mv_todo=return
mv_nextpage=welcome
[userdb function=login]
[/set]

<FORM ACTION="[process]" METHOD=POST>
<INPUT TYPE=hidden NAME=mv_click VALUE=Login>
Username <INPUT NAME=mv_username SIZE=10>
Password <INPUT NAME=mv_password SIZE=10>
</FORM>

There are several global parameters that apply to any use of the userdb functions. Most importantly, by
default, the database table is set to be userdb. If another table name must be used, include a
database=table parameter with any call to userdb. The global parameters (default in parentheses):

database Sets user database table (userdb)
show Show the return value of certain functions
or the error message, if any (0)
force_lower Force possibly upper-case database fields
to lower case session variable names (0)
billing Set the billing fields (see Accounts)
shipping Set the shipping fields (see Address Book)
preferences Set the preferences fields (see Preferences)
bill_field Set field name for accounts (accounts)
addr_field Set field name for address book (address_book)
pref_field Set field name for preferences (preferences)
cart_field Set field name for cart storage (carts)
pass_field Set field name for password (password)
time_field Set field for storing last login time (time)
outboard Set fields that live in another table
outboard_key_col Set field providing key for outboard tables
expire_field Set field for expiration date (expire_date)

acl Set field for simple access control storage (acl)
file_acl Set field for file access control storage (file_acl)
db_acl Set field for database access control storage (db_acl)

By default the system crypt() call will be used to compare the password. This is best for security, but the
passwords in the user database will not be human readable.

If no critical information is kept and Interchange administration is not done via the UserDB capability, use
the UserDB directive (described below) to set encryption off by default:

UserDB default crypt O

Encryption can still be set on by passing crypt=1 with any call to a new_account, change_pass, or
login call.

51.2. Setting Defaults with the UserDB Directive

The UserDB directive provides a way to set defaults for the user database. For example, to save and recall
scratch variable tickets in the user database instead of the form variable tickets, set:

51.2. Setting Defaults with the UserDB Directive 305

Interchange Documentation (Full)

UserDB default scratch tickets

That makes every call to [userdb function=login] equivalent to [userdb function=login
scratch=tickets].

To override that default for one call only, use [userdb function=login scratch="passes"].

To log failed access authorizations, set the UserDB profile parameter log_failed true:

UserDB default log_failed 1

To disable logging of failed access authorizations (the default), set the UserDB profile parameter
log_failed to O:

UserDB default log_failed 0

The UserDB directive uses the same key—-value pair settings as the Locale and Route directives. If there
are more than one set of defaults, set them in a hash structure:

UserDB crypt_case <<EOF

{
'scratch’ => "tickets',
‘crypt’ =>'1,
'ignore_case' =>'0',

}

EOF

UserDB default <<EOF

{
'scratch’ => "tickets',
‘crypt’ =>'1,
'ignore_case' =>'1',

}

EOF

Note: The usual here—document caveats apply. The "EOF" must be on a line by itself with no leading/trailing
whitespace.

The last one to be set becomes the default.

The option profile selects the set to use. For usernames and passwords to be case sensitive with no
encryption, pass this call:

[userdb function=new_account profile=case_crypt]

The username and password will be stored as typed in, and the password will be encrypted in the database

51.3. User Database Functions

The user database features are implemented as a series of functions attached to the userdb tag. The
functions are:

login

51.3. User Database Functions 306

Interchange Documentation (Full)

Active parameters: username, password, crypt, pass_field, ignore_case

Log in to Interchange. By default, the username is contained in the form variable mv_username and the
password in mv_password. If the login is successful, the session value username ([data session
username]) will be set to the user name.

This will recall the values of all non—special fields in the user database and place them in their correspondin
user form variables.

The CookieLogin directive (catalog.cfg) allows users to save their username/password in a cookie.
Expiration time is set by SaveExpire, renewed every time they log in. To cause the cookie to be generated
originally, the form variable mv_cookie_password or mv_cookie_username must be set in the login

form. The former causes both username and password to be saved, the latter just the username.

logout
Log out of Interchange. No additional parameters are needed.
new_account

Active parameters: username, password, verify, assign_username, username_mask, ignore_case

Create a new account. It requires the username, password, and verify parameters, which are by default
contained in the form variables mv_username, mv_password, mv_verify respectively.

If the assign_username parameter is set, UserDB will assign a sequential username. The counter
parameter can be used to set the flename (must be absolute), or the default of
CATALOG_DIR/etc/username.counter can be accepted. The first username will be "U0001" if the counter
doesn't exist already.

The ignore_case parameter forces the username and password to lower case in the database, in effect
rendering the username and password case-insensitive.

If username_mask is set to a valid Perl regular expression (without the surrounding / /), then any username
containing a matching string will not be allowed for use. For example, to screen out order numbers from beir
used by a random user:

[userdb function=new_account
username_mask="[A-Z]*[0-9]"

]

The CookieLogin directive (catalog.cfg) allows users to save their username/password in a cookie.
Expiration time is set by SaveExpire, renewed every time they log in. To cause the cookie to be generated
originally, the form variable mv_cookie_password or mv_cookie_username must be set in the login

form. The former causes both username and password to be saved, the latter just the username.

To automatically create an account for every order, set the following in the OrderReport file:

[userdb function=new_account
username="[value mv_order_number]"
password="[value zip]"
verify="[value zip]"
database="orders"

]

This would be coupled with a login form that asks for order number and zip code, thereupon allowing the
display of the contents of a transaction database with (presumably updated) order status information or a
shipping company tracking number.

change_pass

51.3. User Database Functions 307

Interchange Documentation (Full)

Active parameters: username, password, verify, oldpass

Change the password on the currently logged—in account. It requires the username, password, verify,
and oldpass parameters, which are by default contained in the form variables mv_username,
mv_password, mv_verify, mv_password_old respectively.

set_shipping

Active parameters: nickname, shipping, ship_field
Place an entry in the shipping Address book. For example:

[userdb function=set_shipping nickname=Dad]
See Address Book below.
get_shipping

Active parameters: nickname, shipping, ship_field
Recall an entry from the shipping Address book. For example:

[userdb function=get_shipping nickname=Dad]
See Address Book below.
get_shipping_names
Active parameters: ship_field
Gets the names of shipping address book entries and places them in the variable address_book. By

default, it does not return the values. To have the values returned, set the parameter show to 1, as in:

[set name=shipping_nicknames
interpolate=1]
[userdb function=get_shipping_names show=1]
[/set]

set_billing

Active parameters: nickname, billing, bill_field
Place an entry in the billing accounts book. For example:

[userdb function=set_billing nickname=discover]
See Accounts Book below.
get_billing

Active parameters: nickname, billing, bill_field
Recall an entry from the billing accounts book. For example:

[userdb function=get_billing nickname=visa]

See Accounts Book below.

51.3. User Database Functions 308

Interchange Documentation (Full)

save

Saves all non—special form values that have columns in the user database. If a field is defined as scratch, it
retrieves the field from the Scratch storage area; otherwise from Values. If the field is one of the outboard
fields, it will save it in the outboard table with the value of outboard_key col as the key.

set_cart
Save the contents of a shopping cart.
[userdb function=set_cart nickname=christmas]
See Carts below.
get_cart

Active parameters: nickname, carts_field, target
Recall a saved shopping cart.

[userdb function=get_cart nickname=mom_birthday]

Setting target saves to a different shopping cart than the default main cart. The carts_field controls
the database field used for storage.

set_acl

Active parameters: location, acl_field, delete
Set a simple acl. For example:

[userdb function=set_acl location=cartcfg/editcart]

This allows the current user to access the page "cartcfg/editcart” if it is access—protected.
To delete access, do:

[userdb function=set_acl location=cartcfg/editcart delete=1]

To display the setting at the same time as setting, use the show attribute:

[userdb function=set_acl location=cartcf/editcart show=1]
check_acl

Active parameters: location, acl_field
Checks the simple access control listing for a location, returning 1 if allowed and the empty string if not
allowed.

[if type=explicit
compare="[userdb
function=check_acl
location=cartcfg/editcart]"
]
[page cartcfg/editcart]Edit your cart configuration[/page]

[/if]

51.3. User Database Functions 309

Interchange Documentation (Full)

set_file_acl, set_db_acl

Active parameters: location, mode, db_acl_field, file_acl_field, delete
Sets a complex access control value. Takes the form:

[userdb function=set_file_acl
mode=rw
location=products/inventory.txt]

where mode is any value to be checked with check file_acl. As with the simple ACL, use delete=1to
delete the location entirely.

check file_acl, check_db_acl

Active parameters: location, mode, db_acl_field, file_acl_field
Checks a complex access control value and returns a true/false (1/0) value. Takes the form:

[userdb function=check_db_acl
mode=w
location=inventory]

where mode is any value to be checked with check_file_acl. It will return true, if the mode string is
contained within the entry for that location. For example:

[if type=explicit
compare="[userdb
function=check_db_acl
mode=w
location=inventory]"
]
[userdb function=set_acl location=cartcfg/edit_inventory]
[page cartcfg/edit_inventory]You may edit the inventory database[/page]
[else]
[userdb function=set_acl location=cartcfg/edit_inventory delete=1]
Sorry, you can't edit inventory.

[/if]
51.4. Address Book

Address_book is a shipping address book. The shipping address book saves information relevant to shippin
the order. In its simplest form, this can be the only address book needed. By default these form values are
included:

S_nickname
name
fname
Iname
address
addressl
address2
address3
city

state

zip

country
phone_day

51.4. Address Book 310

Interchange Documentation (Full)

mv_shipmode

The first field is always the name of the form variable that contains the key for the entry. The values are sav
with the [userdb function=set_shipping] tag call, and are recalled with [userdb

function=get_shipping]. A list of the keys available is kept in the form value address_book,

suitable for iteration in an HTML select box or in a set of links.

To get the names of the addresses, use the get_shipping_names function:
[userdb function=get_shipping_names]
By default, they are placed in the variable address_book. Here is a little snippet that builds a select box:

<FORM ACTION="[process]" METHOD=POST>

[userdb function=get_shipping_names]

[if value address_book]

<SELECT NAME="s_nickname">

[loop arg="[value address_book]"] <OPTION> [loop—code] [/loop]
</SELECT>

<INPUT TYPE=submit NAME=mv_check VALUE="Recall Shipping">
</[FORM>

The same principle works with accounts, carts, and preferences.

To restore a cart based on the above, put in an mv_check routine:

[set Recall Shipping]

mv_todo=return

mv_nextpage=ord/basket

[userdb function=get_shipping nickname="[value s_nickname]"]
[/set]

When the mv_check variable is encountered, the contents of the scratch variable Recall Shipping are
processed and the shipping address information inserted into the user form values. This is destructive of an:
current values of those user session variables, of course.

To change the fields that are recalled or saved, use the shipping parameter:

[userdb function=get_shipping
nickname=city_and_state
shipping="city state"]

Only the values of the city and state variables will be replaced.

51.5. Accounts Book

The accounts book saves information relevant to billing the order. By default these form values are included

b_nickname
b_name
b_fname
b_Iname
b_address
b_addressl
b_address2

51.5. Accounts Book 311

Interchange Documentation (Full)

b_address3

b_city

b_state

b_zip

b_country

b_phone

purchase_order
mv_credit_card_type
mv_credit_card_exp_month
mv_credit_card_exp_year
mv_credit_card_info

The values are saved with the [userdb function=set_billing] tag call, and are recalled with
[userdb function=get_billing]. A list of the keys available is kept in the form value accounts,
suitable for iteration in an HTML select box or in a set of links.

51.6. Preferences

Preferences are miscellaneous session information. They include, by default, the following fields:

email

fax
phone_night
fax_order
email_copy

The field p_nickname acts as a key to select the preference set. To change the values that are included witt
the preferences parameter:

[userdb function=set_preferences
preferences="email_copy email fax_order fax"]

or in catalog.cfg:

UserDB default preferences "mail_list email fax_order music_genre"

51.7. Carts

The contents of shopping carts may be saved or recalled in much the same fashion. See the Simple demo
application ord/basket.html page for an example.

51.8. Controlling Page Access With UserDB

Interchange can implement a simple access control scheme with the user database. Controlled pages must
reside in a directory which has a file named .access that is zero bytes in length. (If it is more than O bytes,
only the RemoteUser or MasterHost may access files in that directory.)

Set the following variables in catalog.cfg:

Variable MV_USERDB_ACL_TABLE userdb
Variable MV_USERDB_ACL_COLUMN acl

51.6. Preferences 312

Interchange Documentation (Full)

The MV_USERDB_ACL_TABLE is the table which controls access, and likewise the
MV_USERDB_ACL_TABLE names the column in that database which will be checked for authorization.

The database entry should contain the complete Interchange-style page name of the page to be allowed. It
will not match substrings.

For example, if the user flycat followed this link:
Edit

Access would be allowed if the contents of the userdb were:

code acl
flycat cartcfg/master_edit

and disallowed if it were:

code acl
flycat cartcfg/master_editor

Access can be enabled with:
[userdb function=set_acl location="cartcfg/master_edit"]
Access can be disallowed with:

[userdb function=set_acl
delete=1
location="cartcfg/master_edit"]

Of course, a pre—existing database with the ACL values will work as well. It need not be in the UserDB setu

51.9. Using more than one table

You can save/retrieve userdb information from more than one table with the outboard specifier. It is a
key—value comma-separated series of field specifications. For instance, if the billing address is to be stored
a separate table named "billing", you would do:

UserDB outboard <<EOF
b_fname=billing::first_name,
b_Iname=billing::last_name,
b_address1=billing::address1,
b_address2=billing::address2,

b_etc=hilling::etc

EOF

When the user logs in, Interchange will access the first_name field in table billing to get the value of
b_fname. When the values are saved, it will be saved there as well. If you wish to make the fields read-only
just set UserDB default scratch "b_fname b_Iname ..." and the values will be

retrieved/saved from there. To initialize the values for a form, you could do a function after the user logs in:

[calc]
my @s_fields = grep \S/, split /\s,\0]+/, $Config—>{UserDB}Kscratch};
for(@s_fields) {

51.9. Using more than one table 313

Interchange Documentation (Full)

$Values—>{$_} = $Scratch—>{$_};
}

return;
[/calc]

If the fields in the outboard table use another key besides username, you can specify the column in the
userdb that contains the key value:

UserDB default outboard_key col account_id

51.9. Using more than one table 314

52. Tracking and Back—End Order Entry

Interchange allows the entry of orders into a system through one of several methods. Orders can be written
an ASCII file or formatted precisely for email-based systems. Or they can go directly into an SQL or DBM
database. Finally, embedded Perl allows completely flexible order entry, including real-time credit card
verification and settlement.

52.1. ASCII Backup Order Tracking

If AsciiTrack is set to a legal file name (based in VendRoot unless it has a leading "/"), a copy of the order
is saved and sent in an email.

If the file name string begins with a pipe "|", a program will be run and the output "piped" to that program.
This allows easy back—-end entry of orders with an external program.

52.2. Database Tracking

Once the order report is processed, the order is complete. Therefore, it is the ideal place to put Interchange
tags that make order entries in database tables.

A good model is to place a single record in a database summarizing the order and a series of lines that
correspond to each line item in the order. This can be in the same database table. If the order number itself
the key for the summary, a line number can be appended to the order number to show each line of the orde

The following would summarize a sample order number S00001 for part number 00—-0011 and 99-102:

code order_number part_number quantity price shipping tax

S00001 S00001 3 2010 12.72 100.50
S00001-1 S00001 00-0011 2 1000 UPS yes
S00001-2 S00001 99-102 1 10 UPS yes

Fields can be added where needed, perhaps with order status, shipping tracking number, address, custome
number, or other information.

The above is accomplished with Interchange's [import] tag using the convenient NOTES format:

[set import_status]
[import table=orders type=LINE continue=NOTES]

code: [value mv_order_number]
order_number: [value mv_order_number]
quantity: [nitems]

price: [subtotal noformat=1]

shipping: [shipping noformat=1]

tax: [salestax noformat=1]

[/import]

[item-—list]
[import table=orders type=LINE continue=NOTES]

code: [value mv_order_number]-[item—-increment]
order_number: [value mv_order_number]

52. Tracking and Back—End Order Entry 315

Interchange Documentation (Full)

quantity: [item—quantity]

price: [item—price noformat=1]

shipping: [shipping—description]

tax: [if-item—field nontaxable]No[else]Yes[/else][/if]

[/import][/item-list]

52.3. Order Routing

Interchange can send order emails and perform custom credit card charges and/or logging for each item. Tt
Route directive is used to control this behavior, along with the mv_order_route item attribute.

If no Route is in the catalog, Interchange uses a default "mail out the order and show a receipt" model.

Routes are established with the Route directive, which is similar to the Locale directive. Each route is like
a locale, so that key—-value pairs can be set. Here is an example setting:

Route mail pgp_key 0x67798115

Route mail email orders@akopia.com

Route mail reply service@akopia.com

Route mail encrypt 1

Route mail encrypt_program "/usr/bin/pgpe —fat —q —r %s"
Route mail report etc/report_mail

Note: Values with whitespace in them must be quoted.

You can also set the route in a valid Perl hash reference string:

Route mail <<EOR

{
pgp_key =>'0x67798115',
email =>'orders@akopia.com’,
reply =>'service@akopia.com’,
encrypt =1,
encrypt_program => g{/usr/bin/gpg —e —a -r '%s' ——batch},
report =>'etc/report_mail',
}
EOR

This route would be used whenever the mail route was called by one of the three possible methods:
route called from master route

Called via the cascade parameter from the master route. This is the way that most routes are called in
Interchange’s the Foundation manpage demo. These routes treat the order as a whole.

route set in item

An item in the shopping cart has mail as the value in the attribute mv_order_route. This method is
item—specific to this item (or group of items in route mail).

route set in the form variable mv_order_route

52.3. Order Routing 316

Interchange Documentation (Full)

By setting a value in the mv_order_route form variable, you can specify one or more routes to run. This
is the deprecated method used in earlier Interchange 4.6.x and Minivend 4 routes. It will still work fine.

The last route that is defined is the master route, by convention named main. Besides setting the global
behavior of the routing, it provides some defaults for other routes. For example, if encrypt_program is

set there, then the same value will be the default for all routes. Most settings do not fall through.

The attributes that can be set are:

attach

Determines whether the order report should be attached to the main order report e-mail. This is useful if
certain items must be printed separately from others, perhaps for FAX to a fulfillment house.

cascade

A list of routes which should be pushed on the stack of routes to run, after all currently scheduled routes are
done. NOTE: cascades can cause endless loops, so only one setting is recommended, that being the main
route.

commit

Perl code which should be performed on a route commit.

commit_tables

Tables that are to be pre—opened before running the Perl commit code.

counter

The location of a counter file which should be used instead of OrderCounter for this route. It will generate
a different value for mv_order_number for the route. This is normally used to obtain unique order
references for multi-vendor routing.

credit_card

Determines whether credit card encryption should be done for this order. Either this or encrypt should
always be set.

dynamic_routes

If set in the the master manpage route, will cause the the RouteDatabase manpage to be checked for a rout
it exists, it will be read in and the database copy used instead of the static copy build at catalog configuratiol
time. If set in a subsidiary route, that route will be ignored during catalog.cfg, and dynamic_routes must

be active for it to be seen.

email

The email address(es) where the order should be sent. Set just like the MailOrderTo directive, which is
also the default.

encrypt

52.3. Order Routing 317

Interchange Documentation (Full)

Whether the entire order should be encrypted with the encrypt_program. If credit_card is set, the credit
card will first be encrypted, then the entire order encrypted.

encrypt_program

The encryption program incantation which should be used. Set identically to the EncryptProgram
directive, except that %s will be replaced with the pgp_key. Default is empty.

errors_to

Sets the Errors—To: e—mail header so that bounced orders will go to the proper address. Default is the
same as MailOrderTo.

expandable

If set in the the master manpage route, route settings will be expanded for ITL tags. No effect if the route is
not the master.

extended
Extended route settings that take the form of an Interchange option list; normally a Perl hash reference that
will be read. These settings always overwrite any that currently exist, regardless of the order in which they a

specified. For example:

Route main extended {email => 'milton@akopia.com'}
Route main email papabear@minivend.com

The ultimate setting of email will be milton@akopia.com.
increment

Whether the order number should be incremented as a result of this result. Default is not to increment, as th
order number should usually be the same for different routes within the same customer order.

individual_track

A directory where individual order tracking files will be placed. The file hame will correspond to the value of
mv_order_number. This can be useful for batching orders via download.

individual_track ext

The extension that will be added to the file name for individual_track. Must contain a period (.), if
that is desired.

individual_track_ext .pgp
individual_track_mode

A number representing the final permission mode for the individual_track file. Usually expressed in
octal:

individual_track_mode 0444

52.3. Order Routing 318

Interchange Documentation (Full)

master

If set, this route becomes the master route for supplant, dynamic_routes, errors_to, and

expandable, and supplies the setting for receipt and the attach report. Switching master in

midstream is unlikely to be successful —— it should certainly be the first route in a cascade.
payment_mode

If this is set, enables a payment mode for the route. (Payment modes are also set in the Route directive.)

pgp_cc_key

The PGP/GPG key selector that is used to determine which public key is used for encryption of credit cards
only. With PGP 5 and 6, see appropriate values by using the command pgpk -I. For GPG, use gpg
——list-keys. Defaults to the value of the pgp_key manpage.

pgp_key

The PGP key selector that is used to determine which public key is used for encryption. If pgp_cc_key is
set, that key will be used for credit card encryption instead of pgp_key. With PGP 5 and 6, see appropriate
values by using the command pgpk —I. For GPG, use gpg —-list-keys. Defaults to the value of the

pap_key manpage.

profile

The custom order profile which should be performed to check the order prior to actually running the route. If
it fails, the route will not be performed. See OrderProfile and mv_order_profile.

receipt

The receipt page that should be used for this routing. This only applies if supplant is set for the route, and th
normally would only be in the default route.

report

The report page that should be used for this routing. If attach is defined, the contents of the report will be
placed in a MIME attachment in the main order report.

reply

The Reply-To header that should be set. Default is the same as email.

If there are only word characters (A-Za-z0-9 and underscore), it describes an Interchange variable name
where the address can be found.

rollback

Perl code which should be performed on a route rollback.

rollback_tables

Tables that are to be pre—opened before running the Perl rollback code.

52.3. Order Routing 319

Interchange Documentation (Full)

supplant

Whether the master route should supplant the main order report. If set, the AsciiTrack operation will use
this route and the normal Interchange order e—mail sequence will not be performed. This is normally set in tl
master route.

track

The name of a file which should be used for tracking. If the supplant attribute is set, the normal order
tracking will be used as well.

track_mode

A number representing the final permission mode for the track file. Usually expressed in octal:

track_mode 0444
transactions

A list of tables to put in transactions mode at the beginning of the route. Used to ensure that orders get rolle
back if another route fails.

The first route to open a table must have this parameter, otherwise transactions will not work. If any route
fails (except ones marked error_ok) then a rollback will be done on these tables. If all routes succeed, a
commit will be performed at the end of all order routes.

Individual item routing causes all items labeled with that route to be placed in a special sub—cart that will be
used for the order report. This means that the [item-list] LIST [/item~list] will only contain

those items, allowing operations to be performed on subsets of the complete order. The [subtotal],
[salestax], [shipping], [handling], and [total-cost] tags are also affected.

Here is an example of an order routing:

Route HARD pgp_key 0x67798115

Route HARD email hardgoods@akopia.com
Route HARD reply service@akopia.com
Route HARD encrypt 1

Route HARD report etc/report_mail

Route SOFT email

Route SOFT profile create_download_link
Route SOFT empty 1

Route mail pgp_key 0x67798115
Route mail email orders@akopia.com
Route mail reply service@akopia.com
Route mail encrypt 1

Route mail report etc/report_all

Route user error_ok 1

Route user email email

Route user reply service@akopia.com
Route user report etc/user_copy
Route log empty 1

Route log report etc/log_transaction

52.3. Order Routing 320

Interchange Documentation (Full)

Route log transactions "transactions orderline inventory"

Route log track logs/log

Route main supplant 1

Route main receipt etc/receipt.html
Route main master log mail user

Route main cascade log mail user

Route main encrypt_program "/usr/bin/gpg —e —a r '%s' ——batch"

This will have the following behavior:
Order

The master order route is main, the last one defined. It cascades the routes log, mail, and user, which mean
they will run in that order at the completion of the main route. The individual item routes HARD and SOFT, if
applicable, will run before those.

Transactions

The route log specifies the tables that will be put in transaction mode, in this case transactions
orderline, and inventory.

Failure
All order routes must succeed except user, which has error_ok set to 1.

Encryption The mail order route and the HARD order route will be sent by email, and encrypted against
different GPG key IDs. They will get their encrypt_program setting from the main route.

To set the order routing for individual items, some method of determining their status must be made and the
mv_order_route attribute must be set. This could be set at the time of the item being placed in the basket,
or have a database field called goods_type set to the appropriate value. The following example uses a Perl
routine on the final order form:

[perl table=products]
my %route;
my $item;
foreach $item (@{$ltems}) {
my $code = $item->{code};
my $keycode = $Tag—>data('products’, 'goods_type', $code);
$item—>{mv_order_route} = $keycode;

}

return;
[/perl]

Now the individual items are labeled with a mv_order_route value which causes their inclusion in the
appropriate order routing.

Upon submission of the order form, any item labeled HARD will be accumulated and sent to the e-mail
address hardgoods@akopia.com, where the item will be pulled from inventory and shipped.

Any item labeled SOFT will be passed to the order profile create_download_link, which will place it
in a staging area for customer download. (This would be supported by a link on the receipt, possibly by

52.3. Order Routing 321

Interchange Documentation (Full)

reading a value set in the profile).

52.3. Order Routing 322

53. SSL Support

Interchange has several features that enable secure ordering via SSL (Secure Sockets Layer). Despite theil
mystique, SSL servers are actually quite easy to operate. The difference between the standard HTTP serve
and the SSL HTTPS server, from the standpoint of the user, is only in the encryption and the specification o
the URL,; https: is used for the URL protocol specification instead of the usual http: designation.

IMPORTANT NOTE: Interchange attempts to perform operations securely, but no guarantees or warranties
of any kind are made! Since Interchange comes with source code, it is fairly easy to modify the program to
create security problems. One way to minimize this possibility is to record digital signatures, using MD5 or
PGP or GnuPG, of interchange, interchange.cfg, and all modules included in Interchange. Check

them on a regular basis to ensure they have not been changed.

Interchange uses the SecureURL directive to set the base URL for secure transactions, and the VendURL
directive for normal non—secure transactions. Secure URLs can be enabled for forms through a form action
[process secure=1]. An individual page can be displayed via SSL with [page

href=mvstyle_pagename secure=1]. A certain page can be set to be always secure with the

AlwaysSecure catalog.cfg directive.

Interchange incorporates additional security for credit card numbers. The field mv_credit_card_number
will not ever be written to disk.

To enable automated encryption of the credit card information, the directive CreditCardAuto needs to be
defined as Yes. EncryptProgram also needs to be defined with some value, one which will, hopefully,
encrypt the number. PGP is now recommended above all other encryption program. The entries should look
something like:

CreditCardAuto Yes
EncryptProgram /usr/bin/pgpe —fat —r sales@company.com

See CreditCardAuto for more information on how to set the form variables.

53. SSL Support 323

54. Frequently Asked Questions

54.1. | can't get SQL to work: Undefined subroutine
&Vend::Table::DBl::create ...

This probably means one of the following:

No SQL database.

Interchange doesn't include a SQL database. You must select one and install it.
No DBI.

You must install Perl's DBl module before using Interchange with SQL. You can see where to get it at
http://lwww.cpan.org, or try:

perl -MCPAN -e 'install DBI'
No DBD.

You must install the specific Perl DBD module for your database before using Interchange with SQL. You
can see where to get it at http://www.cpan.org, or try:

perl -MCPAN -e 'install DBD::XXXXX'

where XXXXX is the name of your module. Some of them are:

Adabas
DB2
Informix
Ingres
OoDBC
Oracle
Pg
Solid
Sybase
Unify
XBase
mSQL
mysq|

If you can't make this script run without error:

use DBI;
use DBD::XXXXX;

Then you don't have one of the above, and Interchange can't use an SQL database until you get one installe
| don't like the column types that Interchange defines!

They can be changed. See the foundation/dbconf/mysql directory for some examples under MySQL.

54. Frequently Asked Questions 324

Interchange Documentation (Full)

| change the ASCII file, but the table is not updated. Why?

Interchange writes an empty file TABLE.sqgl (where TABLE is the name of the table). When this is present,
Interchange will never update the table from disk.

Also, if you have changed the field names in the file, you must restart the catalog (Apply Changes) before
they will be picked up.

Why do | even need an ASCII file?

Interchange wants some source for column names initially. If you don't want to have one, just create a
TABLENAME.sq| file in the products directory. For example, if you have this:

Database products products.txt dbi:mysql:test_minivend

Then create a file products/products.sql.
\For:

Database pricing pricing.txt dbi:mysgl:test_minivend
Create a file products/pricing.sql. .
Interchange overwrites my predefined table!

Yes, it will if you don't create a file called TABLENAME.sqgl, where TABLENAME is the name of the
Interchange table. If you want this to happen by default, then set Nolmport TABLENAME.

54.2. How can | use Interchange with Microsoft Access?

Though Interchange has ODBC capability, the Microsoft Access ODBC driver is not a network driver. You
cannot access it on a PC from your ISP or UNIX system.

However, you can turn it around. Once you have created a MySQL or other SQL database on the UNIX
machine, you may then obtain the Windows ODBC driver for the database (MySQL has a package called
myODBC) and use the UNIX database as a data source for your PC-based database program.

Here is a quick procedure that might get you started:
» Get MySQL from:
http://www.mysql.com/
Install it on your UNIX box. On LINUX, it is as easy as getting the RPM distribution:
http://www.mysqgl.com/rpm/
You install it by typing, as root, rpm —i mysql-3.XX.XX.rpm. If you are not root, you will
have to build the source distribution.
» To avoid permissions problems for your testing, stop the MySQL daemon and allow global

read—write access with:

mysgladmin shutdown

54.2. How can | use Interchange with Microsoft Access? 325

Interchange Documentation (Full)

safe_mysqgld ——skip—grant-tables &

Obviously, you will want to study MySQL permissions and set up some security pretty quickly. It has
excellent capability in that area, and the FAQ will help you get over the hurdles.
» Set up a database for testing on the UNIX machine:

mysqgladmin create test_odbc
mysq| test_odbc

Make an SQL query to set up a table, for example:

mysql> create table test_me (code char(20), testdata char(20));
Query OK, 0 rows affected (0.29 sec)

mysql> insert into test_me VALUES (‘key1', 'datal’);
Query OK, 1 rows affected (0.00 sec)

mysql> insert into test_me VALUES (‘key2', 'data2’);
Query OK, 1 rows affected (0.00 sec)

mysql>
» Get and install myODBC, also from the MySQL site:
http://www.mysql.com/

You install this package on your Windows 95 or NT box. It is a simple setup.exe process which lead:s
you to the control panel for setting up an ODBC data source. Set up a data source named
test_odbc that points to the database test_odbc on the UNIX box. You will need to know the
host name and the port (usually 3306).

« With Microsoft Access, you can then open a blank database and select: File/Get External Data/Link
Tables. Select File Type of 'ODBC databases' and the proper data source, and you should have acc
to the database residing on the UNIX side.

Copyright 2001-2002 Red Hat, Inc. Freely redistributable under terms of the GNU General Public License.
line:

54.2. How can | use Interchange with Microsoft Access? 326

Interchange Ecommerce Functions

Interchange Ecommerce Functions 327

55. THE ORDER PROCESS

Interchange has a completely flexible order basket and checkout scheme. The foundation demo presents a
common use of this process, in the directory pages/ord —- the files are:

basket.html The order basket displayed by default
checkout.html The form where the customer enters their billing
and shipping info

and in the directory etc:

receipt.html The receipt displayed to the customer
report The order report mailed to you
mail_receipt The customer's email copy (if requested)

It is not strictly necessary to display an order basket when an item is ordered. If you specify a different page
be displayed that is fine, but most customers will be confused if you don't give them an indication that the
order operation has succeeded.

Any order basket is an HTML FORM. It will have a number of variables on it. At the minimum it must have a
[item—list] to loop through the items, and the quantity of each item must be set in some place on that
form. Any valid Interchange tags may be used on the page, and you may use multiple item lists if necessary

55.1. How to order an item

Interchange can either use a form-based order or a link—based order to place an item in the shopping cart.
link—-based order uses the special [order item—code] tag:

[order code]

named attributes:

[order code="sku" quantity="n"* href="page"* cart="cartname"* base="table"*]
* = optional parameters

Expands into a hypertext link which will include the specified code in the list of products to order and display
the order page. code should be a product SKU listed in one of the "products” tables, and is the only requirec
parameter. quantity may be specified if more than one (the default) of the item should be placed in the cart.
href allows some page other than the default order page to be displayed once the item has been added to tt
cart. cart selects the shopping cart the item will be placed in. The optional argument base constrains the ord
to a particular products file —— if not specified, all tables defined as products files will be searched in sequen
for the item.

Example:

Order a [order TK112]Toaster[/order] today.

Note that this is the same as:

Order a [page order TK112]Toaster today.

55. THE ORDER PROCESS 328

Interchange Documentation (Full)

You can change frames for the order with:

Order a Toaster today.
[forder]
Expands into . Used with the order element, such as: Buy a [order TK112]Toaster<[/order]> today.

To order with a form, you set the form variable mv_order_item to the item-code/SKU and use the
refresh action:

<FORM ACTION="[process-target]* METHOD=POST>

<INPUT TYPE=hidden NAME="mv_todo" VALUE="refresh">
<INPUT TYPE=hidden NAME="mv_order_item" VALUE="TK112">
Order <INPUT NAME="mv_order_quantity" SIZE=3 VALUE=1> toaster

<INPUT TYPE=submit VALUE="Order!">
</[FORM>

You may batch select whole groups of items:

<FORM ACTION="[process-target]* METHOD=POST>
<INPUT TYPE=hidden NAME="mv_todo" VALUE="refresh">

<INPUT TYPE=hidden NAME="mv_order_item" VALUE="TK112">
<INPUT NAME="mv_order_quantity" SIZE=3> Standard Toaster

<INPUT TYPE=hidden NAME="mv_order_item" VALUE="TK200">
<INPUT NAME="mv_order_quantity" SIZE=3> Super Toaster

<INPUT TYPE=submit VALUE="Order!">
</[FORM>

Items that have a quantity of zero (or blank) will be skipped, and only items with a positive quantity will be
placed in the basket.

You may also specify attributes like size or color at time of order (see How to set up an order button).

55.2. How to set up an order link

On a product display page, use:
[order 00-0011]Order the Mona Lisa[/order]

If coming from a search results or on—-the—fly page, you may use the generated [item—code] thusly:
[order [item—-code]]Order [item-field name][/order]

Bear in mind that if you have not reached the page via a search or on—the—fly operation, [item—-code]
means nothing and will cause an error.

55.2. How to set up an order link 329

Interchange Documentation (Full)

55.3. How to set up an order button

Interchange can order via form submission as well. This allows you to order a product (or group of products
via a form button. In its simplest form, it is:

<FORM ACTION="[process-target]" METHOD=POST>

<INPUT TYPE=hidden NAME=mv_todo VALUE=refresh>

<INPUT TYPE=hidden NAME=mv_order_item VALUE="00-0011">
<INPUT TYPE=submit VALUE="Order the Mona Lisa">

</FORM>

The default quantity is one. An initial quantity may be set by the user by adding an mv_order_quantity
variable:

Number to order:<INPUT TYPE=text NAME=mv_order_quantity VALUE="1">

You can order multiple items by stacking the variables:

<FORM ACTION="[process-target]" METHOD=POST>

<INPUT TYPE=hidden NAME=mv_todo VALUE=refresh>

<INPUT TYPE=hidden NAME=mv_order_item VALUE="00-0011">
<INPUT TYPE=hidden NAME=mv_order_item VALUE="00-0011a">
<INPUT TYPE=submit VALUE="Order the Mona Lisa with frame">
</FORM>

Initial size or color may be set as well, provided UseModifier is set up properly:
<INPUT TYPE=hidden NAME=mv_order_size VALUE="L">

If the order is coming from a generated flypage, loop list, or search results page, you can get a canned sele
box from the [item—accessories size] or [item—accessories size] tag. See Item Attributes.

55.4. How to set up an on—the—fly item

If you enable the catalog directive OnFly, setting it to the name of a subroutine (or possibly a UserTag) that
can handle its calls, then Interchange will add items to the basket that are not in the product database.
Interchange supplies an internal onfly subroutine, which will work according to the examples given below.

In catalog.cfg:

OnFly onfly

If your item code is not to be named mv_order_item then you must perform a rename in the Autoload
routine.

A basic link can be generated like:

<a href="[area form="

mv_todo=refresh

mv_order_item=000101

mv_order_fly=description=An on-the—fly item|price=100.01
"">Order item 000101

55.3. How to set up an order button 330

Interchange Documentation (Full)

The form parameter value mv_order_fly can contain any number of fields which will set corresponding
parameters in the item attributes. The fields are separated by the pipe (]) character and contain
value—parameter pairs separated by an = sign. (These are URL-encoded by the [area ...] or [page

...] tag, of course.) You can set a size, color, or any other parameter.

The special attribute mv_price can be used in conjunction with the CommonAdjust atom $ to set the
price for checkout and display.

The [item-list] sub—tag [item—description], when used with an item-list, will use the item

attribute description to display in the basket. Note that [item—field description] or

[item—data products description] will NOT work, as both of these tags reference an actual field

value for a record in the products table — not applicable for on—-the-fly items. Similarly, an attempt to
generate a flypage for an on-the—fly item ([page 000101], for example) will fail, resulting in the display
of the SpecialPage missing.

If you wish to set up a UserTag to process on-the—fly items, it should accept a call of

usertag(mv_item_code, mv_item_quantity, mv_order_fly)

The mv_item_code and mv_order_fly parameters are required to trigger Interchange's add_item
routine (along with mv_todo=refresh to set the action).

The item will always act as if Separateltems or mv_separate_items is set.

Multiple items can be ordered at once by stacking the variables. If there is only one mv_order_item
instance, however, you can stack the mv_order_fly variable so that all are concatenated together as with
the | symbol. So the above example could be done as:

[area form="
mv_todo=refresh
mv_order_item=000101
mv_order_fly=description=An on-the-fly item
mv_order_fly=price=100.00

]

Multiple items would need multiple instances of mv_order_item with a corresponding mv_order_fly
for each mv_order_item. You can order both 000101 and 000101 as follows:

[area form="
mv_todo=refresh

mv_order_item=000101
mv_order_fly=description=An on-the—fly item|price=100.00

mv_order_item=000102
mv_order_fly=description=Another on—the—fly item|price=200.00

]

The following two forms correspond to the above two examples, in order, with the slight refinement of addin
a guantity:

<FORM ACTION="[area process]" METHOD=POST>
<INPUT TYPE=hidden NAME=mv_todo VALUE="refresh">
<INPUT TYPE=hidden NAME=mv_order_item VALUE="000101">

55.3. How to set up an order button 331

Interchange Documentation (Full)

Qty: <INPUT SIZE=2 NAME=mv_order_quantity VALUE="1">
<INPUT TYPE=hidden NAME=mv_order_fly
VALUE="description=An on-the-fly item|price=100.00">
<INPUT TYPE=submit VALUE="Order button">
</FORM>

<FORM ACTION="[area process]" METHOD=POST>
<INPUT TYPE=hidden NAME=mv_todo VALUE="refresh">
<INPUT TYPE=hidden NAME=mv_order_item VALUE="000101">
Qty: <INPUT SIZE=2 NAME=mv_order_quantity VALUE="1">

<INPUT TYPE=hidden NAME=mv_order_fly
VALUE="description=An on-the-fly item|price=100.00">
<INPUT TYPE=hidden NAME=mv_order_item VALUE="000102">
Qty: <INPUT SIZE=2 NAME=mv_order_quantity VALUE="1">

<INPUT TYPE=hidden NAME=mv_order_fly
VALUE="description=Another on-the-fly item|price=200.00">
<INPUT TYPE=submit VALUE="Order two different with a button">
</FORM>

55.5. Order Groups

Interchange allows you to group items together, making a master item and sub-items. This can be used to
delete accessories or options when the master item is deleted. In its simplest form, you order just one maste
item and all subsequent items are sub-items.

<FORM ACTION="[process-target]" METHOD=POST>

<INPUT TYPE=hidden NAME=mv_todo VALUE=refresh>

<INPUT TYPE=hidden NAME=mv_order_group VALUE="1">
<INPUT TYPE=hidden NAME=mv_order_item VALUE="00-0011">
<INPUT TYPE=hidden NAME=mv_order_item VALUE="00-0011a">
<INPUT TYPE=submit VALUE="Order the Mona Lisa with frame">
</FORM>

If you wish to stack more than one master item, then you must define mv_order_group for all items, with
either a 1 value (master) or 0 value (sub-item). A master owns all subsequent sub—items until the next mas
is defined.

<FORM ACTION="[process-target]" METHOD=POST>

<INPUT TYPE=hidden NAME=mv_todo VALUE=refresh>

<INPUT TYPE=hidden NAME=mv_order_group VALUE="1">
<INPUT TYPE=hidden NAME=mv_order_item VALUE="00-0011">
<INPUT TYPE=hidden NAME=mv_order_group VALUE="0">
<INPUT TYPE=hidden NAME=mv_order_item VALUE="00-0011a">
<INPUT TYPE=hidden NAME=mv_order_group VALUE="1">
<INPUT TYPE=hidden NAME=mv_order_item VALUE="19-202">
<INPUT TYPE=hidden NAME=mv_order_group VALUE="0">
<INPUT TYPE=hidden NAME=mv_order_item VALUE="99-102">
<INPUT TYPE=submit VALUE="Order items">

</FORM>

When the master item 00—0011 is deleted from the basket, 00-0011a will be deleted as well. And when
19-202 is deleted, then 99-102 will be deleted from the basket.

NOTE: Use of checkboxes for this type of thing can be hazardous, as they do not pass a value when
unchecked. It is preferable to use radio groups or select/drop—down widgets. If you must use checkboxes, b
sure to explicitly clear mv_order_group and mv_order_item somewhere on the page which contains
the form:

55.5. Order Groups 332

Interchange Documentation (Full)

[value name=mv_order_group set="]
[value name=mv_order_item set="]

The attributes mv_mi and mv_si are set to the group and sub-item status of each item. The group, containe

in the attribute mv_mi, is a meaningless yet unique integer. All items in a group will have the same value of
mv_mi. The attribute mv_si is set to 0 if the item is a master item, and 1 if it is a sub—item.

55.6. Basket display

The basket page(s) are where the items are tracked and adjusted by the customer. It is possible to have an
unlimited number of basket pages. It is also possible to have multiple shopping carts, as in buy or sell. This
allows a basket/checkout type of ordering scheme, with custom order pages for items which have many
accessories.
The name of the page to display can be configured in several ways:

1. Set the SpecialPage order to the page to display when an item is ordered.

2. Use the [order code=item page=page_name] Order it! [/order] form of order tag

to specify an arbitrary order page for an item.
3. If already on an order page, set the mv_orderpage, mv_nextpage, mv_successpage, or mv_failpage
variables.

The following variables can be used to control cart selection and page display:
mv_cartname
The shopping cart (default is main) to be used for this order operation.
mv_failpage
Page to be displayed on a failed order check (see Advanced Multi-level Order Pages)
mv_nextpage
Page to display on a return operation.
mv_orderpage
Page to be displayed on a refresh.
mv_successpage
Page to be displayed on a successful order check (see Advanced Multi-level Order Pages).

mv_order_profile

Order profile to be used if the form action is submit (see Advanced Multi-level Order Pages).

55.6. Basket display 333

Interchange Documentation (Full)

55.7. Multiple Shopping Carts

Interchange allows you to define and maintain multiple shopping carts. One shopping cart —— main, by name
—— is defined when the user session starts. If the user orders item M1212 with the following tag:

[order code=M1212 cart=layaway] Order this item! [/order]

the order will be placed in the cart named layaway. However, by default you won't see the just-ordered item
on the basket page. That is because the default shopping basket displays the contents of the 'main’ cart onl
So copy the default basket page (pages/ord/basket.html in the demo) to a new file, insert a [cart

layaway] tag, and specify it as the target page in your [order] tag:

[order code=M1212 cart=layaway page=ord/lay_basket] Order this item! [/order]

Now the contents of the layaway cart will be displayed. Most of the ITL tags that are fundamental to cart
display accept a 'cartname’ option, allowing you to specify which cart to be used:

[cart carthame]

A 'sticky' setting of the default cart name to use for all subsequent cart-related tags. Convenient, but you m
remember to use [cart main] to get back to the primary cart! As an alternative, you can specify the

desired cart as a parameter of the other tags. These are not sticky, referencing the specified cart only for the
instance in which they are called:

[item—list carthame]...[/item-list]

Iterates over the items in the specified cart — tags like [item—quantity] and [item—price] will be
evaluated accordingly;

[nitems cartname]

Returns the total number of items in the specified cart;

[subtotal carthame]

Returns the monetary subtotal for the contents of specified cart;

[shipping cartname], [handling carthame], [salestax cartname], [total-cost carthame]

You get the idea. It is worth noting that tags which summarize cart contents do not need to be in used conce
or in conjunction with an [item-list]. For instance, you can display just the grand total for a cart on the
sidebar or bottom of each page, using [total-cost] by itself, if you wish.

You can also order items from a form, using the mv_order_item, mv_carthame, and optional
mv_order_quantity variables.

<FORM METHOD=POST ACTION="[process]">

<input type=checkbox name="mv_order_item" value="M3243"> I[tem M3243
<input name="mv_order_quantity" value="1"> Quantity

<input type=hidden name="mv_cartname" value="layaway">

<input type=hidden name="mv_doit" value="refresh">

<input type=submit name="mv_junk" value="Place on Layaway Now!">

55.7. Multiple Shopping Carts 334

Interchange Documentation (Full)

</[FORM>

If you need to utilize an alternative item price in conjunction with the use of a custom cart, see the section ot
PRODUCT PRICING for pricing methods and strategies.

55.7. Multiple Shopping Carts 335

56. PRODUCT PRICING

Interchange maintains a price in its database for every product. The price field is the one required field in the
product database —- it is necessary to build the price routines.

For speed, Interchange builds the code that is used to determine a product's price at catalog configuration
time. If you choose to change a directive that affects product pricing you must reconfigure the catalog.

56.1. Simple pricing
The simplest method is flat pricing based on a fixed value in the products database. If you put that price in

a field named price, you don't need to do more. If you want to change pricing based on quantity, size, color
or other factors read on.

56.2. Price Maintenance with CommonAdjust

A flexible chained pricing scheme is available when the CommonAdjust directive is set.

NOTE: For compatibility with older carts, if both PriceAdjustment and CommonAdjust are set, and
CommonAdjust contains a valid database identifier, the CommonAdjust value is used to set pricing
adjustments based on item attributes. This is not discussed further in this section; all items below assume
PriceAdjustment is not in use.

We talk below about a CommonAdjust string; it will be defined in due time.

A few rules about CommonAdjust, all assuming the PriceField directive is set to price:

1

If CommonAdjust is set to any value, a valid CommonAdjust string or not, extended price adjustments are
enabled. It may also hold the default pricing scheme.

2
The price field may also hold a CommonAdjust string. It takes precedence over the default.
3

If the value of the CommonAdjust directive is set to a CommonAdjust string, and the price field is empty
or specifically 0, then it will be used to set the price of the items.

4

If PriceBreaks is in use, its price will take precedence over the value of CommonAdjust, though it may also
contain a CommonAdjust string.

5

If no CommonAdjust strings are found, then the price will be 0, subject to any later application of discounts.

56. PRODUCT PRICING 336

Interchange Documentation (Full)

6

If another CommonAdjust string is found as the result of an operation, it will be re—parsed and the result
applied. Chaining is retained; a fallback may be passed and will take effect.

Prices may be adjusted in several ways, and the individual actions are referred to below as atoms. Price atc
they may be final, chained, or fallback. A final price atom is always applied if it does not evaluate to zero. A
chained price atom is subject to further adjustment. A fallback price atom is skipped if a previous chained
price was not zero.

Atoms are separated by whitespace, and may be quoted (although there should not normally be whitespace
a setting). A chained item ends with a comma. A fallback item has a leading semi—colon. Final atoms have r
comma appended or semi—colon prepended.

A settor is the means by which the price is set. There are There are eight different types of price settors. All
settors can then yield another CommonAdjust string.

It is quite possible to create endless loops, so the maximum number of initial CommonAdjust strings is set tc
16, and there may be only 20 iterations before the price will return zero on an error.

NOTE: Common needs are easily shown but not so easily explained; skip to the examples if the reference
below if your vision starts to blur when reading the next section. 8-)

USAGE: Optional items below have asterisks appended. The asterisk should not be used in the actual string
Optional base or table always defaults to the active products database table. The optional key defaults to
the item code except in a special case for the attribute—based lookup. The field name is not optional except
the case of an attribute lookup.

N.NN or =N.NN

where N is a digit. A number which is applied directly; for instance 10 will yield a price of 10. May be a
positive or negative number.

N.NN%

where N is a digit. A number which is applied as a percentage of the current price value. May be a positive
negative humber. For example, if the price is 10 and —8% is applied, the next price value will be 9.20.

table*:column:key*

Causes a straight lookup in a database table. The optional table defaults to the main products database tabl
for the item (subject of course to multiple product files). The column must always be present. The optional
key defaults to the item code except in a special case for the attribute—based lookup. The return value is the
re—parsed as another price settor.

table*:coll..col5,col10:key*

Causes a quantity lookup in database table table (which defaults to the products database), with a set of

comma-separated fields, looked up by the optional key. (Key defaults to the item code, of course). If ranges
are specified with .., each column in the sequence will be used; Therefore

56. PRODUCT PRICING 337

Interchange Documentation (Full)

pricing:p1,p2,p3,p4,p5,p10:
is the same as
pricing:p1..p5,p10:

Leading non-digits are stripped, and the item quantity is compared with the numerical portion of the column
name. The price is set to the value of the database column (numeric portion) that is at least equal to it but
doesn't yet reach the next break.

WARNING: If the field at the appropriate quantity level is blank, a zero cost will be returned from the atom.
It is important to have all columns populated.

==attribute:table*:column*:key*

Does an attribute—based adjustment. The attribute is looked up in the database table, with the optional
column defaulting to the same name as the value of the attribute. If the column is not left blank, the key is se
to the value of the attribute if blank.

& CODE

The leading & sign is stripped and the code is passed to the equivalent of a [calc] tag. No Interchange tags
can be used, but the &tag_data routine is available, the current value of the price and quantity are available
$s, and the current item (code, quantity, price, and any attributes) are available as $item, all forced to the
package Vend::Interpolate. That means that in a UserTag:

$Vend::Interpolate::item is the current item
$Vend::Interpolate::item—>{code} gives key for current item
$Vend::Interpolate::item—>{size} gives size for current item (if there)
$Vend::Interpolate::item—>{mv_ib} gives database ordered from

[valid Interchange tags]
If the settor begins with a square bracket ([) or underscore, it is parsed for Interchange tags with variable
substitution (but no Locale substitution). You may define a price in a Variable in this fashion. The string is

re—submitted as an atom, so it may yield yet another settor.

$

Tells Interchange to look in the mv_price attribute of the shopping cart, and apply that price as the final
price, if it exists. The attribute must be a numerical value.

>>word

Tells the routine to return word directly as the result. This is not useful in pricing, as it will evaluate to zero.
But when CommonAdjust is used for shipping, it is a way of re—directing shipping modes.

word
The value of word, which must not match any of the other settors, is available as a key for the next lookup

(only). If the next settor is a database lookup, and it contains a dollar sign ($) the word will be substituted:;
i.e. table:column:$ becomes table:column:word.

56. PRODUCT PRICING 338

Interchange Documentation (Full)

(settor)

The value returned by settor will be used as a key for the next lookup, as above.

56.3. CommonAdjust Examples

Most examples below use an outboard database table named pricing, but any valid table including the
products table can be used. We will refer to this pricing table:

code common gl g5 ql0 XL S red
99-102 10 9 8 1 -0.500.75
00-343 2

red 0.75

The simplest case is a straight lookup on an attribute; size in this case.
10.00, ==size:pricing

With this value in the price field, a base price of 10.00 will be adjusted with the value of the size attribute.

If size for the item 99-102 is set to XL then 1.00 will be added for a total price of 11.00; if it is S then .50 will
be subtracted for a total price of 9.50; for any other value of size no further adjustment would be made.
00-343 would be adjusted up 2.00 only for XL.

10.00, ==size:pricing, ==color:pricing

This is the same as above, except both size and color are adjusted for. A color value of red for item code
99-102 would add 0.75 to the price. For 00—-343 it would have no effect.

10.00, ==size:pricing, ==color:pricing:common

Here price is set based on a common column, keyed by the value of the color attribute. Any item with a colo
value of red would have 0.75 added to the base price.

pricing:q1,95,910:, ;10.00, ==size:pricing, ==color:pricing:common

Here is a quantity price lookup, with a fallback price setting. If there is a valid price found at the quantity of 1
5, or 10, depending on item quantity, then it will be used. The fallback of 10.00 only applies if no
non-zero/non-blank price was found at the quantity lookup. In either case, size/color adjustment is applied.

pricing:q1,95,910:, ;10.00 ==size:pricing, ==color:pricing:common

Removing the comma from the end of the fallback string stops color/size lookup if it reaches that point. If a
guantity price was found, then size and color are chained.

pricing:q1,95,910:, ;products:list_price, ==size:pricing, ==color:pricing
The value of the database column list_price is used as a fallback instead of the fixed 10.00 value. The

above value might be a nice one to use as the default for a typical retail catalog that has items with colors al
sizes.

56.3. CommonAdjust Examples 339

Interchange Documentation (Full)

56.4. PriceBreaks, discounts, and PriceAdjustment

There are several ways that Interchange can modify the price of a product during normal catalog operation.
Several of them require that the pricing.asc file be present, and that you define a pricing database. You do t
by placing the following directive in catalog.cfg:

Database pricing pricing.asc 1

NOTE: PriceAdjustment is slightly deprecated by CommonAdjust, but will remain in use at least through the
end of Version 3 of Interchange.

Configurable directives and tags with regard to pricing:

» Quantity price breaks are configured by means of the PriceBreaks and MixMatch directives. They
require a field named specifically price in the pricing database. The price field contains